Утеплителей коэффициент теплопроводности: Таблица теплопроводности строительных материалов

Теплопроводность утеплителей: назначение, таблица, критерии выбора

Содержание статьи:

Выбор теплоизоляционных материалов на современном рынке огромен. Производители выпускают различные по структуре, плотности, звукоизоляционным характеристикам и влагостойкости модели. Потребителям необходимо знать теплопроводность утеплителей и критерии подбора. Подробное сравнение всех видов поможет найти идеальный для постройки материал.

Понятие теплопроводности

Утеплители имеют разный коэффициент теплопроводности – это главный показатель материала

Под теплопроводностью понимается передача энергии тепла от объекта к объекту до момента теплового равновесия, т.е. выравнивания температуры. В отношении частного дома важна скорость процесса – чем дольше происходит выравнивание, тем меньше остывает конструкция.

В числовом виде явление выражается через коэффициент теплопроводности. Показатель наглядно выражает прохождение количества тепла за определенное время через единицу поверхности. Чем больше величина, тем быстрее утекает тепловая энергия.

Теплопередача различных материалов указывается в характеристиках изготовителя на упаковке.

Факторы влияния на теплопроводность

Теплопроводность зависит от плотности и толщины теплоизолята, поэтому важно учитывать ее при покупке. Плотность – это масса одного кубометра материалов, которые по этому критерию классифицируются как очень легкие, легкие, средние и жесткие. Легкие пористые изделия применяются для покрытия внутренних стен, несущих перегородок, плотные – для наружных работ.

Модификации с меньшей плотностью легче по весу, но имеют лучшие параметры теплопроводности. Сравнение утеплителей по плотности представлено в таблице.

МатериалПоказатель плотности, кг/м3
Минвата50-200
Экструдированный пенополистирол33-150
Пенополиуретан30-80
Мастика из полиуретана1400
Рубероид600
Полиэтилен1500

Чем выше плотность, тем меньше уровень пароизоляции.

Толщина материала также влияет на степень теплопередачи. Если она избыточная, нарушается естественная вентиляция помещений. Маленькая толщина становится причиной мостов холода и образования конденсата на поверхности. В результате стена покроется плесенью и грибком. Сравнить параметры толщины материалов можно в таблице.

МатериалТолщина, мм
Пеноплекс20
Минвата38
Ячеистый бетон270
Кладка из кирпича370

При подборе толщины стоит учитывать климат местности, материал постройки.

Характеристики разных материалов

Перед рассмотрением таблицы теплопроводности утеплителей имеет смысл ознакомиться с кратким обзором. Информация поможет застройщикам разобраться в специфике материала и его назначении.

Пенопласт

Пенопласт и пенополистирол отличаются способом производства, ценой и теплопроводностью

Плитный материал, изготовленный посредством вспенивания полистирола. Отличается удобством раскроя и монтажа, низкой теплопроводностью – в сравнении с другими изоляторами пенопласт легче. Преимущества изделия – недорогая стоимость, стойкость к влажной среде. Минусы пенопласта – хрупкость, быстрая возгораемость. По этой причине плиты толщиной 20-150 мм используются для теплоизоляции легких наружных конструкций – фасадов под штукатурные работы, стены цоколей и подвалов.

При горении пенопласта выделяются токсичные вещества.

Экструдированный пенополистирол

Вспененный полистирол с экструзией отличается стойкость к воздействию влажной среды. Материал легко раскраивается, не горит, прост в укладке и транспортировке. У плит помимо низкой теплопроводности – высокая плотность и прочность на сжатие. Среди российских застройщиков популярен экструдированный пенополистирол брендов Техноплекс и Пеноплекс. Его применяют для теплоизоляции отмостки и ленточного фундамента.

Минеральная вата

Чем плотнее плиты минеральной базальтовой ваты, тем хуже они проводят тепло

Коэффициент теплопроводности минеральной ваты – 0,048 Вт/(м*С), что больше пенопласта. Материал изготавливается на основе горных пород, шлака или доломита в форме плит и рулонов, у которых разный индекс жесткости. Для утепления вертикальных поверхностей допускается применять жесткие и полужесткие изделия. Горизонтальные конструкции лучше утеплять при помощи легких минплит.

Несмотря на оптимальный индекс теплопроводности, у минеральной ваты маленькая устойчивость к влажной среде. Плиты не подойдут для утепления подвальных помещений, парилок, предбанников.

Применение минваты с низкой теплопроводностью допускается только при наличии пароизоляционного и гидроизоляционного слоев.

Базальтовая вата

Основой для изоляции является базальтовый вид горной породы, который раздувается при нагреве до состояния волокон. При изготовлении также добавляют нетоксичные связующие компоненты. На российском рынке продукция бренда Роквул, на примере которой можно рассмотреть особенности утеплителя:

  • не подвергается возгоранию;
  • отличается хорошим показателем тепло- и звукоизоляции;
  • отсутствие слеживания и уплотнения в процессе эксплуатации;
  • экологически чистый строительный материал.

Параметры теплопроводности позволяют использовать каменную вату для наружных и внутренних работ.

Стекловата

Стекловата имеет коэффициент теплопроводности выше, чем каменная вата, материал гигроскопичен

Стекловатный утеплитель изготавливается из буры, известняка, соды, просеянного доломита и песка. Для экономии на производстве применяют стеклобой, что не нарушается свойства материала. К преимуществам стекловаты относятся высокие показатели тепло- и звукоизоляции, экологическая чистота и низкая стоимость. Минусов больше:

  • Гигроскопичность – впитывает воду, вследствие чего теряет утепляющие характеристики. Для предотвращения гниения и разрушения конструкции укладывают между пароизоляционными слоями.
  • Неудобство монтажа – волокна с повышенной хрупкостью распадаются, могут вызывать жжение и зуд кожи.
  • Непродолжительная эксплуатация – через 10 лет происходит усадка.
  • Невозможность применения для утепления влажных комнат.

При работе со стекловатой нужно защищать кожу рук перчатками, лицо – очками или маской.

Вспененный полиэтилен

Вспененный фольгированный полиэтилен имеет пропускает тепло хуже, чем обычный

Рулонный полиэтилен с пористой структурой имеет дополнительный отражающий слой из фольги. Преимущества изолона и пенофола:

  • маленькая толщина – от 2 до 10 мм, что в 10 раз меньше обычных изоляторов;
  • возможность сохранения до 97 % полезного тепла;
  • стойкость к воздействию влаги;
  • минимальная теплопроводность за счет пор;
  • экологическая чистота;
  • отражающий эффект, за счет которого аккумулируется тепловая энергия.

Рулонная теплоизоляция подходит для укладки во влажных комнатах, на балконах и лоджиях.

Напыляемая теплоизоляция

Пенополиуретан имеет самую низкую теплопроводность

Если обратиться к таблице, то видно, что напыляемые виды заменяют 10 см минваты. Они выпускаются в баллонах, напоминают монтажную пену и наносятся при помощи специального инструмента. Напыляемый утеплитель бывает разной жесткости, в емкости также присутствуют пенообразователи – полиизоционатом и полиолом. По типу основного компонента изоляция бывает:

  • ППУ. Пенополиуретан с открытой ячеистой структурой прочен, теплоэффективен. При наличии закрытых пустот в составе – может пропускать пар.
  • Пеноизольная. Жидкий пенопласт на карбамидоформальдегидной основе отличается паропроницаемостью, стойкость к возгоранию. Наносится посредством заливки. Оптимальная температура затвердевания – от +15 градусов.
  • Жидкая керамика. Керамические компоненты расплавляются до жидкого состояния, потом смешиваются полимерными веществами и пигментами. Получаются вакуумированные полости. Наружное утепление обеспечивает защиту здания на 10 лет, внутреннее – на 25 лет.
  • Эковата. Целлюлоза измельчается до состояния пыли, приобретает клейкость при попадании воды. Материал подходит для работы на влажных стеновых поверхностях, но не используется рядом с каминными трубами, дымоходами и печами.

Напыляемые утеплители отличаются хорошей сцепкой с поверхностями, для которых применялись дерево, кирпич или газобетон.

Таблица коэффициентов теплопроводности разных материалов

На основе таблицы с коэффициентами теплопроводности строительных материалов и популярных утеплителей можно сделать сравнительный анализ. Он обеспечит подбор оптимального варианта теплоизоляции для строения.

МатериалТеплопроводность, Вт/м*КТолщина, ммПлотность,  кг/м³Температура укладки,  °CПаропроницаемость, мг/м²*ч*Па
Пенополиуретан0,0253040-60От -100 до +1500,04-0,05
Экструдированный пенополистирол0,033640-50От -50 до +750,015
Пенопласт0,056040-125От -50 до +750,23
Минвата (плиты)0,0475635-150От -60 до +1800,53
Стекловолокно (плиты)0,0566715-100От +60 до +4800,053
Базальтовая вата (плиты)0,0378030-190От -190 до +7000,3
Железобетон2,0425000,03
Пустотелый кирпич0,0585014000,16
Деревянные брусья с поперечным срезом0,181540-500,06

Для параметров толщины применялся усредненный показатель.

Иные критерии подбора утеплителей

Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.

Объемный вес

Вес и плотность минваты влияет на качество утепления

Данная характеристика связана с теплопроводностью и зависит от типа материала:

  • Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
  • Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
  • Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
  • Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
  • Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.

Чем меньше объемный вес, тем меньше затрачивается материала.

Способность держать форму

Плиты и пенополиуретан имеют одинаковую степень жесткости, хорошо выдерживают форму

Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.

Формостабильность стройматериалов зависит от типа утеплителя:

  • Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
  • Пенные виды держат форму на уровне жесткой каменной ваты.

Способность изделия держать форму также определяется по характеристикам упругости.

Паропроницаемость

Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.

По степени паропроницаемости выделяют два типа утеплителей:

  • Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
  • Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.

При монтаже паропроницаемых ват дополнительно укладывают пленочную пароизоляцию.

Горючесть

Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:

  • НГ – негорючие: каменная и базальтовая вата.
  • Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
  • В – воспламеняемые: плиты из ДСП, рубероид.
  • Д – дымообразующие (ПВХ).
  • Т – токсичные (минимальный уровень – у бумаги).

Оптимальный вариант для частного строительства – самозатухающие материалы.

Звукоизоляция

Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.

У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.

Нормальный показатель звукоизоляции – плотность от 50 кг/м3.

Практическое применение коэффициента теплопроводности

Коэффициент теплопроводности необходим для вычисления объема утеплителя в климатическом поясе

После теоретического сравнения материалов нужно учитывать их разделение на группы теплоизоляционных и конструкционных. У конструкционного сырья – самые высокие индексы теплопередачи, поэтому оно подходит для возведения перекрытий, ограждений или стен.

Без использования сырья со свойствами утеплителей понадобится укладывать толстый слой теплоизоляции. Обратившись к таблице теплопроводности, можно определить, что низкий теплообмен конструкций из железобетона будет только при их толщине 6 м. Готовый дом будет громоздким, может просесть под почву, а затраты на строительство не окупятся и через 50 лет.

Достаточная толщина теплоизоляционного слоя – 50 см.

Применение теплоизоляционных материалов обеспечивает сокращение затрат на строительные мероприятия и снижает переплаты за энергию зимой. При покупке утеплителя нужно учитывать параметры теплопроводности, основные характеристики, стоимость и удобство самостоятельного монтажа.

Таблица теплопроводности и других качеств материалов для утепления

Теплопроводность материалов по таблицеТеплопроводность материалов по таблицеДа, в нашей стране, в отличие от стран с жарким климатом, бывают лютые зимы. Именно поэтому нужно строиться из теплых материалов с использованием специальных утеплителей. В ином случае все дорогое тепло от котлов и печей будет уходить через стены и другие перекрытия.

Нам нужно точно знать, какие из современных популярных материалов для утепления наиболее эффективны.

Что такое теплопроводность?

Как определить теплопроводность материалаКак определить теплопроводность материалаТеплопроводность можно описать как процесс передачи тепловой энергии до наступления теплового равновесия. Температура, так или иначе, будет выровнена, вопрос только в скорости этого процесса. Если применить это понятие к дому, то ясно, что чем дольше температура внутри здания выравнивается с наружной, тем лучше. Проще говоря, насколько быстро дом остывает это вопрос того, какая теплопроводность его стен.

В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.

Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.

Таблица теплопроводности утеплителей

В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.

Таблица теплопроводности утеплителей

  1. Утеплитель
Теплопроводность, Вт/(м*С)Плотность, кг/м3Паропроницаемость, мг/ (м*ч*Па)«+»«-»Горюч.
Пенополиуретан0,023320,0-0,052.Бесшовный монтаж пеной; 3.Долгосрочность; 4.Лучшая тепло-, гидроизоляция1.недешевый 2. Не устойчив к УФ-излучениюСамозатухающий
0,02940
0,03560
0,04180
Пенополистирол (пенопласт)0,038400,013-0,051.Отлично изолирует; 2. Дешевый; 3. Влагонепроницаем1. Хрупкий; 2. Не «дышит» и образует конденсатГ3 и Г4. Сопротивление возгоранию и самозатухание
0,041100
0,05150
Экструдированный пенополистирол0,031330,0131.Очень низкая теплопроводность; 3.Влагонепроницаем; 4.Прочен на сжатие; 5. Не гниет и не плесневеет; 6. Эксплуатация от -50 °С до +75°С; 7.Удобен в монтаже.1. На порядок дороже пенопласта; 2. Восприимчив к органическим растворителям; 3. Паропроницаемость низкая, образует конденсат.Г1 у марок с антипеновыми добавками, другие Г3 и Г4. Сопротивление возгоранию и самозатухание
Минеральная (базальтовая) вата0,048500,49-0,61.Хорошая паропроницаемость –«дышит»; 2.Противостоит грибкам; 3.Звукоизоляция; 4.Высокая термоизоляция; 5.Механическая прочность; 6.Не сыпется1.НедешевыйОгнеупорный
0,056100
0,07200
Стекловолокно (стекловата)0,041-0,044155-2000,51.Низкая теплопроводность; 2.При пожарах не выделяет токсичных веществ1.Со временем теплоизоляция снижается; 2.Может появляться плесень; 3.Проблемный монтаж: волокна осыпаются и наносят вред коже, глазам; 4.Паропроницаемость низкая, образует конденсат.Не горит
Пенопласт ПВХ0,0521250,0231.Жесткий и удобный в монтаже1.Недолговечен; 2.Плохая паропроницаемость и образование конденсатаГ3 и Г4. Сопротивление возгоранию и самозатухание
Древесные опилки0,07-0,182301.Дешевизна; 2.Экологичность1.Портиться и гниет; 2.Теплоизоляционные свойства падают при высокой влажностиПожароопасен

Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.

Полезные показатели утеплителей

На какие основные показатели нужно обратить внимание при выборе утеплителя:

  • Теплопроводность утеплительных материаловТеплопроводность утеплительных материаловТеплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
  • Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
  • Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
  • Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
  • Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
  • Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
  • Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
  • Долговечность определяет срок службы материала;
  • Толщина материала определяет, сколько пространства будет занимать теплоизоляция. При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
  • Экологичность материала особенно важна при выполнении внутреннего утепления. Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.

Кто на свете всех теплей?

Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.

Пенополиуретан или экструдированный пенополистирол

Сравнительные показатели материаловСравнительные показатели материаловНетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта. Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства. Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.

Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.

А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.

Минеральная вата или пенопласт

Основные параметры материаловОсновные параметры материаловЕсли сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость. Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата. В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.

Другие утеплители

Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.

Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.

Выбирая утеплитель

Цены на энергоносители растут, и вместе с тем растет популярность на утеплители. В нашей статье представлена таблица теплопроводности материалов для утепления и сравнительный анализ популярных видов утеплителей. Главное, что хотелось бы отметить — хорошие показатели вы получите, приобретая только качественный сертифицированный продукт. Выбор теплоизоляционных материалов на рынке весьма широк и один вид утеплителя предлагается более чем пятью производителями. Много из них могут вас огорчить своим качеством, поэтому ориентируйтесь на отзывы тех, кто испытал конкретные торговые марки на «своей шкуре».

Оцените статью: Поделитесь с друзьями!
Теплопроводность утеплителей: таблица | Сравнение теплоизоляционных материалов

Для большинства людей холодные зимы давно уже стали привычным явлением. В связи с этим, материалы для теплоизоляции были и остаются очень востребованными. Для того, чтобы не ошибиться с выбором и приобрести подходящий для конкретных условий материал высокого качества, нужно будет учесть особенности таблицы теплопроводности материалов и утеплителей.

Потребность в теплоизоляции стен

Обоснованность применения теплоизоляции состоит в следующем:Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

  1. Сбережение тепла в помещениях в холодный период и прохлады в жару. В многоэтажном жилом доме теплопотери через стены могут достигать до 30 % или 40 %. Чтобы снизить потери тепла понадобятся особые теплоизолирующие материалы. В зимний период использование электрических обогревателей воздуха может способствовать увеличению расходов на оплату электроэнергии. Этот убыток гораздо более выгодно компенсировать за счет применения теплоизоляционного материала высокого качества, который поможет обеспечить комфортный микроклимат в помещении в любой сезон. Стоит заметить, что грамотное утепление сведет к минимуму и затраты на использование кондиционеров.
  2. Продление срока эксплуатации несущих конструкций здания. В случае с промышленными строениями, которые возводятся с использованием металлического каркаса, теплоизолятор выступает надежной защитой поверхности металла от процессов коррозии, которая может очень пагубно отразиться на конструкциях данного типа. Что касается срока службы кирпичных зданий, он определяется числом циклов заморозки-разморозки материала. Влияние этих циклов тоже нивелирует утеплитель, поскольку в теплоизолированном здании точка росы сдвигается в сторону утеплителя, оберегая стены от разрушения.
  3. Изоляция от шума. Защитой от все увеличивающегося шумового загрязнения служат материалы со свойствами шумопоглощения. Это могут быть толстые маты или стеновые панели, способные отражать звук.
  4. Сохранение полезной площади помещений. Применение теплоизолирующих систем позволит снизить уровень толщины наружных стен, а внутренняя площадь зданий при этом увеличится.

Сравнение показателей теплопроводности материалов

На сегодняшний день большинство производителей материалов для теплоизоляции готовы предложить застройщикам широкий ассортимент продукции. И каждый из них будет заверять, что именно выпускаемый им утеплитель станет идеальным выбором. Подобное разнообразие материалов для строительства затрудняет процесс принятия решения в пользу того или иного теплоизолятора. Поэтому цель этой статьи – помочь вам сделать самостоятельный выбор, сравнив показатели теплопроводности различных утеплителей и другие ключевые характеристики.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Мнение эксперта

Константин Александрович

Задать вопрос эксперту

Сперва хотелось бы обратить ваше внимание на основные характеристики теплоизоляторов, которые имеют первостепенное значение при покупке. Целесообразнее производить сравнение утеплителей, когда заранее известно назначение материала. К примеру, не смотря на то, что показатели прочности экстудированного XPS выше, чем у минеральной ваты, поблизости от открытого пламени или при эксплуатации при высоких температурах для собственной безопасности рекомендуется приобрести огнестойкий утеплитель.

Сравнение основных характеристик утеплителей

  • Теплопроводность. Чем более низким окажется данная характеристика материала, тем меньший слой утеплителя вам понадобится уложить. А это означает, что удастся сократить расходы на приобретение материалов. Но это утверждение будет справедливо только тогда, когда материалы будут находиться в одном ценовом диапазоне. Помимо этого, меньший слой утеплителя заберет меньше свободного пространства.
  • Влагопроницаемость. Сниженная проницаемость для пара и влаги способствует увеличению эксплуатационного срока теплоизоляции, а также позволяет снизить негативное влияние влаги на теплопроводность материала при его использовании. Но это может увеличить вероятность выпадения конденсата на конструктивных элементах, если не будет должной вентиляции.
  • Пожаробезопасность. При использовании утепляющих материалов в котельной или бане важно, чтобы они были негорючими и могли выдерживать высокотемпературное воздействие. Если же идет теплоизоляция ленточного фундамента или отмостки здания, более важными параметрами окажутся стойкость к влаге и уровень прочности.
  • Доступность и легкость монтажа. Теплоизолятор должен быть экономичен по стоимости, в противном случае утепление строения окажется нецелесообразным. Не менее важно, чтобы вы могли провести работы по утеплению кирпичного фасада самостоятельно, без наемных работников и аренды дорогостоящего монтажного оборудования.
  • Экологичность. Все используемые в строительстве материалы не должны представлять опасности для окружающей среды и здоровья человека. Особо стоит отметить звукоизолирующий эффект, который наиболее востребован в городской среде и позволяет защитить жилище от проникновения уличного шума.

Коэффициент сопротивления

Помимо прочего, выполняя расчеты важно учитывать коэффициент U, отвечающий за сопротивление конструктивных элементов теплопередаче. Он никак не относится к основным качествам утеплителей, но поможет вам не ошибиться при выборе среди большого количества разных утеплителей. Коэффициент U – это соотношение разности температур с обеих сторон изолятора к объему теплового потока, который проходит через него. Для верного расчета теплового сопротивления стен и перекрытий потребуется таблица, в которой приведены расчеты теплопроводности различных материалов для строительства.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Сделать все нужные вычисления можно и самому. Достаточно разделить толщину материала на его коэффициент теплопроводности. В случае с теплоизоляцией, информация о показателе теплопроводности обычно указывается на упаковке с утеплителем. Если речь идет о конструктивных элементах строения, процесс вычисления окажется более сложным. Если толщину получится измерить самому, то показатели теплопроводности таких материалов как кирпич, бетон или древесина потребуется найти в специальных пособиях.

Не редкость, когда для утепления пола, потолка и стен в одном здании применяются различные типы материалов, так как для каждой поверхности приходится отдельно рассчитывать коэффициент теплопроводности.

Плотность и теплоемкость

Пористость является отражением процентного соотношения числа воздушных пор к общему объему материала. Поры могут различаться по структуре – открытой или закрытой, а также по размеру – крупные и мелкие.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Крайне важно убедиться, что поры равномерно распределяются в структуре утеплителя, это будет лучшим показателем качества материала. В некоторых случаях уровень пористости может достигать 50 %, а в случае использования ячеистой пластмассы показатель составит от 90 % до 98 %.

Плотность – это важная характеристика, которая напрямую влияет на массу теплоизолятора. При помощи специальной таблицы возможно точно рассчитать эти два параметра. Если вам известна плотность, вы без труда определите увеличение уровня нагрузки на перекрытия или стены дома.

Теплоемкость является показателем, который наглядно демонстрирует количество тепла, аккумулируемого утеплителем.

Биологическая стойкость – это качество сопротивления материала действию факторов биологического происхождения, таких как патогенная микрофлора.

Огнеупорность означает устойчивость теплоизоляции к воздействию огня. Она отличается от показателя пожаробезопасности и путать их не стоит.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Могут различаться и другие характеристики, такие как прочность к изгибам и механическим воздействиям, износу и влиянию отрицательных температур.

Преимущества и недостатки теплоизоляторов

Пенополиуретан

Считается одним из самых эффективных утеплителей современности.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Преимущества: монтаж однородного бесшовного покрытия, долгий срок службы, отличная изоляция от холода и влаги.

Недостатки: высокая стоимость материала, слабая устойчивость к УФ-излучению.

Пенополистирол (или пенопласт)

Является очень востребованным и применяется в качестве изоляции для разных типов помещений.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Преимущества: невысокая теплопроводность, доступная стоимость, простота монтажа, непроницаемость для влаги.

Недостатки: хрупкий, легко воспламеняется, способствует образованию конденсата.

Экструдированный пенополистирол

Прочный и простой в работе материал, его легко раскроить на фрагменты необходимого размера и формы обычным острым ножом.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Преимущества: очень низкий коэффициент теплопроводности, плохая водопроницаемость, высокая прочность на сжатие, легкий монтаж, не боится плесени и гниения, может эксплуатироваться при температурах от -50⸰С до +75⸰С.

Недостатки: значительно дороже, чем пенопласт, восприимчив к растворителям на органической основе, способствует возникновению конденсата.

Базальтовая (или каменная) вата

Разновидность минеральной ваты, которая изготавливается на основе природного базальта.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Преимущества: противостоит возникновению грибков, звукоизолирует, имеет высокую прочность к механическим повреждениям, огнеупорна, негорюча.

Недостатки: в сравнении с аналогами имеет повышенную стоимость.

Эковата

Утепляющий материал, производимый из природных материалов , таких как древесные волокна и минералы.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Преимущества: изоляция посторонних звуков, экологическая чистота, стойкость к влаге, демократичная стоимость.

Недостатки: при эксплуатации возрастает ее теплопроводность, нужно использовать профессиональное оборудования для монтажа, может дать усадку.

Изолон

Один из высокотехнологичных утеплителей, который производят из пенополиэтилена. Очень востребован.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Преимущества: пониженная теплопроводность и паропроницаемость, высокие показатели шумоизоляции, удобно резать и мотнировать, экологичен, гибкий и маловесный.

Недостатки: невысокая прочность, нужно предусмотреть обязательный вентиляционный зазор.

Пенофол

Теплоизолятор, отвечающий всем основным требованиям, которые предъявляются к качеству материала при утеплении разнообразных помещений и конструкций.Таблица теплопроводности материалов и утеплителейТаблица теплопроводности материалов и утеплителей

Преимущества: экологическая чистота, хорошая способность отражать тепло, качественная шумоизоляция, непроницаемость для влаги, негорючесть, комфортность транспортировки и монтажа, может нейтрализовать негативное воздействие радиации.

Недостатки: пониженная жесткость, сложности с закреплением материала, при теплоизоляции только пенофола будет недостаточно.

Заключение

Все сильные и слабые стороны рассмотренных утеплителей, представленные в этом обзоре, облегчат муки выбора подходящего материала еще на стадии проекта здания. Но не забывайте, что основополагающей характеристикой материала для теплоизоляции все-таки является его теплопроводность.

Видео про таблицу теплопроводности

Таблица данных по теплопроводности утеплителей

Современные утеплительные материалы имеют уникальные характеристики и применяются для решения задач определенного спектра. Большинство из них предназначены для обработки стен дома, но есть и специфичные, разработанные для обустройства дверных и оконных проемов, мест стыка кровли с несущими опорами, подвальных и чердачных помещений. Таким образом, выполняя сравнение теплоизоляционных материалов, нужно учитывать не только их эксплуатационные свойства, но и сферу применения.

Главные параметры

Дать оценку качеству материала можно исходя из нескольких основополагающих характеристик. Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

Теплопроводность утеплителей

Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.

Чувствительность к влаге

Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.

Водопоглощение

Также не рекомендуется применять водопоглощающую изоляцию при отделке ванных комнат, санузлов, кухонь и других помещений с высоким уровнем влажности.

Плотность и теплоемкость

Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.

Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.

Плотность материала

Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

Коэффициент сопротивления

Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.

Коэффициент сопротивления

 

Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр — если речь идет об изоляции — должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

Теплопроводность основных видов утеплителей

Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:

Таблица

Преимущества и недостатки

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

экструдированный пенополистирол

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

Перлит

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

Таблица теплопроводности материалов и утеплителей

 

Сравнение утеплителей. Таблица теплопроводности

Сегодня производители теплоизоляционных материалов предлагают застройщикам действительно огромный выбор материалов. При этом каждый уверяет нас, что именно его утеплитель идеально подходит для утепления дома. Из-за такого разнообразия стройматериалов, принять правильное решение в пользу определенного материала действительно довольно сложно. Мы решили в данной статье сравнить утеплители по теплопроводности и другим, не менее важным характеристикам.

Стоит сначала рассказать об основных характеристиках теплоизоляции, на которые необходимо обращать внимание при покупке. Сравнение утеплителей по характеристикам следует делать, держа в уме их назначение. Например, несмотря на то, что экструзия XPS прочнее минваты, но вблизи открытого огня или при высокой температуре эксплуатации, стоит купить огнестойкий утеплитель для своей же безопасности.

Сравнение утеплителей по характеристикам

Теплопроводность. Чем ниже данный показатель у материала, тем меньше потребуется укладывать слой утеплителя, а значит, расходы на закупку материалов сократятся (в том случае если стоимость материалов находится в одном ценовом диапазоне). Чем тоньше слой утеплителя, тем меньше будет «съедаться» пространство.

Влагопроницаемость. Низкая влаго- и паропроницаемость увеличивает срок использования теплоизоляции и снижает отрицательное воздействие влаги на теплопроводность утеплителя при последующей эксплуатации, но при этом увеличивается риск появления конденсата на конструкции при плохой вентиляции.

Пожаробезопасность. Если утеплитель используется в бане или в котельной, то материал не должен поддерживать горение, а наоборот должен выдерживать высокие температуры. Но если вы утепляете ленточный фундамент или отмостку дома, то на первый план выходят характеристики влагостойкости и прочности.

Экономичность и простота монтажа. Утеплитель должен быть доступным по стоимости, иначе утеплять дом будет просто нецелесообразно. Также важно, чтобы утеплить кирпичный фасад дома можно было бы своими силами, не прибегая к помощи специалистов или, используя дорогостоящее оборудование для монтажа.

Экологичность. Все материалы для строительства должны быть безопасными для человека и окружающей природы. Не забудем упомянуть и про хорошую звукоизоляцию, что очень важно для городов, где важно защитить свое жилье от шума с улицы.

Сравнение утеплителей по теплопроводности

Какие характеристики важны при выборе утеплителя? На что обратить внимание и спросить у продавца? Только ли теплопроводность имеет решающее значение при покупке утеплителя, или есть другие параметры, которые стоит учесть? И еще куча подобных вопросов приходит на ум застройщику, когда приходит время выбирать утеплитель. Обратим внимание в обзоре на наиболее популярные виды теплоизоляции.

Пенопласт (пенополистирол)

Пенопласт – самый популярный сегодня утеплитель, благодаря легкости монтажа и низкой стоимости. Изготавливается он методом вспенивания полистирола, имеет низкую теплопроводность, легко режется и удобен при монтаже. Однако материал хрупкий и пожароопасен, при горении пенопласт выделяет вредные, токсичные вещества. Пенополистирол предпочтительно использовать в нежилых помещениях.

Экструдированный пенополистирол

Экструзия не подвержена влаге и гниению, это очень прочный и удобный в монтаже утеплитель. Плиты Техноплекса имеют высокую прочность и сопротивление сжатию, не подвергаются разложению. Благодаря своим техническим характеристикам техноплекс используют для утепления отмостки и фундамента зданий. Экструдированный пенополистирол долговечен и прост в применении.

Базальтовая (минеральная) вата

Производится утеплитель из горных пород, путем их плавления и раздува для получения волокнистой структуры. Базальтовая вата Роклайт выдерживает высокие температуры, не горит и не слеживается со временем. Материал экологичен, имеет хорошую звукоизоляцию и теплоизоляцию. Производители рекомендуют использовать минеральную вату для утепления мансарды и других жилых помещений.

Стекловолокно (стекловата)

При слове стекловата у многих появляется ассоциация с советским материалом, однако современные материалы на основе стекловолокна не вызывают раздражения на коже. Общим недостатком минеральной ваты и стекловолокна является низкая влагостойкость, что требует устройства надежной влаго- и пароизоляции при монтаже утеплителя. Материал не рекомендуется использовать во влажных помещениях.

Вспененный полиэтилен

Этот рулонный утеплитель имеет пористую структуру, различную толщину часто производится с нанесением дополнительного слоя фольги для отражающего эффекта. Изолон и пенофол имеет толщину в 10 раз тоньше традиционных утеплителей, но сохраняет до 97% тепла. Материал не пропускает влагу, имеет низкую теплопроводность благодаря своей пористой структуре и не выделяет вредных веществ.

Напыляемая теплоизоляция

К напыляемой теплоизоляции относится ППУ (пенополиуретан) и Экотермикс. К главным недостаткам данных утеплителей относится необходимость наличия специального оборудования, для их нанесения. При этом напыляемая теплоизоляция создает на конструкции прочное, сплошное покрытие без мостиков холода, при этом конструкция будет защищена от влаги, так как ППУ влагонепроницаемый материал.

Сравнение утеплителей. Таблица теплопроводности

Полную картину о том, какой следует использовать утеплитель в том или ином случае, дает таблица теплопроводности теплоизоляции. Вам остается только соотнести данные из этой таблицы со стоимостью утеплителя у разных производителей и поставщиков, а также рассмотреть возможность его использования в конкретных условиях (утепление кровли дома, ленточного фундамента, котельной, печной трубы и т.д.).

Сравнение утеплителей по теплопроводности


Сравнение утеплителей по теплопроводности. Мы решили в данной статье сравнить утеплители в таблице по теплопроводности и другим важным характеристикам.

Источник: uteplitel-x.ru

 

Сравнение теплопроводности строительных материалов по толщине

В продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака. Далее пойдет речь об основных свойствах материалов, способных обеспечить необходимый уровень теплопроводности объектов различного назначения, а также будет приведено их сравнение, в чем поможет таблица.

Основные характеристики утеплителей

При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:

  • Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
  • Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
  • Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
  • Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
  • Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
  • Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
  • Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.

Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).

Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.

Сравнение популярных утеплителей

Давайте рассмотрим несколько материалов, применяемых для повышения энергоэффективности сооружений:

  • Минеральная вата. Производится из естественных материалов. Устойчива к огню и отличается экологичностью, а также низкой теплопроводностью. Но невозможность противостоять воздействию воды сокращает возможности использования.
  • Пенопласт. Легкий материал с отличными утеплительными свойствами. Доступный, легко устанавливается и влагоустойчив. Недостатки: хорошая воспламеняемость и выделение вредных веществ при горении. Рекомендуется его использовать в нежилых помещениях.
  • Бальзовая вата. Материал практически идентичный минвате, только отличается улучшенными показателями устойчивости к влаге. При изготовлении его не уплотняют, что значительно продлевает срок службы.
  • Пеноплэкс. Утеплитель хорошо противостоит влаге, высоким температурам, огню, гниению, разложению. Отличается отличными показателями теплопроводности, прост в монтаже и долговечен. Можно использовать в местах с максимальными требованиями способности материала противостоять различным воздействиям.
  • Пенофол. Многослойный утеплитель естественного происхождения. Состоит из полиэтилена, предварительно вспененного перед производством. Может иметь различные показатели пористости и ширины. Часто поверхность покрыта фольгой, благодаря чему достигается отражающие эффект. Отличается легкостью, простотой монтажа, высокой энергоэффективностью, влагостойкостью, небольшим весом.

Коэффициент теплопроводности размерность

Выбирая материал для использования в непосредственной близости с человеком, необходимо особое внимание уделять его характеристикам экологичности и пожаробезопасности. Также в некоторых ситуациях рационально покупать более дорой утеплитель, который будет обладать дополнительными свойствами влагозащиты или звукоизоляции, что в окончательном счете позволяет сэкономить.

Сравнение с помощью таблицы

Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.

Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.

Сравнение утеплителей по теплопроводности и по плотности материалов


В продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака.

Источник: jsnip.ru

 

Сравнение разных видов утеплителей

В прошлый раз мы определили самый дешевый утеплитель. Сегодня мы проведем сравнение утеплителей. Таблицу с общими характеристиками вы можете найти в итогах статьи. Мы выбрали самые популярные материалы, среди которых минвата, ППУ, пеноизол, пенопласт и эковата. Как видите, это универсальные утеплители с широким спектром применения.

Сравнение теплопроводности утеплителей

Чем выше теплопроводность, тем хуже материал работает как утеплитель.

Мы начинаем сравнение утеплителей по теплопроводности неспроста, так как это, несомненно, самая важная характеристика. Она показывает, сколько тепла пропускает материал не за определенный промежуток времени, а постоянно. Теплопроводность выражается коэффициентом и исчисляется в ваттах на метр квадратный. Например, коэффициент 0,05 Вт/м*К указывает, что на квадратном метре постоянные теплопотери составляют 0,05 Ватта. Чем выше коэффициент, тем лучше материал проводит тепло, соответственно, как утеплитель он работает хуже.

Ниже представлена таблица сравнения популярных утеплителей по теплопроводности:

Изучив вышеуказанные виды утеплителей и их характеристики можно сделать вывод, что при равной толщине самая эффективная теплоизоляция среди всех – это жидкий двухкомпонентный пенополиуретан (ППУ).

Толщина теплоизоляции имеет архиважное значение, она должна рассчитываться для каждого случая индивидуально. На результат влияет регион, материал и толщина стен, наличие воздушных буферных зон.

Сравнительные характеристики утеплителей показывают, что на теплопроводность влияет плотность материала, особенно для минеральной ваты. Чем выше плотность, тем меньше воздуха в структуре утеплителя. Как известно, воздух имеет низкий коэффициент теплопроводности, который составляет менее 0,022 Вт/м*К. Исходя из этого, при увеличении плотности растет и коэффициент теплопроводности, что негативно отражается на способности материала удерживать тепло.

Сравнение паропроницаемости утеплителей

Высокая паропроницаемость=отсутствие конденсата.

Паропроницаемость – это способность материала пропускать воздух, а вместе с ним и пар. То есть теплоизоляция может дышать. На этой характеристике утеплителей для дома последнее время производители акцентируют много внимания. На самом деле высокая паропроницаемость нужна только при утеплении деревянного дома. Во всех остальных случаях данный критерий не является категорически важным.

Сравнение утеплителей для стен показало, что самой высокой степенью паропроницаемости обладают натуральные материалы, в то время как у полимерных утеплителей коэффициент крайне низок. Это свидетельствует о том, что такие материалы как ППУ и пенопласт обладают способностью задерживать пар, то есть выполняют функцию пароизоляции. Пеноизол – это тоже своего рода полимер, который изготавливается из смол. Его отличие от ППУ и пенопласта заключается в структуре ячеек, которые открытие. Иными словами, это материал с открытоячеистой структурой. Способность теплоизоляции пропускать пар тесно связан со следующей характеристикой – поглощение влаги.

На сегодняшний день газовое автономное отопление загородного дома — это самый дешевый вариант обогрева жилья.

 

Обзор гигроскопичности теплоизоляции

Высокая гигроскопичность — это недостаток, который нужно устранять.

Гигроскопичность – способность материала впитывать влагу, измеряется в процентах от собственного веса утеплителя. Гигроскопичность можно назвать слабой стороной теплоизоляции и чем выше это значение, тем серьезнее потребуются меры для ее нейтрализации. Дело в том, что вода, попадая в структуру материала, снижает эффективность утеплителя. Сравнение гигроскопичности самых распространенных теплоизоляционных материалов в гражданской строительстве:

Сравнение гигроскопичности утеплителей для дома показало высокое влагопоглощение пеноизола, при этом данная теплоизоляция обладает способностью распределять и выводить влагу. Благодаря этому, даже намокнув на 30%, коэффициент теплопроводности не уменьшается. Несмотря на то, что у минеральной ваты процент поглощения влаги низкий, она особенно нуждается в защите. Напитав воды, она удерживает ее, не давая выходить наружу. При этом способность предотвращать теплопотери катастрофически снижается.

Чтобы исключить попадание влаги в минвату используют пароизоляционные пленки и диффузионные мембраны. В основном полимеры устойчивы к длительному воздействию влаги, за исключением обычного пенополистирола, он быстро разрушается. В любом случае вода ни одному теплоизоляционному материалу на пользу не пошла, поэтому крайне важно исключить или минимизировать их контакт.

Организовать автономное газовое отопление в квартире возможно только при наличии всех разрешительных документов (список довольно внушающий).

Окупаемость альтернативного отопление частного дома водородом порядка 35 лет.

Монтаж и эффективность в эксплуатации

Монтаж ППУ — быстро и легко.

Сравнение характеристик утеплителей должно осуществляться с учетом монтажа, ведь это тоже важно. Легче всего работать с жидкой теплоизоляцией, такой как ППУ и пеноизол, но для этого требуется специальное оборудование. Также не составляет труда укладка эковаты (целлюлозы) на горизонтальные поверхности, например, при утеплении пола или чердачного перекрытия. Для напыления эковаты на стены мокрым методом также нужны специальные приспособления.

Пенопласт укладывается как по обрешетке, так и сразу на рабочую поверхность. В принципе, это касается и плит из каменной ваты. Причем укладывать плитные утеплители можно и на вертикальные, и на горизонтальные поверхности (под стяжку в том числе). Мягкую стекловату в рулонах укладывают только по обрешетке.

В процессе эксплуатации теплоизоляционный слой может претерпевать некоторых нежелательных изменений:

  • напитать влагу;
  • дать усадку;
  • стать домом для мышей;
  • разрушиться от воздействия ИК лучей, воды, растворителей и прочее.

Кроме всего вышеуказанного, важное значение имеет пожаробезопасность теплоизоляции. Сравнение утеплителей, таблица группы горючести:

Сегодня мы провели обзор утеплителей для дома, которые используются чаще всего. По результатам сравнения разных характеристик мы получили данные касательно теплопроводности, паропроницаемости, гигроскопичности и степени горючести каждого из утеплителей. В

Помимо этих характеристик, мы определили, что легче всего работать с жидкими утеплителями и эковатой. ППУ, пеноизол и эковата (монтаж мокрым методом) просто напыляются на рабочую поверхность. Сухая эковата засыпается вручную.

Таблица сравнения утеплителей для дома по теплопроводности


Таблица сравнения характеристик утеплителей для дома по теплопроводности. Обзор самых популярных видов теплоизоляционных материалов для стен по эффективности.

Источник: utepleniedoma.com

 

Таблица теплопроводности утеплителей и других материалов

Чтобы зимой наслаждаться теплотой и уютом в своем дома, нужно заранее позаботиться об его теплоизоляции. Сегодня сделать это совершенно несложно, ведь на строительном рынке имеется широкий ассортимент утеплителей. Каждый из них имеет свои минусы и плюсы, подходит для утепления при определенных условиях эксплуатации. При выборе материала очень важным остается такой критерий, как теплопроводность.

Что такое теплопроводность

Это процесс отдачи тепловой энергии с целью получения теплового равновесия. Температурный режим должен быть выровнен, главным остается скорость, с которой будет осуществлена эта задача. Если рассмотреть теплопроводность по отношению к дому, то чем дольше происходит процесс выравнивания температур воздуха в доме и на улице, то тем лучше. Говоря простыми словами, теплопроводность – это показатель, по которому можно понять, как быстро остывают стены в доме.

Этот критерий представлен в числовом значении и характеризуется коэффициентом тепловой проводимости. Благодаря ему можно узнать какое количество тепловой энергии за единицу времени сможет пройти через единицу поверхности. Чем выше значение теплопроводности у утеплителя, тем он быстрее проводит тепловую энергию.

Чем ниже значение коэффициента проводимости тепла, тем дольше материал сможет удерживать тепло в зимние дни, а прохладу в летние. Но имеется ряд других факторов, которые также нужно принимать во внимание при выборе изолирующего материала.

Пенополистирол

Этот теплоизолятор один из самых востребованных. А связано это с его низкой проводимостью тепла, невысокой стоимостью и простотой монтажа. На полках магазинов материал представлен в плитах, толщина которых 20-150 мм. Получают путем вспенивание полистирола. Полученные ячейки заполняют воздухом. Для пенопласта характерна разная плотность, низкая проводимость тепла и стойкость к влаге.

На фото — пенополистирол

Так как пенополистирол стоит недорого, он имеет широкую популярность среди многих застройщиков для утепления различных домов и построек. Но есть у пенопласта свои недостатки. Он является очень хрупким и быстро воспламеняется, а при горении выделяет в окружающую среду вредные токсины. По этой причине применять пенопласт лучше для утепления нежилых домов и ненагружаемых конструкций.

Экструдированный пенополистирол

Этот материал не боится влияния влаги и гниению. Он прочный и удобный в плане монтажа. Легко поддается механической обработке. Имеет низкий уровень водоплоглощения, поэтому при повышенной влажности экструдированный пенополистирол сохраняет свои свойства. Утеплитель относится к пожаробезопасным материалам, он имеет продолжительный срок службы и простоту монтажа.

На фото — экструдированный пенополистирол

Представленные характеристики и низкая проводимость тепла позволят назвать экструдированный пенополистирол самым лучшим утеплителем для ленточных фундаментов и отмосток. При установке лист с толщиной 50 мм можно заменить пеноблок с толщиной 60 мм по проводимости тепла. При этом утеплитель не пропускает вод, так что не нужно заботиться про вспомогательную гидроизоляцию.

Минеральная вата

Минвата – это утеплитель, который можно отнести к природным и экологически чистым. Минеральная вата обладает низким коэффициентом проводимости тепла и совершенно не поддается влиянию огня. Производится утеплитель в виде плит и рулонов, каждый из которых имеет свои показатели жесткости.

На фото — минеральная вата

Если нужно изолировать горизонтальную поверхностность, то стоит задействовать плотные маты, а для вертикальных – жесткие и полужесткие плиты. Что касается минусов, то минвата имеет низкую стойкость к влаге, так что при ее монтаже необходимо позаботиться про влаго-и пароизоляцию. Применять минвату не стоит для обустройства подвала, погреба, парилки в бане. Хотя если грамотно выложить гидроизоляционный слой, то минвата будет служить долго и качественно. А вот какова теплопроводность минваты, поможет понять информация из статьи.

Базальтовая вата

Этот утеплитель получают методом расплавления базальтовых горных пород с добавлением вспомогательных составляющих. В результате получается материал, имеющий волокнистую структуру и отличные водоотталкивающие свойства. Утеплитель не воспламеняется и совершенно безопасен для здоровья. Кроме этого, у базальта отличные показатели для качественной изоляции звука и тепла. Применять можно для утепления как снаружи, так и внутри дома.

На фото — базальтовая вата для утепления

При установке базальтовой ваты необходимо надевать средства защиты. Сюда относят перчатки, респиратор и очки. Это позволит защитить слизистые оболочки от попадания осколков ваты. При выборе базальтовой ваты сегодня большой популярностью пользуется марка Rockwool.

В ходе эксплуатации материала можно не переживать, что плиты будут уплотняться или слеживаться. А это говорит о прекрасных свойствам низкой теплопроводности, которые со временем не меняются.

Этот утеплитель производится в виде рулонов, толщина которых 2-10 мм. В основе материала положен вспененный полиэтилен. В продаже можно встретить теплоизолятор, на одной стороне которого имеется фольга для образования отражающего фона. Толщина материала в несколько раз меньше представленных ранее материалов, но при этом это совершенно не влияет на теплопроводность. Он способен отражать до 97% тепла. Вспененные полиэтилен может похвастаться продолжительным сроком службы и экологической чистотой.

На фото- утеплитель Пенофол:

Изолон совершенно легкий, тонкий и удобный в плане установки. Применяют рулонный теплоизолятор при обустройстве влажных комнат, куда можно отнести подвал, балкон. Кроме этого, применения утеплителя позволит сохранить полезную площадь помещения, если устанавливать его внутри дома.

 

 

Таблица теплопроводности материалов и утеплителей, сравнение


Таблица теплопроводности материалов и утеплителей. Сравнение утеплителей по теплопроводности. Сравнительная таблица теплопроводности материалов.

Источник: resforbuild.ru

 

Таблица теплопроводности утеплителей. Объемный вес, формостабильность, паропроницаемость, горючесть, звукоизоляционные свойства

При проведении строительных работ нередко приходится сравнивать свойства разных материалов. Это нужно для того, чтобы подобрать наиболее подходящий из них.

Ведь там, где хорош один из них, совсем не подойдет другой. Поэтому, осуществляя теплоизоляцию, нужно не просто утеплить объект. Важно выбрать утеплитель, подходящий именно для данного случая.

Такая диаграмма нагляднее таблицы

А для этого нужно знать характеристики и особенности разных видов теплоизоляции. Вот об этом мы и поговорим.

Что такое теплопроводность

Для обеспечения хорошей теплоизоляции важнейшим критерием является теплопроводность утеплителей. Так называется передача тепла внутри одного предмета.

То есть, если у одного предмета одна его часть теплее другой, то тепло будет переходить от теплой части к холодной. Тот же самый процесс происходит и в здании.

Таким образом, стены, крыша и даже пол могут отдавать тепло в окружающий мир. Для сохранения тепла в доме этот процесс нужно свести к минимуму. С этой целью используют изделия, имеющие небольшое значение данного параметра.

Таблица теплопроводности

Обработанную информацию об этом свойстве разных материалов можно представить в виде таблицы. К примеру, вот так:

Здесь присутствуют всего два параметра. Первый — это коэффициент теплопроводности утеплителей. Второй — толщина стены, которая потребуется для обеспечения оптимальной температуры внутри здания.

Взглянув на эту таблицу, становится очевидным следующий факт. Построить комфортное здание из однородных изделий, например, из полнотелых кирпичей, невозможно. Ведь для этого потребуется толщина стены не менее 2,38м.

Поэтому для обеспечения нужного уровня тепла в помещениях требуется теплоизоляция. И первым и важнейшим критерием ее отбора является вышеуказанный первый параметр. У современных изделий он не должен быть более 0.04 Вт/м°С.

При покупке обратите свое внимание на следующую особенность.

Изготовители, указывая на своих изделиях теплопроводность утеплителя, часто используют не одну, а целых три величины: первая – для случаев, когда материал эксплуатируется в сухом помещении с температурой в 10ºС;второе значение – для случаев эксплуатации опять же, в сухом помещении, но с температурой в 25 ºС; третья величина – для эксплуатации изделия в разных условиях влажности.

Это может быть помещение с влажностью категории А или В.

Для ориентировочного расчета следует использовать первое значение.

Все остальные нужны для проведения точных расчетов. О том, как они осуществляются, можно узнать из СНиП II-3-79 «Строительная теплотехника».

Иные критерии выбора

При выборе подходящего изделия должна учитываться не только теплопроводность и цена товара.

Нужно обратить внимание и на иные критерии:

  • объемный вес утеплителя;
  • формостабильность данного материала;
  • паропроницаемость;
  • горючесть теплоизоляции;
  • звукоизоляционные свойства изделия.

Рассмотрим эти характеристики подробнее. Начнем по порядку.

Объемный вес утеплителя

Объемным весом называется масса 1 м² изделия. Причем в зависимости от плотности материала эта величина может быть различной – от 11 кг до 350 кг.

Такая теплоизоляция будет иметь значительный объемный вес

Вес теплоизоляции непременно нужно учитывать, особенно проводя утепление лоджии. Ведь конструкция, на которую крепится утеплитель, должна быть рассчитана на данный вес. В зависимости от массы будет отличаться и способ монтажа теплоизолирующих изделий.

К примеру, при утеплении крыши, легкие утеплители устанавливают в каркас из стропил и обрешетки. Тяжелые экземпляры монтируются поверх стропил, как того требует инструкция по установке.

Формостабильность

Этот параметр означает не что иное, как сминаемость используемого изделия. Иными словами, оно не должно изменять своих размеров в течение всего срока службы.

Любая деформация приведет к потере тепла

В противном случае, может произойти деформация утеплителя. А это уже приведет к ухудшению его теплоизоляционных свойств. Исследованиями доказано, что потери тепла при этом могут составлять до 40%.

Паропроницаемость

По данному критерию все утеплители можно условно подразделить на два вида:

  • «ваты» — теплоизоляционные материалы, состоящие из органических или минеральных волокон. Они являются паропроницаемыми, поскольку легко пропускают через себя влагу.
  • «пены» — теплоизоляционные изделия, изготовленные путем затвердевания особой пенообразной массы. Влагу они не пропускают.

В зависимости от конструктивных особенностей помещения, в нем могут быть использованы материалы первого или второго вида. Кроме того, паропроницаемые изделия нередко устанавливают своими руками вместе со специальной пароизоляционной пленкой.

Весьма и весьма желательно, чтобы используемая теплоизоляция была негорючей. Допускается вариант, когда она будет самозатухающей.

Но, к сожалению, в условиях реального пожара даже это не поможет. В эпицентре огня будет гореть даже то, что не загорается в обычных условиях.

Звукоизоляционные свойства

Мы уже упоминали про два вида изоляционных материалов: «ваты» и «пены». Первый из них является отличным звукоизолятором.

Второй же, напротив, не имеет таких свойств. Но это вполне можно исправить. Для этого при утеплении «пены» нужно установить вместе с «ватами».

Таблица теплопроводности наглядно иллюстрирует теплоизоляционные свойства тех или иных материалов. Более наглядной может быть лишь диаграмма.

 

К видите, теплопроводность базальтового утеплителя и пенополистирола является наименьшей. Следовательно, они обладают наилучшими теплоизоляционными свойствами по сравнению с остальными материалами для утепления.

Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.

Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.

Таблица теплопроводности утеплителей: инструкция по выбору своими руками, особенности базальтовых материалов, коэффициенты других теплоизоляций, цена, видео, фото


Таблица теплопроводности утеплителей: инструкция по выбору своими руками, особенности базальтовых материалов, коэффициенты других теплоизоляций, цена, видео,

Источник: pro-uteplenie.ru

 

Таблица теплопроводности строительных материалов и утеплителей

Автор aquatic На чтение 6 мин. Просмотров 6k.

Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

Таблица теплопроводности строительных материаловТаблица теплопроводности строительных материаловТеплопроводность материалов влияет на толщину стен

Назначение теплопроводности

Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

На схеме представлены показатели различных вариантовНа схеме представлены показатели различных вариантовНа схеме представлены показатели различных вариантов

Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

Сравнение характеристик разных типов сырьяСравнение характеристик разных типов сырья Сравнение характеристик разных типов сырья

Что оказывает влияние на показатель теплопроводности?

Теплопроводность определяется такими факторами:

  • пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
  • повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
  • повышенная влажность увеличивает данный показатель.

Характеристики различных материаловХарактеристики различных материаловХарактеристики различных материалов

Использование значений коэффициента теплопроводности на практике

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

При выборе утеплителя нужно изучить характеристики каждого вариантаПри выборе утеплителя нужно изучить характеристики каждого вариантаПри выборе утеплителя нужно изучить характеристики каждого варианта

Показатели теплопроводности для готовых построек. Виды утеплений

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Монтаж минеральной ватыМонтаж минеральной ватыМонтаж минеральной ваты

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.

Характеристики разных видов утеплителейХарактеристики разных видов утеплителейХарактеристики разных видов утеплителей

В качестве утеплителей применяются следующие виды:

  • минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

Данный материал относится к самым доступным и простым вариантамДанный материал относится к самым доступным и простым вариантамДанный материал относится к самым доступным и простым вариантам

  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

Для пеноплекса характерна пористая структураДля пеноплекса характерна пористая структураДля пеноплекса характерна пористая структура

  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

Данный вариант бывает разной толщиныДанный вариант бывает разной толщиныДанный вариант бывает разной толщины

  • пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины,  лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

Обратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

Таблица теплопроводности строительных материалов: особенности показателей

Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

Утепление производится в определенных местахУтепление производится в определенных местахУтепление производится в определенных местах

Как использовать таблицу теплопроводности материалов и утеплителей?

В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.

Коэффициент разнообразных типов сырьяКоэффициент разнообразных типов сырьяКоэффициент разнообразных типов сырья

Значения коэффициентов теплопередачи материалов в таблице

При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение  является отношением температур с обеих сторон к количеству  теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

Значения плотности и теплопроводностиЗначения плотности и теплопроводностиЗначения плотности и теплопроводности

Все расчеты  вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

Теплопроводность некоторых конструкцийТеплопроводность некоторых конструкцийТеплопроводность некоторых конструкций

Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала.  Сведения о паропроницаемости и плотности можно посмотреть в таблице.

При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.

Теплопроводность строительных материалов (видео)

Теплопроводность современных утеплителей. Таблица | Dacha.news

В интернете второй десяток лет гуляют цифры теплопроводности различных утеплителей, где для каждого вида материала указаны достаточно широкие диапазоны значений, различающиеся порой в полтора-два раза. В теории эти цифры верны, но каковы реалии сегодняшнего дня, когда большинство утеплителей производятся на самом современном оборудовании и из качественных материалов?

Мы собрали в таблицу данные по теплопроводности наиболее популярных типов и марок утеплителей, в том числе и экологически чистых, которые поставляются в форме плит толщиной 50 или 100 мм. Большинство из них являются новинками последних двух-трех лет. Основной акцент был сделан на материалы, пригодные для вертикальных вентилируемых фасадов.

Важный момент! Производители оперируют несколькими коэффициентами теплопроводности. Они обозначаются как λ10, λ25, λА и λБ. Первые два определяют теплопроводность сухого материала при температурах 10 и 25 °С соответственно. Но в реальности такие условия эксплуатации практически недостижимы, потому инженеры в расчетах используют λА и λБ, которые соответствуют теплопроводности при 25 °С и влажности материала 2% и 5%. В таблице мы указали только λ10 и λА. Отличие λА от λБ обычно составляет 0,002 Вт/(м·°К) в большую сторону.

УтеплительтипКоэф. теплопроводности λ10, Вт/(м·°К)Коэф. теплопроводности λА, Вт/(м·°К)
воздух*0,0220,022
Пеноплекс Фасадэкструдированный пенополистирол0,0300,031
Пенопласт Knauf Therm Wallпенополистирол0,0400,032
Шелтерэкострой Стандарт*синтетическое негорючее волокно0,0330,033
Технониколь Carbon Ecoэкструдированный пенополистирол0,0290,034
Isover Каркас-П32стекловата0,0320,035
Ursa Geo П-30каменная вата0,0320,036
Ursa Пенопласт ПСБ-С 35пенополистирол0,0320,036
Ursa Terra 34каменная вата0,0340,037
Isoroc Изолайткаменная вата0,0340,038
Isoroc Изолайт-Люкскаменная вата0,0330,038
Isover Вентикаменная вата0,0350,038
Paroc eXtra plusкаменная вата0,0340,038
Steico Flex 50 мм*ДВП0,0380,038
Интерметал НПЭ 3050*вспененный полиэтилен0,0380,038
Пенолон ППЭ 3050-Р*сшитый вспененный полиэтилен0,0380,038
Эковер Стандарт 50каменная вата0,0350,038
Isover Каркас-П37стекловата0,0360,039
Rockwool Лайт Баттс Скандиккаменная вата0,0360,039
Изольна*лен0,0390,039
Paroc eXtraкаменная вата0,0360,040
Ursa Geo П-15каменная вата0,0370,041
Пенополистирол ПСБ-С-35пенополистирол0,0370,042

* – дл

Общий коэффициент теплообмена

Heat transfer through a surface or wall

Теплопередачу через поверхность, подобную стене, можно рассчитать как

q = UA dT (1)

, где

q = теплообмен (Вт (Дж s), БТЕ / ч)

U = общий коэффициент теплопередачи (Вт / (м 2 К), БТЕ / (фут 2 ч o F) )

A = площадь стены (м 2 , футы 2 )

dT = (т 1 — т 2 )

= перепад температуры над стеной ( o C, o F)

Общий коэффициент теплопередачи для многослойной стены, трубы или теплообменника — с потоком жидкости на каждой стороне стены — можно рассчитать как

1 / UA = 1 / ч ci A i + Σ (с 9004 5 n / k n A n ) + 1 / h co A o (2)

, где

U = общий коэффициент теплопередачи (Вт / (м 2 К), БТЕ / (футы 2 ч o F) )

k n = теплопроводность материала в слое n (Вт / (м К), БТЕ / (ч футов ° F) )

ч ci, o = внутри или снаружи стены отдельная жидкость конвекция коэффициент теплопередачи (Вт / (м 2 К), БТЕ / (фут 2 ч o F) )

с n = толщина слоя n ( м, футы)

9 0002 Плоская стенка с одинаковой площадью во всех слоях — может быть упрощена до

1 / U = 1 / ч ci + Σ (с n / k n ) + 1 / ч co (3)

Теплопроводность — к — для некоторых типичных материалов (не то, что электропроводность — это свойство, которое может изменяться в зависимости от температуры)

  • Полипропилен PP: 0.1 — 0,22 Вт / (м К)
  • Нержавеющая сталь: 16 — 24 Вт / (м К)
  • Алюминий: 205 — 250 Вт / (м К)
Преобразование между Метрические и имперские единицы
  • 1 Вт / (м К) = 0,5779 БТЕ / (футы o F)
  • 1 Вт / (м 2 K) = 0,85984 ккал / (гм 2 o C) = 0,1761 БТЕ / (фут 2 ч o F)

Коэффициент теплоотдачи конвекции — ч — зависит от

    Тип жидкости
  • — если ее газ или жидкость
  • свойства потока, такие как скорость
  • другие свойства, зависящие от потока и температуры

Коэффициент конвективного теплообмена для некоторых распространенных жидкостей:

  • Воздух — от 10 до 100 Вт / м 2 К
  • Вода — 9 От 0064 500 до 10 000 Вт / м 2 K

Многослойные стены — калькулятор теплопередачи

Overall heat transfer coefficient

Этот калькулятор можно использовать для расчета общего коэффициента теплопередачи и теплопередачи через многослойный стены.Калькулятор является общим и может использоваться для метрических или имперских единиц, если использование единиц является последовательным.

A — площадь (м 2 , футы 2 )

т 1 — температура 1 ( o C, o F)

т 2 — температура 2 ( o C, o F)

ч ci — коэффициент конвективного теплообмена внутри стены (Вт / (м 2 K), БТЕ / ( футы 2 ч o F) )

с 1 — толщина 1 (м, футы) k 1 — теплопроводность 1 (Вт / (м К)) , БТЕ / (ч футов F) )

с 2 — толщина 2 (м, фут) k 2 — теплопроводность 2 (Вт / (м К), Btu / (ч футов F) )

с 3 — толщина 3 (м, фут) k 3 — теплопроводность 3 (Вт / (м К), БТЕ / (ч футов F) )

ч со — коэффициент конвективной теплопередачи вне стены ( Вт / (м 2 К), БТЕ / (футы 2 ч o F) )

Тепловое сопротивление теплопередачи

Heat transfer thermal resistance

Теплопередача Сопротивление может быть выражено как

R = 1 / U (4)

, где

R = сопротивление теплопередаче (м 2 К / Вт, фут 2 h ° F / БТЕ)

Стена разделена на секции теплового сопротивления, где

  • теплообмен между жидкостью и стенкой является одним сопротивлением
  • стена сама по себе является одним сопротивлением
  • перенос между ва II, а вторая жидкость представляет собой термическое сопротивление.

Поверхностные покрытия или слои «обожженного» продукта добавляют дополнительное тепловое сопротивление к стене, уменьшая общий коэффициент теплопередачи.

Некоторые типичные сопротивления теплопередачи
  • Статический слой воздуха, 40 мм (1,57 дюйма) : R = 0,18 м 2 К / Вт
  • внутреннее сопротивление теплопередаче, горизонтальный ток: R = 0,13 м 2 К / Вт
  • внешнее сопротивление теплопередачи, горизонтальный ток: R = 0,04 м 2 К / Вт
  • внутреннее сопротивление теплопередачи, тепловой ток снизу вверх: R = 0,10 м 2 K / W
  • наружное сопротивление теплопередачи, тепловой ток сверху вниз: R = 0.17 м 2 K / W

Пример — передача тепла в воздухо-воздушном теплообменнике

Воздухо-воздушный пластинчатый теплообменник с площадью 2 м 2 и толщиной стенки 0,1 мм может быть изготовлен в виде полипропилен полипропилен, алюминий или нержавеющая сталь.

Коэффициент конвекции теплопередачи для воздуха составляет 50 Вт / м 2 K . Температура внутри теплообменника составляет 100 o C , а наружная температура составляет 20 o C .

Общий коэффициент теплопередачи U на единицу площади можно рассчитать, изменив (3) на

U = 1 / (1 / ч ci + с / к + 1 / ч co ) (3b)

Общий коэффициент теплопередачи для теплообменника в полипропилене

  • с теплопроводностью 0,1 Вт / мК составляет

U PP = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0.1 мм ) (10 -3 м / мм) / ( 0,1 Вт / мК ) + 1/ ( 50 Вт / м 2 K ) )

= 24,4 Вт / м 2 K

Теплопередача

q = ( 24,4 Вт / м 2 K ) ( 2 м 2 ) (( 100 o ) C ) — (2 0 или C ))

= 3904 W

= 3.9 кВт

  • нержавеющая сталь с теплопроводностью 16 Вт / мК :

U SS = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0,1 мм ) (10 -3 м / мм) / ( 16 Вт / мК ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o) C ) — (2 0 o C ))

= 4000 Вт

= 4 кВт

  • алюминий с теплопроводностью 205 Вт = / mK :

U Al = 1 / (1 / ( 50 Вт / м 2 К ) + ( 0.1 мм ) (10 -3 м / мм) / ( 205 Вт / мК ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 ) o C ) — (2 0 o C ))

= 4000 Вт

= 4 кВт

  • 1 Вт / (м 2 К) = 0.85984 ккал / (гм 2 o C) = 0,1761 БТЕ / (фут 2 ч o F)

Типичные общие коэффициенты теплопередачи

  • Свободный конвекционный газ — свободный конвекционный газ: U = 1 — 2 Вт / м 2 K (обычное окно, пространство для наружного воздуха через стекло)
  • Газ с свободной конвекцией — нагнетаемая жидкая (проточная) вода: U = 5 — 15 Вт / м 2 K (типовое отопление радиатора)
  • Свободный конвекционный газ — пар конденсирующейся воды: U = 5 — 20 Вт / м 2 K (типовые паровые радиаторы)
  • Принудительная конвекция (проточная) Газ — свободный конвекционный газ: U = 3 — 10 Вт / м 2 K (перегреватели)
  • Приточная конвекция (проточная) Газ — принудительная конвекция Газ: U = 10 — 30 Вт / м 2 K (газообменник)
  • Принудительная конвекционная (проточная) газ — принудительная жидкая (проточная) вода: U = 10 — 50 Вт / м 2 K (газоохладители)
  • Принудительная конвекция (проточная) Газ — конденсирующийся пар Вода: U = 10 — 50 Вт / м 2 K (воздухонагреватели)
  • Безжидкостная конвекция — принудительная конвекция Газ: U = 10 — 50 Вт / м 2 K (газовый котел)
  • Конвекционная жидкость без жидкости: U = 25 — 500 Вт / м 2 K (масляная баня для отопления)
  • Жидкость Свободная конвекция — Принудительная протекание жидкости (вода): U = 50 — 100 Вт / м 2 K (нагревательный элемент в воде резервуара, вода без рулевого управления), 500 — 2000 Вт / м 2 K (нагревательный элемент в резервуаре вода, вода с рулевым управлением)
  • Безжидкостная конвекция — пар конденсирующейся воды: U = 300 — 1000 Вт / м 2 K (паровые рубашки вокруг сосудов с мешалками, вода), 150 — 500 Вт / м 2 K (другие жидкости)
  • Принудительная жидкая (проточная) вода — свободный конвекционный газ: U = 10 — 40 Вт / м 2 K (со камера сгорания + излучение)
  • Принудительная жидкость (проточная) вода — Свободная конвекционная жидкость: U = 500 — 1500 Вт / м 2 K (охлаждающий змеевик с перемешиванием)
  • Вынужденная жидкость (проточная) вода — Вынужденная жидкость (текущая) вода: U = 900 — 2500 Вт / м 2 K (теплообменник вода / вода)
  • Принудительная жидкая (проточная) вода — пар конденсирующейся воды: U = 1000 — 4000 Вт / м 2 K (конденсатор паровой воды)
  • Кипящая жидкая вода — свободная конвекция Газ: U = 10 — 40 Вт / м 2 K (паровой котел + излучение)
  • Кипящая жидкая вода — протекание принудительной жидкости (вода) : U = 300 — 1000 Вт / м 2 K (испарение холодильников или рассольных охладителей)
  • Кипящая жидкая вода — вода конденсирующегося пара: U = 1500 — 6000 Вт / м 2 K (испарители пар / вода)
,
Удельное сопротивление и удельная проводимость — температурные коэффициенты для обычных материалов

Удельное сопротивление —

  • — электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба

— Калькулятор сопротивления электрического проводника

Этот калькулятор можно использовать для рассчитать электрическое сопротивление проводника.

Коэффициент удельного сопротивления (Ом м) (значение по умолчанию для меди)

Площадь поперечного сечения проводника (мм 2 ) — манометр AWG

Алюминий 2 Алюминий 2 ,65 x 10 -8 3,8 x 10 -3 3,77 x 10 7
Алюминиевый сплав 3003, прокат 3,7 x 10 -8
Алюминиевый сплав 2014, отожженный 3,4 x 10 -8
Алюминиевый сплав 360 7,5 x 10 -8
Алюминиевая бронза 12 x 10 -8
Животный жир 14 x 10 -2
Мышца животного 0.35
Сурьма 41,8 x 10 -8
Барий (0 o C) 30,2 x 10 -8
Бериллий 4,0 x 10 -8
Бериллиевая медь 25 7 x 10 -8
Висмут 115 x 10 -8
Латунь — 58% медь 5.9 x 10 -8 1,5 x 10 -3
Латунь — 63% Cu 7,1 x 10 -8 1,5 x 10 -3
Кадмий 7,4 x 10 -8
Цезий (0 o C) 18,8 x 10 -8
Кальций (0 o C) 3,11 x 10 -8
Углерод (графит) 1) 3 — 60 x 10 -5 -4.8 x 10 -4
Чугун 100 x 10 -8
Церий (0 o C) 73 x 10 -8
Хром (сплав хрома и алюминия) 0,58 x 10 -3
Хром 13 x 10 -8
Кобальт 9 x 10 -8
Константин 49 x 10 -8 3 x 10 -5 0.20 x 10 7
Медь 1,77 x 10 -8 4,29 x 10 -3 5,95 x 10 7
мельхиор 55-45 (константан) 43 x 10 -8
Диспрозий (0 o C) 89 x 10 -8
Эрбий (0 o C) 81 x 10 -8
Эврика 0.1 x 10 -3
европий (0 o C) 89 x 10 -8
Gadolium 126 x 10 -8
Галлий (1.1K) 13.6 x 10 -8
Германий 1) 1 — 500 x 10 -3 -50 x 10 -3
Стекло 1 — 10000 x 10 9 10 -12
Золото 2.24 x 10 -8
Графит 800 x 10 -8 -2,0 x 10 -4
Гафний (0,35K) 30,4 x 10 — 8
Хастеллой C 125 x 10 -8
Гольмий (0 o C) 90 x 10 -8
Индий ( 3.35K) 8 x 10 -8
Инконель 103 x 10 -8
Иридий 5,3 x 10 -8
Железо 9.71 x 10 -8 6.41 x 10 -3 1.03 x 10 7
Лантан (4.71K) 54 x 10 -8
Свинец 20.6 x 10 -8 0,45 x 10 7
Литий 9,28 x 10 -8
Лютеция 54 x 10 -8
Магний 4.45 x 10 -8
Магниевый сплав AZ31B 9 x 10 -8
Марганец 185 x 10 -8 1.0 x 10 -5
Меркурий 98,4 x 10 -8 8,9 x 10 -3 0,10 x 10 7
Слюда (проблеск) 1 x 10 13
Мягкая сталь 15 x 10 -8 6,6 x 10 -3
Молибден 5,2 x 10 -8
Монель 58 x 10 -8
Неодим 61 x 10 -8
Нихром (сплав никеля и хрома) 100 — 150 х 10 -8 0.40 x 10 -3
никель 6,85 x 10 -8 6,41 x 10 -3
Nickeline 50 x 10 -8 2,3 x 10 -4
Ниобий (колумбий) 13 x 10 -8
Осмий 9 x 10 -8
Палладий 10.5 x 10 -8
Фосфор 1 x 10 12
Платина 10,5 x 10 -8 3,93 x 10 -3 0,943 x 10 7
Плутоний 141,4 x 10 -8
Полоний 40 x 10 -8
Калий 7.01 x 10 -8
Празеодим 65 x 10 -8
Прометий 50 x 10 -8
Протактиний (1,4 K) 17,7 x 10 -8
Кварц (плавленый) 7,5 x 10 17
Рений (1,7 К) 17.2 x 10 -8
Родий 4,6 x 10 -8
Резина — жесткая 1 — 100 x 10 13
Рубидий 11,5 x 10 -8
Рутений (0,49 К) 11,5 x 10 -8
Самарий 91.4 x 10 -8
Скандий 50,5 x 10 -8
Селен 12,0 x 10 -8
Силикон 1 1 ) 0,1-60 -70 x 10 -3
Серебро 1,59 x 10 -8 6,1 х ​​10 -3 6,29 х 10 7
Натрий 4.2 x 10 -8
Почва, типичная земля 10 -2 — 10 -4
Припой 15 x 10 -8
Нержавеющая сталь 10 6
Стронций 12,3 x 10 -8
Сера 1 x 10 17
Танталум 12.4 x 10 -8
Тербий 113 x 10 -8
Таллий (2,37K) 15 x 10 -8
Торий 18 x 10 -8
Тулий 67 x 10 -8
Олово 11,0 x 10 -8 4.2 x 10 -3
Титан 43 x 10 -8
Вольфрам 5,65 x 10 -8 4,5 x 10 -3 1,79 x 10 7
Уран 30 x 10 -8
Ванадий 25 x 10 -8
Вода, дистиллированная 10 -4
Вода свежая 10 -2
Вода, соль 4
Иттербий 27.7 x 10 -8
Иттрий 55 x 10 -8
Цинк 5,92 x 10 -8 3,7 x 10 -3
Цирконий (0,55 К) 38,8 x 10 -8

1) Примечание! — удельное сопротивление сильно зависит от наличия примесей в материале.

2 ) Примечание! — удельное сопротивление сильно зависит от температуры материала. Приведенная выше таблица основана на 20 o C.

Электрическое сопротивление в проводе

Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:

R = ρ L / A (1)

где

R = сопротивление (Ом, Ω )

ρ = коэффициент удельного сопротивления (Ом, Ом, м)

L = длина провода (м)

A = площадь поперечного сечения провода (м 2 )

Фактором сопротивления, который учитывает природу материала, является удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления проволоки заданной геометрии при различных температурах.

Обратное сопротивление называется проводимостью и может быть выражено как:

σ = 1 / ρ (2)

где

σ = проводимость (1 / Ом м)

Пример — сопротивление алюминиевого провода

Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как

R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,09 Ом

Сопротивление

Электрическое сопротивление элемента схемы или устройства определяется как отношение напряжения, приложенного к электрическому току, который течет через него:

R = U / I (3)

, где

R = сопротивление (Ом)

U = напряжение (В)

I = ток (A)

Закон

Ом

a, если сопротивление постоянное, больше, чем сопротивление диапазон напряжения, а затем закон Ома,

I = U / R (4)

можно использовать для прогнозирования поведения материала.

Удельное сопротивление в зависимости от температуры

Изменение удельного сопротивления в зависимости от температуры можно рассчитать как

= ρ α dt (5)

где

dρ = изменение удельного сопротивления ( м 2 / м)

α = температурный коэффициент (1/ o C)

dt = изменение температуры ( o C)

Пример — изменение удельного сопротивления

Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом м 2 / м нагревают с 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как

dρ = (2,65 10 -8 Ом м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) — (20 o C))

= 0.8 10 -8 Ом м 2 / м

Конечное сопротивление можно рассчитать как

ρ = (2,65 10 -8 Ом м 2 / м) + (0,8 10 -8 Ом м 2 / м)

= 3,45 10 -8 Ом м 2 / м

Коэффициент удельного сопротивления по сравнению с калькулятором температуры

Этот сосуд может использоваться для расчета удельного сопротивления в материале проводника по сравнению стемпература.

ρ — коэффициент удельного сопротивления (10 -8 Ом м 2 / м)

α — температурный коэффициент (10 -3 1/ o C)

dt Изменение температуры ( o C)

Сопротивление и температура

Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления можно выразить как

dR / R с = α dT (6)

, где

dR = изменение сопротивления (Ом)

9122 с = стандартное сопротивление согласно эталонным таблицам (Ом)

α = температурный коэффициент сопротивления ( o C -1 )

dT = изменение температура от базовой температуры ( o C, K)

(5) можно изменить на:

dR = α dT R с (6b)

«Температурный коэффициент сопротивления» — α — материала — это увеличение сопротивления резистора 1 Ом этого материала при повышении температуры 9 0013 1 o C .

Пример — сопротивление медного провода в жаркую погоду

Медный провод с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C в жаркую солнечную погоду нагревают до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , а изменение сопротивления можно рассчитать как

dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) — (20 o C) ) (0.5 кОм)

= 0,13 (кОм)

Результирующее сопротивление для медного провода в жаркую погоду составит

R = (0,5 кОм) + (0,13 кОм)

= 0,63 ( кОм)

= 630 (Ω)

Пример — сопротивление углеродного резистора при изменении температуры

Углеродный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 o C .Температурный коэффициент для углерода отрицателен -4,8 x 10 -4 (1/ o C) — сопротивление уменьшается с ростом температуры.

Изменение сопротивления можно рассчитать как

dR = ( -4,8 x 10 -4 1/ o C) ((120 o C) — (20 o C) ) (1 кОм)

= — 0,048 (кОм)

Результирующее сопротивление для резистора будет

R = (1 кОм) — (0.048 кОм)

= 0,952 (кОм)

= 952 (Ом)

Калькулятор сопротивления в зависимости от температуры

Этот калькулятор можно использовать для расчета сопротивления в проводнике в зависимости от температуры.

R с сопротивление (10 3 (Ом)

α — температурный коэффициент (10 -3 1/ o C)

dt изменение температуры ( o C)

Коэффициенты поправки на температуру для сопротивления проводника

Температура проводника
(° C)
Преобразование в 20 ° C Взаимное преобразование в 20 ° C
5 1.064 0.940
6 1.059 0.944
7 1.055 0.948
8 1.050 0.952
9 1.056
0.940
10 1,042 0,960
11 1,037 0,964
12 1.033 0,968
13 1,029 0,972
14 1,025 0,976
15 1,020 0,980
16 1,0184 0,984 1,0184
17 1,012 0,988
18 1,008 0,992
19 1.004 0.996
20 1.000 1.000
21 0.996 1.004
22 0.992 1.008
23 1.9800
24 0,984 1,016
25 0,980 1,020
26 0.977 1,024
27 0,973 1,028
28 0,969 1,032
29 0,965 1,036
30 0,962 1,0,962 0,962 9
31 0,958 1,044
32 0,954 1,048
33 0.951 1,052
.
Кондуктивный теплообмен

Проводимость как теплообмен происходит при наличии градиента температуры в твердой или стационарной текучей среде.

С энергией проводимости переходит от более энергичных к менее энергичным молекулам, когда соседние молекулы сталкиваются. Тепловые потоки в направлении снижения температуры, так как более высокие температуры связаны с более высокой молекулярной энергией.

Heat transfer through a surface or wall

Кондуктивный перенос тепла можно выразить с помощью « закона Фурье »

q = (к / с) A dT

= UA dT (1)

, где

q = теплопередача (Вт, Дж / с, БТЕ / час)

k = Теплопроводность материала (Вт / м К или Вт / м o С, БТЕ / (ч o Ф фут 2 / фут))

с = толщина материала (м, футы)

А = площадь теплопередачи (м 2 , фут 2 )

U = к / с

= Коэффициент теплопередачи (Вт / (м 2 К), БТЕ / (фут 2 ч o F)

dT = t 1 — т 2

= градиент температуры — разница — по материалу ( o C, o 9003 3 F)

Conductive heat transfer
Пример — Кондуктивный теплообмен

Плоская стенка изготовлена ​​из твердого железа с теплопроводностью 70 Вт / м o С. Толщина стенки 50 мм , длина и ширина поверхности 1 м на 1 м. Температура составляет 150 o C с одной стороны поверхности и 80 o C с другой стороны.

Кондуктивный теплообмен через стену можно рассчитать

q = [(70 Вт / м o C) / (0,05 м) ] [(1 м) (1 м)] [ (150 o C) — (80 o C)]

= 98000 (Вт)

= 98 (кВт)

Калькулятор кондуктивного теплопередачи.

Этот калькулятор можно использовать для расчета проводящего теплообмена через стену. Калькулятор является общим и может использоваться как для метрических, так и для имперских единиц, если используется единица измерения.

к — теплопроводность (Вт / (мК), БТЕ / (ч o F ft 2 / фут))

A — площадь 2 , футы 2 )

т 1 — температура 1 ( o C, o F)

т 2 — температура 2 ( o C, o F)

с — толщина материала (м, футы)

Проводящий теплообмен через плоскую поверхность или стену со слоями в серии

Тепло, проходящее через стену со слоями в Термоконтакт можно рассчитать как

q = dT A / ((с 1 / k 1 ) + (с 2 / k 2 ) +… + (с n / k n )) (2)

, где

dT = t 1 — т 2

= разница температур между внутренней и наружной стенами ( o C, o F)

Обратите внимание, что теплостойкость, обусловленная конвекцией поверхности и излучением, не включена в это уравнение ,Конвекция и излучение в целом оказывают существенное влияние на общие коэффициенты теплопередачи.

Пример — Кондуктивный теплообмен через стенку печи

Стенка печи 1 м 2 состоит из внутреннего слоя толщиной 1,2 см из нержавеющей стали , покрытого 5 см наружным изоляционным слоем изоляционной плиты. Температура внутренней поверхности стали составляет 800 K , а температура наружной поверхности изоляционной плиты составляет 350 K .Теплопроводность нержавеющей стали составляет 19 Вт / (м К) , а теплопроводность изоляционной плиты составляет 0,7 Вт / (м К) .

Проводящий перенос тепла через слоистую стену можно рассчитать как

q = [(800 K) — (350 K)] (1 м 2 ) / ([(0,012 м) / (19 Вт / (м К) )] + [(0,05 м) / (0,7 Вт / (м К))] )

= 6245 (Ш)

= 625 кВт

Единицы теплопроводности

  • БТЕ / (h ft 2 o Ф / фут)
  • БТЕ / (h ft 2 o F / in)
  • Btu / (футы 2 o футов / фут)
  • Btu in) / (фут² ч ° F)
  • МВт / (м 2 К / м)
  • кВт / (м 2 К / м)
  • Вт / (м 2 К / м)
  • Вт / (м 2 К / см)
  • Вт / ( см 2 o С / см)
  • Вт / (в 2 o Ф / дюйм)
  • кДж / (мм 2 К / м)
  • Дж / (см 2 o C / m)
  • ккал / (hm 2 o C / m)
  • кал / (s см 2 o C / см)
  • 9043 4
    • 1 Вт / (м К) = 1 Вт / (м o С) = 0.85984 ккал / (мм o C) = 0,5779 БТЕ / (футов o F) = 0,048 БТЕ / (в часах o F) = 6,935 (БТЕ в) / (фут² ч ° F)
    .

    Вода — теплопроводность

    Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

    «количество тепла, передаваемого через единицу толщины материала — в направлении, перпендикулярном поверхности единицы площади — из-за градиента температуры единицы в установившемся режиме»

    Теплопроводность единица измерения

    Теплопроводность воды зависит от температуры и давления, как показано на рисунках и в таблицах ниже:

    См. также другие свойства Вода при при различных температурах и давлении : Точки кипения при высоком давлении, Точки кипения при давлении вакуума, Плотность и удельный вес, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации, pK w , для нормальной и тяжелой воды, Точки плавления при высоком давлении, Число Прандтля, Свойства в газе Условия жидкого равновесия, давление насыщения, удельный вес, удельная теплоемкость (теплоемкость), удельный объем, термо коэффициент диффузии и давление пара при равновесии газ-жидкость, а также теплофизические свойства при стандартных условиях ,
    , а также теплопроводность воздуха, аммиака, бутана, диоксида углерода, этилена, водорода, метана, азота и пропана.Теплопроводность строительных материалов приведена в соответствующих документах внизу страницы.


    Вернуться к началу

    Теплопроводность воды при заданных температурах (° C) и 1 бара:

    6 04847 6 04847 9004 2848 900 900 900 0,0148 0,0154 0,0248
    Состояние
    воды
    Температура Теплопроводность
    [° C] [мВт / м К] [ккал (IT) / (hm K)] [Btu (IT) / (h ft ° F)]
    Жидкость 0.01 555,75 0,4779 0,3211
    10 578,64 0,4975 0,3343
    20 598,03 0,5142 0,3455
    0,5 0,5 0,3551
    40 628,56 0,5405 0,3632
    50 640.60 0,5508 0,3701
    60 650,91 0,5597 0,3761
    70 659,69 0,5672 0,3812
    80 0,3735 0,3735 0,3735 06735 06735 0,567 800 900 900 900
    90 672,88 0,5786 0,3888
    99,6 677,03 0.5821 0,3912
    Газ 100 24,57 0,0211 0,0142
    125 26,66 0,0229 0,0154
    9003
    0,0167
    175 31,09 0,0267 0,0180
    200 33.43 0,0287 0,0193
    225 35,85 0,0308 0,0207
    250 38,34 0,0330 0,0222
    275 40,92 40,92 40,92 40,92 405 0297 0 407 9004
    300 43,53 0,0374 0,0252
    350 48,98 0,0421 0.0283
    400 54,65 0,0470 0,0316
    450 60,52 0,0520 0,0350
    500 66,58 0,0573 0,0573 0,0383 0,0383 0,0383 0,0383 0,0573 0,0383 0,0383 72,81 0,0626 0,0421
    600 79,17 0,0681 0,0457
    700 92.28 0,0794 0,0533
    800 105,81 0,0910 0,0611
    900 119,67 0,1029 0,0691

    В начало страницы
    при теплопроводности температура (° F) и 14,5 фунтов на квадратный дюйм:

    9009. 8056 9009 9009 9009 9009 9009 9009. 900 450 900 0474
    Состояние воды Температура Теплопроводность
    [° F] [Btu (IT) / ( h ft ° F)] [Btu (IT) in / (h ft 2 ° F)] [мВт / м К] [x 10 -3
    кал (IT) / (s см 2 K)]
    Жидкость 32 0.3211 3.853 555.73 1.327
    40 0.3273 3.927 566.39 1.353
    60 0.3408 4.089
    0.3520 4.225 609.30 1.455
    100 0.3615 4.338 625.62 1.494
    120 0.3694 4.433 639.35 1.527
    140 0.3761 4.513 650.91 1.555
    4.580 0.58 660,57 1,57
    180 0,3862 4,635 668,45 1,559 9009
    200 0.3897 4.677 674.49 1.611
    211.3 0.3912 4.694 677.03 1.617
    газ 212 0 0 900 900 048 900 900 900 900 48 900 900 900 900 48 900 8 0 900 9 0 9007 0 9007 9008 3897 0,059
    250 0,0152 0,183 26,33 0,063
    300 0.0166 0.199 28.73 0.069
    350 0,0181 0,217 31,25 0,075
    400 0,0196 0,235 33,86 0,08
    0,0211 0,254 36,56 0,087
    550 0,024 0,293 42.24 0.101
    600 0.0261 0.313 45.20 0.108
    650 0.0279 0.334 48.24 0.115
    700 0.0567 0.0567 0.0297 0 029 7 0.0297 0.0297 0.0297 51,35 0,13
    750 0,0315 0,378 54,52 0,130
    800 0.0334 0,400 57,76 0,138
    900 0,0372 0,447 64,41 0,154
    1000 0,0412 0,494 71,27 0,170
    0,0453 0,543 78,32 0,187
    1200 0,0494 0,593 85.53 0,204
    1400 0,0580 0,696 100,35 0,240
    1600 0,0668 0,802 115,63 0,276

    преобразователь температуры 9000 наверх

    .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *