Утепление фасада деревянного: Как сделать все правильно, советы от профессионалов

Как сделать все правильно, советы от профессионалов

Дом из дерева считается самым теплым, экологичным и комфортным для проживания, в основном, благодаря стенам, которые «дышат» и отлично сохраняют тепло внутри здания.

Однако не всегда толщины деревянных стен оказывается достаточно, чтобы противостоять сильным морозам. В этом случае прибегают к наружному, внутреннему или комбинированному утеплению, а чтобы теплоизоляционный слой не намок от конденсата и не потерял своих свойств, в «пирог» стен деревянного дома закладывают пароизоляцию.

Пароизоляция в системе утепления деревянного дома

Независимо от того, изнутри или снаружи решено утеплять деревянный дом, пароизоляционная пленка должна обязательно присутствовать в «пироге» утепленных стен. Ее устанавливают либо между слоем теплоизолятора и внутренней обшивкой помещения в случае внутреннего утепления, либо между теплоизолятором и несущей стеной дома при монтаже наружного утепления.

Основная функция паробарьера — не допустить намокания теплоизоляционного слоя.

Наружное утепление дома из дерева

Утепление дома снаружи начинается с обработки стен антисептиками, предотвращающими поражение древесины гнилью, плесенью, грибком, древоточцами, и антипиренами для улучшения противопожарных характеристик постройки.

Щели и зазоры в деревянных стенах из бруса, сруба, сендвич-панелей необходимо заделать герметиком или законопатить джутовым волокном.

После этого можно приступать к обустройству обрешетки, закрепив саморезами на плоскости стен бруски 50×50 мм или 50×100 мм — типоразмер рейки подбирают в зависимости от количества слоев теплоизолятора.

Обрешетку монтируют в виде горизонтальных или вертикальных направляющих с шагом, практически соответствующим ширине теплоизоляционного материала — на 1 см меньше, чтобы тот плотнее «сел» на свое место.

Перед монтажом утеплителя поверх обрешетки обязательно устанавливают пароизоляционную пленку — лучше всего, если это будет диффузная ветро- и пароэкранирующая мембрана, например, Ондутис A100, A120 или SA130. Она будет пропускать воздух, стремящийся из внутренних помещений дома наружу, но задержит влагу и не даст ей впитаться в утеплительный слой, сохраняя его теплоизолирующие свойства.

После закрепления пароизоляции на обрешетке при помощи строительного степлера, приступают к укладке плит утеплителя между брусками, дополнительно фиксируя их зонтичными дюбелями к стенам. Поверх теплоизолирующего слоя необходимо установить гидроизоляционную пленку, которая будет защищать его от влаги, проникающей извне, но при этом отводить наружу небольшие объемы конденсата, попавшие в утеплитель.

На завершающей стадии утепления деревянного дома монтируют рейки под установку облицовки — они служат не только в качестве фасадного каркаса, но и формируют вентиляционный зазор, необходимый для проветривания теплоизолятора. В роли финишной облицовки деревянных фасадов чаще всего применяют сайдинг, вагонку, блок-хаус.

Внутреннее утепление дома из дерева

Утепление деревянного дома изнутри почти не практикуют, так как это может нарушить микроклимат и повысить влажность в его внутренних помещениях, а кроме того — ощутимо сократить жилую площадь. Если же решение об утеплении изнутри было все таки принято, то нужно обязательно выполнить пароизоляцию — заложить антиконденсатную мембрану между слоем теплоизоляции и внутренней облицовкой.

Если дом из бруса или сруба утеплять изнутри не рекомендуется, то каркасные деревянные дома обычно защищают от холода по внутренним поверхностям стен, используя в качестве паробарьера, например, пленки Ондутис RS, B (R70).

Изоляционные материалы для утепления домов

Наиболее удачным вариантом теплоизолятора для деревянных домов считается базальтовая (минеральная) или стекловолоконная вата. Это экологически чистые виды утеплителя в виде плит или рулонов, которые существенно повышают теплосберегающие параметры здания и надежно утепляют его стены как изнутри, так и снаружи.

Для утепления стен деревянных домов практически никогда не применяют пенопласт и пенополистирол — материалы влаго- и паронепроницаемые, которые создают внутри постройки эффект «термоса», препятствуя полноценному воздухообмену между внутренним пространством дома и внешней средой.

Кроме того, в отличие от минеральной ваты, которая не поддерживает горение, утеплители на базе полимеров при нагреве испаряют вредные вещества, а при воспламенении плавятся, источая густой токсичный дым.

Заключение

Деревянные дома редко утепляют — эти постройки лучше других — кирпичных, бетонных и пенобетонных, удерживают тепло. Однако в регионах, где морозы порой достигают 20-градусной отметки, рекомендуется утеплить деревянный дом снаружи при помощи минеральной ваты — материала низкой теплопроводности, но высокой влагопроницаемости.

А чтобы быстро впитывающий влагу минераловатный теплоизолятор служил долго и исправно, в утеплительный «пирог» дома включают пароизоляцию — пленку, эффективно задерживающую конденсат и предотвращающую намокание утеплителя, но пропускающую воздух и позволяющую деревянному дому «дышать». Так деревянный дом становится намного теплее и экономичнее в отопительный сезон, а здоровый микроклимат во внутренних помещениях не нарушается.

62 голоса , пожалуйста, оцените статью:

Утепление фасада деревянного дома: особенности выполнения работ | mastera-fasada.

ru

Дерево, как вид строительного материала имеет низкую теплоотдачу. И если стены деревянного дома возведены с соблюдением всех технологий, то обычно такой дом не нуждается в дополнительном утеплении.

Но когда стены дома холодные, а в самом помещении в зимнее время низкая температура, то понадобится сделать утепление деревянного фасада.
Утепленный фасад дома

Причины возникновения необходимости утепления

Существует несколько таких причин:

  • Основная проблема в том, что любой, даже качественно поставленный сруб, спустя некоторое время начинает пропускать воздух. Особенно при сильном ветре. В силу естественных причин, деревянная конструкция нестабильна первые несколько лет, в течение которых происходит укладка конструкции.
  • Древесина своенравный и «живой» материал и расхождения стыков между бревнами избежать крайне трудно. Особенно это касается верхней части дома, где нагрузка, сжимающая скрепленные венцы слабее.
  • Идеально изготовленный и проконопаченный сруб не всегда хорошо удерживает тепло. Это происходит из-за неправильного выбора материала. Не всегда можно предугадать толщину бревна для необходимой ширины стыков венца, если она намного меньше диаметра бревна – продувание гарантированно.

Для чего необходимо утепление фасада дома?

Утепление фасадов деревянного дома
Многие часто видели рекламные видео ролики различных домостроительных компаний. Они привлекают своими «базовыми» ценами на готовые строения «под ключ». Но, как правило, толщина стен таких срубов (из бревна они или из бруса) минимально допустима для условий нашего климата.
Срубы, изготовленные из древесины большого диаметра, стоят несоразмерно дороже, и их цена приемлема не для каждого покупателя.
Холодное жилье – это несомненный дискомфорт. Утепление фасадов деревянных домов позволит сделать ваш дом более уютным и существенно сэкономить затраты на его отопление.

Как правильно утеплить фасад деревянного дома?

Чтобы решить этот вопрос, можно воспользоваться сетью Интернет, прочитать поясняющую статью или посмотреть фото всех процессов по утеплению (в этой статье вы также найдете видео ролик, рассказывающий про утепление деревянного фасада дома).


Это позволит вам быть в курсе об общих чертах предстоящих работ. Если вы решили вопрос, как утеплить фасад деревянного дома, но хотите это сделать своими руками, вам понадобиться подробная инструкция.
Но даже тщательно написанная, она не заменит реального опыта и навыков мастера своего дела. Именно поэтому по вопросам, как и чем утеплить фасад деревянного дома, лучше обратиться к опытным специалистам.
Дом, изготовленный из бруса утеплить гораздо проще, его ровная поверхность стен значительно ускорит процесс монтажа теплоизоляционных материалов. С бревенчатой конструкцией времени на работу придется затратить гораздо больше, но принцип технологии одинаков в обоих случаях.

Совет! Утепление деревянных стен, как внутреннее, так и наружное, производится только спустя два-три года с момента постройки дома и полной его усадки.

Утепление наружной стены

Технология утепления

При работах по утеплению фасада частного дома важно соблюдать основные правила. Нужно помнить, что паропроницаемость всей ограждающей конструкции при движении воздуха наружу должна увеличиваться.

Особенно это необходимо при утеплении деревянных стен, ведь деревянные постройки способны «дышать», самостоятельно поддерживая и регулируя свой внутренний микроклимат.
Скопившаяся лишняя влага должна иметь возможность беспрепятственно выходить наружу сквозь слой утеплителя. Именно поэтому утепление фасада деревянного дома, делают, используя базальтовую теплоизоляцию для фасада или другие подобные негорючие материалы.
Утепление дома из бруса

Утепление фасадов из бруса

Утепление фасадов деревянных домов включает в себя несколько этапов.

  1. Выполнить тщательную обработку наружной поверхности стен антисептиком и антипиреном, в дальнейшем сделать это будет уже невозможно.
  2. На деревянный фасад необходимо смонтировать обрешетку из вертикально расположенных брусьев, к которым будет крепиться наружная облицовка стены.
    Расстояние между вертикальными брусьями обрешетки выбирают согласно ширине применяемого фасадного утеплителя, рассчитывая его так, чтобы утеплитель плотно входил между брусьями.
    Толщина бруска должна быть чуть меньше используемого утеплителя.
  3. Чтобы предотвратить перекос обрешетки от возможной посадки дома, брусья закрепляются в прорезанные в несущей стене вертикальные пазы, при помощи шуруповерта и длинного самореза.
  4. Монтируемый утеплитель должен плотно прилегать к стене и заполнять собой все пространство между вертикальными брусками обрешетки. Базальтовые утеплительные плиты закрепляются точечно при помощи спец-шайб (грибков).
  5. Сверху теплоизоляционного материала необходимо смонтировать гидрозащитную мембрану. Она защитит утеплитель от промокания и предотвратит его выдувание воздушными потоками, циркулирующими за внешней обшивкой.
  6. На мембрану поверх вертикально крепиться рейка, которая на четыре-пять сантиметров шире бруса основной обрешетки. Это создаст необходимый зазор для вентиляции и плотнее прижмет теплоизоляционные плиты. Дерево «дышит» — ему необходим воздух.
  7. Последний этап – наружное облицовывание утепленной стены. Для этой цели используют различные монтажные панели, пластиковый или металлический сайдинг, блок-хаус.
Утепление фасада бревенчатого дома

Утепление фасадов из бревна

Немного по-другому выполняется утепление фасадов деревянных домов, изготовленных из бревна.
Для их утепления используют специальные теплоизолирующие маты.

  1. Брус обрешетки закрепляется на предварительно смонтированные уголки. Расстояние между брусьями каркаса по горизонтали соответственно ширине матов.
  2. Наружное утепление бревенчатого дома
  3. Маты, монтируют, раскатывая вертикально и направляя их сверху вниз. Так как добиться плотного прилегания утеплителя между бревнами очень трудно, поэтому в местах соединения бревен, теплоизоляционные маты дополнительно прокручивают рейкой горизонтально, вдоль стыков бревен.
  4. Совет! Очень важно не переусердствовать и не сильно придавливать мат к стене, Это ухудшит прохождение воздуха и тем самым нарушит вентиляцию и повысит парообразование.

  5. После чего также монтируется влагозащитная мембрана, а затем крепятся несущие бруски обрешетки фасада. Дальнейшая работа по защитной облицовке фасада, выполняется точно так же как и в случае с обычными деревянными домами.

Есть более быстрый способ утепления фасада, но его цена несколько выше. Это способ напыления, который создает ровный слой теплоизоляции безо всяких швов.

Заключение

Мы рассмотрели основные моменты, связанные с утеплением фасадов деревянных домов. И думаем, что изложенная информация будет вам полезна и сделает ваше жилище более теплым и уютным.

Утепление стен фасада сруба — как сохратить тепло в деревяном доме

Утепление фасада деревянного дома

Содержание:

За последние несколько лет на рынке недвижимости отмечается небывалая востребованность домов из натуральных материалов. И это не удивляет никого, поскольку преимущества, которыми обладают деревянные дома из бруса, позволяют создать все условия для приятного проживания в доме. Но это вовсе не значит, что если дом построен из натуральной древесины, его не нужно утеплять. Деревянный дом как раз требует утепления стен, поскольку древесина не обеспечивает достаточного уровня теплозащиты.

Утеплив стены, хозяева не просто получат удовлетворительные условия в помещении. Деревянный дом, обработанный с помощью теплоизоляционных материалов, будет защищен от постоянных перепадов температур. Таким образом, срок эксплуатации дома будет увеличен.

В случае необходимости утепления дома, появляется масса вопросов, на которые мало кто может дать ответы. Актуальность данных вопросов стала мотивацией для создания данной статьи. В этом материале мы расскажем вам о том, как правильно производить теплоизолирование стен, какому материалу отдавать предпочтение, как правильно произвести пароизоляцию, а также расскажем, как нужно конструировать обрешетку для стен из бруса или бревна.

Содержание статьи:

 Особенности технологии утепления деревянного дома

Эксперты в области строительных технологий утверждают, что для каждого владельца деревянного дома вопрос о наружном утеплении стен должен быть приоритетным. Практика показывает, что утепление стен изнутри имеет свои недостатки, а именно:

  • уменьшается площадь внутри помещений;
  • между стеной и утеплителем всегда накапливается конденсат;
  • из-за неправильного расположения утеплителя стена оказывается в холодной атмосфере, вследствие чего со временем трескается и раскалывается.

Выполнять утепление стен нужно по особенной технологии. Все слои требуется располагать по принципу «изнутри-наружу». Первым слоем нужно располагать пароизоляцию, поскольку этот слой не будет пропускать поток влажного воздуха. После укладки первого слоя необходимо установить теплоизоляцию — она будет вторым слоем. Теплоизолирующий материал позволит сохранить теплый воздух внутри помещения. Затем устанавливается третий и последний слой — гидроизоляция. Она удерживает влагу и пропускает пар.

Утепление деревянного дома снаружи либо изнутри

Перед тем как приступить к процессу утепления, нужно определиться с типом установки — снаружи или внутри. Бревенчатные стены рекомендуется утеплять изнутри, поскольку снаружи стены не потеряют свой натуральный вид.

Утепляя срубы, основная стена, находящаяся непосредственно перед утеплителем, располагается в зоне низких температур. Эта зона будет немного захватывать и сам утеплитель, что провоцирует ухудшение его характеристик. Кроме того, утепляя брус изнутри, хозяин рискует нарушить естественную диффузию паров, из-за чего возникнут благоприятные условия для возникновения конденсата на границе утеплителя и стены.

Обратите внимание, что при выборе варианта внутреннего утепления, монтаж теплоизоляционных материалов невозможно будет выполнить в местах, где перекрытия примыкают к стенам. В данных зонах будут образоваться так называемые «мостики холода». В данных зонах тепло теряется настолько быстро, что коэффициент теплопотерь иногда может превышать показатели потерь тепла через весь периметр стены.

Утепление стен деревянного дома снаружи

Утепляя дом снаружи, вы получаете равномерное снижение температурных показателей по всей стене. Резкие падения температуры отмечаются ближе к наружным стенам, при этом зона отрицательных температур не касается конструктивных элементов дома, поскольку она находится в толще теплоизоляционного материала.

[ads1]На условия, создающие скопление влаги и на влажностной режим деревянных стен, благоприятно влияет грамотное расположение плотных материалов, которые не пропускают водяные пары изнутри конструкции. Пористые и легкие материалы рекомендуется устанавливать именно снаружи. Надежно защитив теплоизоляционные материалы от пагубного влияния атмосферных осадков, стена, которую утеплили снаружи, всегда будет сохранять высокие теплоизоляционные свойства.

Преимущества, как вы видите, предельно понятны. Но при всем этом, существуют и минусы. Наружное утепление дома из сруба — процесс далеко не самый простой. В данном случае эстетические требования к выполнению конструкции напрямую связаны с грамотным подбором материалов для внутренней отделки. В принципе, всегда есть возможность доверить утепление специалистам, знающим все особенности применения теплоизоляционных систем. Но благодаря нашей статье, необходимость в этом отпадает.

Типы утеплителей для деревянных домов

утепление фасада 3 способа

Брусовые стены (см. утепление дома из бруса)всегда можно утеплить с помощью наружной облицовки кирпичом, мелких блоков, керамических или бетонных камней, а между деревом и слоем облицовки проложить слой теплоизоляционного материала. В наружной стороне утеплителя всегда должен находиться предусмотренная заранее вентилируемая воздушная прослойка, главным назначением которой станет удаление излишков влаги из древесины.

Практика показывает, что чаще всего владельцы привыкли создавать наружную облицовку с помощью кладки из газобетонных блоков. Данные блоки имеют практически идентичную с газобетонными блоками теплопроводность, при этом показатели паропроницаемости намного выше, чем у стен из натурального дерева. Создание кладки из газобетонного блока толщиной 20 сантиметров позволяет увеличить сопротивление теплопередаче стен из натурального бруса (толщина которых обычно составляет 15 см) в два раза и более. Газобетон является идеальным вариантом, поскольку обеспечивает пожаробезопасность, морозостойкость и экологичность дома. При облицовке газоблоком отпадает необходимость в использовании пароизоляционного слоя и вентилируемых зазоров, которые создаются между деревом и газобетоном.

В случае с бревенчатыми стенами идеальным вариантом является использование минеральной ваты в качестве утеплителя. По своим качества она полностью отвечает самым распространенным требованиям — высокий коэффициент теплоизоляции, минимальный коэффициент теплопроводности и малая гигроскопичность. Минеральная вата не поддается влиянию высоких температур, не дает грибку/плесени/насекомым распространяться по своей структуре и выводит пары во внешнюю среду. Кроме того, при создании минеральной ваты не используются токсические вещества.

Пароизоляция деревянных стен

Обычно процесс утепления стен из бревна и бруса начинается с подготовки пароизоляционного слоя. На протяжении первого года эксплуатации дома отмечается особо интенсивное изменение показателей влажности дома. Изменяя показатели влажности, дерево дает усадку, вследствие чего могут возникнуть трещины, деформации формы и размеров бревен. Данные процессы происходят в первые пять лет эксплуатации. В результате того, что влажность провоцирует изменение формы, герметичность пазов и стыков находится под большой опасностью. Особенно актуальным данный вопрос является для пиленого бруса и бревен ручной рубки.

Пирог утепление стен фасада брусового/ бревенчатого дома

Менее актуальным данный вопрос является для профилированного бруса и оцилиндрованного бревна, так как в результате механической обработки мест сопряжений гарантируется максимальная герметичность. В качестве пароизоляционного материала можно использовать полиэтиленовую пленку, алюминиевую фольгу или рубероид.

Если в качестве основы для стен был использован клееный брус, дополнительное обустройство пароизоляции, в большинстве случаев, не требуется. В данном случае роль барьера для пара выполняет сам материал. В производственных условиях клееный брус высушивают для достижения минимальных показателей влажности. При производственной обработке также достигается минимальный коэффициент усадки, благодаря чему к утеплителю поступает ограниченное количество пара.

Варианты создания пароизоляции для деревянных стен

Если на утеплитель попадает избыточное количество пара, который поступает через дефектные участки герметизации, со временем утеплительный материал будет полностью разрушен. Обычно, отделкой стен с помощью обшивки выполняют после полной просушки древесной структуры. Но здесь есть одна проблема: после того, как древесина будет высушена, доступ к дефектным участкам стен будет проблематичным. Эксперты разработали несколько методов решения данной проблемы.

Вариант первый. Никуда не торопиться и подождать с обшивкой и утеплением несколько лет. Обработать все стыки с помощью герметика для древесины (такой продается на любом строительном рынке), проконопатить пазы с наружной и внутренней стороны стены. Функции утеплителя должен выполнять материал с повышенной плотностью; обработанный с помощью гидрофобизированного способа обработки. Коэффициент плотности должен находиться в районе 80-150 кг/м3.

В данном случае мы получим стены с пониженным показателем теплосопротивления, так как масса пара, находящаяся в помещении, будет напрямую взаимодействовать с утеплителем. Но не забывайте, что в данном случае имеет место риск возникновения новых герметизационных дефектов. Никто не рискнет гарантировать вам долговечность подобной пароизоляции, но стены при этом будут дышать свободно, сохраняя экологичный микроклимат внутри помещения.

Пароизоляция деревянных стен и монтаж утеплителя

Вариант второй. Пароизоляция с внутренней стороны. В качестве пароизолятора разрешается использовать обычную полиэтиленовую пленку или пароизоляционную мембрану. Минимальная толщина, которая допускается для применения — не меньше 0.1 мм.

Использование данного варианта сводит к минимуму поступление пара в слой древесины и в утеплитель. Долговечность и теплосопротивление увеличивается в данном случае. Есть одно требование — пароизоляция стен, имеющих пароизоляционные покрытия цокольного или чердачного перекрытия, обязательно должны создавать единый контур сооружения. В данном случае есть существенный недостаток в виде нарушения микроклимата. Причина проста — создается оболочка из недышащих материалов.

Для того, чтобы пароизолировать стены, можно также использовать фольгированные теплоизоляционные материалы. Обычно данный материал крепится к внутренним поверхностям стен, при этом фольгированная сторона направляется на воздушный промежуток. В этом случае возрастает сопротивление теплоотдаче, но при одном условии — герметизируйте стыки материала с помощью клейкой ленты. Решение вопроса именно таким способом особенно хорошо пригодится, если внутренние стены обшиты плитными материалами, вмонтированными на каркасе.

Вариант третий. Разместите пароизоляционную мембрану между стеной и утеплителем. На этом месте рекомендуется оставлять небольшой зазор для вентиляции, соединенный продухами с воздушной средой. Длина вентиляционного зазора должна составлять приблизительно 5 см. Этого вполне будет достаточно. С помощью продухов будет обеспечена одинаковая температура в помещении и в зазорах. Для утепления необходимо применять экструдированный пенополистирол или пенопласт. Применяя данные материалы, для обеспечения высокой пожароустойчивости необходимо дополнительно возвести наружную кладку из кирпича.

[ads1]Необходимо всегда помнить о том, что пароизоляция не должна быть размещена прямо на поверхности наружной стены, поскольку данный тип установки провоцирует появление конденсата в дальнейшем. Таким образом, стена будет постоянно находится по влиянием влаги. Это поясняется большим уровнем термического сопротивления деревянной стены по сравнению с аналогичной каменной или кирпичной. А если в данном случае еще и учитывать большую паропроницаемость стены, такая схема распределения температуры и влажности приведет к снижению температуры до уровня появления росы с внутренней стороны.

В данном варианте не учитывается теплосопротивление деревянной стены дома. Соответственно, владельцу дома нужно увеличить толщину утеплителя, при этом конструктивный материал применяется такой же, как и во втором случае. Если вы имеете утеплитель, в составе которого имеются вспененные полимеры, создавать вентилируемые зазоры между облицовкой и слоем утеплителя не обязательно.

Недостатком данного способа обустройства системы пароизоляции является пониженная степень экологичности материалов, которые окружают паропроницаемую оболочку. Но главное преимущество заключается в том, что технология может быть применена для утепления новых деревянных домов и уже эксплуатируемых.

 Обрешетка для деревянных стен

Утеплить деревянные дома будет гораздо проще и быстрее, если в процессе создать специальную деревянную обрешетку. Эксперты могут предложить сразу несколько вариантов установки обрешетки, но выбирать один из них придется в зависимости от типа стен в доме и материала облицовки.

Монтаж обрешетки для утеплителя дома из бруса

Самый недорогой вариант обрешетки — это конструкция из деревянных, предварительно высушенных реек. Запомните: при создании данной конструкции нужно учитывать, что длина реек и высота стен должна быть строго одинаковой. Особенно тщательно нужно измерять высоту обрешетин для стен из бревна, ведь с ними обычно появляются трудности при определении вертикали.

В случае применения сайдинга удобнее всего будет сделать двухслойную обрешетку, при этом слои обрешетки обязательно должны располагаться в перпендикулярном положении. В процессе применения технологии утепления стен, первым делом начинают устанавливать брусья обрешетки, расположенные горизонтально. В этом варианте можно использовать высушенные доски или брусья толщиной минимум 30 мм, максимум — 50 мм. Ширина подбирается в зависимости от толщины слоя утеплителя.

Горизонтальную обрешетку необходимо монтировать из брусков. Их располагают на расстоянии от 60 до 80 сантиметров друг от друга, ориентируясь на ширину плиты утеплителя. Чтобы установить утеплительную плиту «враспор» (без зазоров), специалисты рекомендуют уменьшить расстояние брусков обрешетки минимум на 2 сантиметра. Упругость, которой обладают плиты, не будет препятствовать усадке деревянных стен, но при этом сам материал не будет сползать. Плотность утеплителя должна составлять 15-35 кг/м3. Рекомендованный тип укладки — в два слоя с соблюдением перекрытий швов.

Чтобы утеплитель не продувался воздушным потоком, на материал сверху накладывается паропроницаемая ветрозащитная пленка. Паропроницаемость пленки не даст влаге задерживаться на стенах и утеплителе, так как температурный режим не позволит этого сделать. Чтобы закрепить мембрану, на горизонтальной обрешетке, используются скобы.

Сечение досок, использующихся для вертикальной обрешетки, должно быть 25х80 мм или 30х40 мм, при этом сами доски прикрепляют на бруски горизонтальной обрешетки. Обрешетка крепится непосредственно к деревянной стене с помощью гвоздей или саморезов, но при фиксации необходимо соблюдать правильность угла закручивания самореза или забивания гвоздя. Правильный угол компенсирует усадку стен из бруса. Можно изготовить подвижное крепление. Делается оно следующим образом: в досках создают вертикальные прорези; в каждую из прорезей по центру вкручивают саморезы с шайбами. Существует еще один вариант — произвести монтаж вертикальной обрешетки с помощью специальных скоб, которые будет охватывать доску. Скоба являет собой перфорированную монтажную полосу из закаленной стали. Ее крепят с двух сторон вертикальной доски, используя саморезы. Чтобы избежать смещения, низ вертикальных досок жестко крепится с помощью нескольких саморезов к горизонтальному брусу снизу.

Каждый шаг вертикального бруска подбирают в соответствии с необходимым шагом для крепления облицовки. Шаг для обустройства наружного типа облицовки с помощью винилового сайдинга, должен быть примерно 40 сантиметров. Ширина вентилируемого зазора будет идентична толщине досок вертикальной обрешетки.

Стены из бревна лучше всего обеспечивать именно трехслойной обрешеткой. Такой вариант обрешетки монтируется сначала из вертикальных брусков, постепенно выравнивая в оной плоскости с помощью подкладок из дерева. В некоторых бревнах из стены создают небольшие пазы, а чтобы компенсировать усадку стен, используют подвижное крепление, способ изготовления которого мы рассматривали выше. Утеплитель для стен из бревен нужно прижать с помощью деревянных планок, чтобы обеспечить максимально плотное прилегание к стене. После этого монтаж производят брусьями, расположенными в перпендикулярном направлении.

Такое расположение позволяет правильно и без дополнительных усилий подобрать шаг для монтажа утеплителя и облицовочного материала. Деревянная обрешетка обязательно должна быть обработана с помощью специального антисептического средства, которое не даст дереву прогнивать, а также защитит от вредного влияния грибка, плесени и насекомых.

 Комментарии специалистов об утепление фасада деревянного дома

 1. «Сейчас я говорю только о домах ручной рубки, то есть, построенных именно по этой технологии. Согласно данной технологии, в основе стенового материала применяется кондовая (рудовая) сосна, которую обычно можно встретить на возвышенных местах с песчаной основой. Возраст сосны должен составлять минимум 80 лет, максимум — 120. Диаметр ствола — от 22 до 35 сантиметров. Мяндовая сосна (растущая на влажной почве) и ель используют не так часто, как можно подумать изначально. Их свойства являлись оптимальными разве что для дома эконом-класса. Бревенчатые стены в прошлом веке не обшивали, так как стоимость досок была относительно велика, а на создание обшивки требовалось очень много материала. Состоятельные люди предпочитали штукатурить дом снаружи, делая их «каменными». Но это делалось не для утепления фасада, а ради демонстрации статуса хозяина, который проживал в таком доме. Тогда это было модным явлением.

Огромное внимание уделяли тому, каким именно способом рубили угол сруба. Тогда считалось, что дом промерзал именно по углам, а не по периметру стены. Тепло в углах держалось за счет слоя утепляющего материала (см. межвенцовый утеплитель из джута)  и за счет специально созданного «теплового замка».

Как было отмечено выше, в качестве строительного материала использовалась древесина возрастом минимум 80 и максимум 120 лет. Если древесине меньше 80 лет, недостаточная ее готовность разрушит дом уже через несколько лет после возведения. Если древесине больше, чем 120 лет, сердцевинная часть ствола начнет разрушаться. Большинство экземпляров с таким возрастом имеет диаметр ствола от 32 до 40 см, а согласно стандарту СНиП 23-02-2003 «Тепловая защита зданий», устанавливающему жесткие требования к энергосбережению, диаметр бревен для создания стен должен иметь диаметр не менее 50 см. Под данные требования вписывается разве что перезрелый лес, но его применение в строительстве домов не является возможным.»

2. «Мы уверены в отсутствии необходимости утепления фасадов коттеджей из клееного бруса, поскольку данный материал за счет специфических свойств достаточно хорошо удерживает тепло. А если учитывать плотность прилегания венцов и точность соединений, надежная теплозащита обеспечивается сама по себе.

Какому сечению клееного бруса необходимо отдавать предпочтение? Основываясь на проведенных нами теплотехнических расчетах, специалисты  уверены, что идеальным сечением является 175*186 мм и 175*206 мм. Для климатического пояса России этого вполне достаточно.

При сравнении профилированного бруса и клееного, первый отличается более низким коэффициентом плотности и высоким уровнем теплопроводности. Без специальной обшивки фасада с применением утеплителя обогреть дом, построенный из профилированного бруса, зимой очень проблематично.

Здания, построенные из клееного бруса, как раз предназначаются для круглогодичного проживания. Проживая в таком доме, прохлада летом и тепло зимой обеспечивается стабильно.

Единственный нюанс, который обязательно нужно учитывать, — площадь остекления дома. Обычно используются витражные панорамные окна, создаются зимние сады и так далее. Если данная площадь является сравнительно небольшой, ничем серьезным для владельца дома это не обернется. Если же используется большая площадь, отведенная под окна, возможно, у вас увеличатся расходы на отопление дома частного дома. Поскольку максимальный уровень теплопотерь приходится именно на дверные и оконные проемы, архитекторам необходимо учитывать этот фактор при строительстве деревянных домов».

3. «Дома из оцилиндрованного бревна и бруса рекомендуется утеплять лишь в том случае, если стены имеют толщину меньше 25 см. Утепление стен рекомендуется выполнять только с наружной стороны стен. Для этого используется целый комплекс утеплительных материалов. Мы же рекомендуем использовать минеральную вату. Количество слоев минеральной ваты, необходимой для утепления, зависит от толщины стены. Если стена имеет толщину 200-250мм, потребуется 50 мм утеплителя, то есть, один слой. Если толщина стены составляет 150-200 мм, используется два слоя утеплителя общей толщиной 100 мм. «Пирог» обшивки создается следующим образом. На наружной стене создается деревянный каркас, в основе которого используются необрезные доски шириной от 50 до 100 мм. Шаг каждой доски — 60 см (стандартная ширина утеплителя). На каркасе устанавливается паронепроницаемая мембрана (Изоспан-В, например), после мембраны — слой теплоизоляционного материала. Все это закрывается ветрогидрозащитной пленкой (Изоспан-АМ). Предпоследний этап — прибивание контррейки, толщина которой должна быть минимум 25-50мм. Она создаст вентиляционный зазор. Уже к контррейкам пришивается облицовка (сайдинг, вагонка, имитация бруса и так далее).

Утеплять стены из внутренней стороны дома не рекомендуется, так как влага будет накапливаться в утеплителе, после чего слой теплоизоляционного материала намокнет и значительно ухудшит свойства.

Если утеплить деревянный дом общей площадью до 200 м2, для его обогрева будет достаточно от 5 до 10 кВт электричества».

4. «Дома из оцилиндрованного, клееного или профилированного бруса обязательно должны утепляться. Единственная преграда, которая не дает владельцам домов достаточно мотивации — эстетика. Как правило, указанные выше материалы выбирают эстеты — истинные ценители красоты дерева, для которых скрыть дерево за обшивкой равносильно смерти. Те, кто все-таки решился построить дом из бруса, обязательно должен принимать во внимание большие расходы на отопление. Если речь идет об эстетике, приходится жертвовать отоплением. Здесь нельзя ничего поделать. Разве что постараться подобрать оптимальную толщину стен. Например, для стены из оцилиндрованного бруса оптимальным показателем толщины является 240-280 мм.

Дом из непрофилированного бруса сечением 200х200 мм или 150х150 мм придется в любом случае утеплять. При выборе теплоизоляционного материала стоит отдать предпочтение каменной (минеральной) вате. Существует еще один вариант — пенополистирол, но он не подойдет — данный материал не обладает свойством «дышать». Для обшивки  используется сайдинг, вагонка, блок-хаус, имитация бруса, цементно-стружечная плита (если планируется облицовка фасада декоративным камнем или его оштукатуривание). В процессе утепления, внешняя поверхность получает бруски с уровнем сечения 50х50 мм. В пазы между брусками устанавливают блоки утеплителя , а сверху развертывают слой гидроветрозащитной пленки. Все это фиксируется с помощью брусков сечением 25х50 мм. Что касается использования пароизоляционной мембраны, существуют разные мнения по этому поводу. Мы предпочитаем не использовать ее в данном случае, поскольку пар проходит через утеплитель и гидроветрозащитную мембрану. Точка росы располагается именно на пленке, поэтому использовать паробарьер нет никакой необходимости».

5. «Существуют специальные стандарты СНиП 23-02-2003, благодаря которым регламентируется сопротивление передаче тепла через стены здания. Как показывает практика, в большинстве случаев данные требования полностью игнорируются. А если дом из бруса или бревна не соответствует указанным в стандарте требованиям, его обязательно нужно утеплять.

Проблема заключается далеко не в неизбежных теплопотерях. Отопить дом из клееного бруса или бревна можно, сейчас это не является бедой. Но при таком подходе, внутренние стены будут постоянно увлажняться, из-за чего выпадет конденсат. Именно конденсат является главной причиной возникновения грибка и плесени. Их наличие не просто губит эстетику и древесину, но и отрицательно влияет на общее состояние организма проживающих в доме людей. Почему так происходит? Температура стен в доме гораздо ниже температуры воздуха в комнатах (стандарты СНиП 23-02-2003 требуют перепада температур максимум на 4 градуса). Именно это и вызывает возникновение конденсата. Образование влаги на стене далеко не всегда можно обнаружить, поскольку он далеко не всегда может появляться на поверхности стены. В 35% случаев конденсат образуется именно во внутренних слоях древесины, где материал прогрет недостаточно хорошо. В этом случае никакие биовлагозащитные составы не помогут добиться положительного результата.

Здание можно теплоизолировать разными способами, но идеальным способом в данном случае является утепление фасада снаружи. Для этого используется минеральная вата, разработанная на основе стеклянного или каменного волокна. С помощью теплотехнических расчетов определяют необходимую толщину материала, но в большинстве случаев устанавливается два слоя общей толщиной 100 мм.

Следующей задачей является сохранение изначально определенных параметров утеплителя и полная его защита от пагубного влияния осадков и ветра. Для решения данной проблемы утеплитель закрывают одним слоем ветрогидроизоляционной мембраны, которая не дает влаге выветриться. Паропроницаемая мембрана, установленная там же, позволяет стене «дышать».

Таким образом, достигается оптимальный коэффициент сопротивления теплопередаче стен и обеспечивается не просто комфорт жильцов, но и финансовая выгода в виде уменьшенных затрат на отопление. Наша фирма исследовала показатели эффективности применения ветро- и гидрозащитных мембран. Оказывается, что наличие утепления позволяет сохранить 40% тепла в помещении.

Еще один важный момент. Даже если стены «дышат», все равно нужно установить систему вентиляции».

6. «Отделка сайдинга расценивается как завершающий этап процесса утепления дома. Чаще всего используется виниловый сайдинг, поэтому его можно увидеть на облицовке коттеджей, в том числе из натуральной древесины. На обшивку деревянного дома решается далеко не каждый обитатель, а спустя некоторое время. Иногда владельцы решаются на такой поступок не ради того, чтобы сделать дом теплее, а чтобы избавиться от постоянных проблем, связанных с необходимостью в поддержании хорошего внешнего вида. Практика показывает, что потребители предпочитают останавливать выбор на продукции зарубежных фирм. Ее преимущества заключаются в повышенной цветостойкости, разнообразии фактур и легкости монтажа.

Важно подбирать сайдинг так, чтобы он отлично сочетался с водостоками, кровлей, отделкой цоколей и так далее. Большой востребованностью характеризуется материал пастельных оттенков.

При покупке сайдинга помните о том, что главным его компонентом является поливинилхлорид — материал, который имеет солидный коэффициент расширения под влиянием температуры. При неправильном монтаже материал будет коробиться. В этом случае закройте глаза на обещания производителей прослужить более, чем 50 лет — при неправильной установке срок службы сокращается минимум втрое.

Первая и главная ошибка — неправильный выбор обрешетки. Для сайдинга ее шаг должен составлять минимум 30-40 см. Некоторые «специалисты» стараются убить двух зайцев сразу — сделать теплоизоляционную обрешетку, засунуть туда как можно больше утеплителя и использовать аналогичную обрешетку для сайдинга. О вентиляционных зазорах речь не идет. В такой ситуации сайдинг начнет деформироваться под влиянием жаркой погоды и будет постоянно вспучиваться.

Вторая ошибка заключается в фиксации обшивки «намертво» к обрешетке или несоблюдении зазоров между внутренней стенкой углов/соединительных реек и торцами панелей сайдинга. При фиксировании «намертво», сайдинг не сможет двигаться, вследствие чего материал коробится и выпучивается. Чтобы предотвратить данную проблему, нужно оставить небольшой люфт, который не даст обшивке деформироваться, а позволит свободно двигаться при расширении.

Как ухаживать за сайдингом? Данный материал можно спокойно мыть водой, не боясь при этом, что влага попадет во внутреннюю часть облицовки. Как показывает практика, мыть сайдинг выгодно далеко не всегда — останутся разводы и пятна. Правда, лишь в том случае, если вы не используете моющие средства. Отмыть сайдинг от следов органических веществ достаточно сложно.

Что касается цветового разнообразия, на рынке вы сможете найти большое количество оттенков. Практически все панели сохраняют свой оттенок долго, но южная часть дома все равно будет светлее. Поэтому рекомендуется использовать материалы темных оттенков. Разница в данном случае будет почти незаметной».

Подведем итоги.

Согласно статистическим данным, при постройке домов из древесины, полностью игнорируются положения стандарта СНиП 23-02-2003 о тепловой защите домов. Поэтому вне зависимости от того, какой вид материала был применен при строительстве деревянного дома (брус, бревно), его все равно нужно теплоизолировать. Некоторые владельцы домов считают, что проконопаченный рубленный дом не нуждается в дополнительной теплоизоляции. Настоящие эстеты с такой же уверенностью утверждают, что деревянные дома не надо обрабатывать теплоизоляционными материалами. В принципе, обойтись можно, уменьшив срок эксплуатации дома и потратив больше денег на отопление.

Что касается материалов, необходимых для обеспечения теплоизоляции деревянных построек, традиционно применяется стекловата или вата на каменной основе. Применение полистирола не рекомендуется, поскольку стены перестают «дышать», вызывая тем самым гниение древесного волокна. Специалисты также не забывают напомнить о необходимости использования гидроветрозащитной паропроницаемой мембраны и предупреждают о важности соблюдения правильности процесса утепления.

В качестве обшивки можно использовать сайдинг, цементно-стружечную плиту или вагонку. Для ценителей красоты рекомендуется использовать имитацию бруса или блок-хаус.

Как утеплить деревянным дом снаружи и чем

При возведении частного дома и застройщик, и будущий владелец коттеджа должны огромное внимание уделять вопросу теплоизоляции и обеспечения комфортных условий проживания даже в самые сильные холода. В полной мере это относится и к постройкам из бревенчатого сруба или бруса. Но при этом у подобных коттеджей есть своя специфика, обусловленная материалом, из которого они построены. Не учитывать ее нельзя – в противном случае это негативно скажется на долговечности стен и отделки построек из сруба и бруса. Потому решить, как утеплить деревянный дом снаружи и чем, не так-то просто и подходить к этому делу нужно обстоятельно.

Как утеплить деревянным дом снаружи и чем

Монтаж обрешетки на бревенчатый дом для укладки утеплителя

Специфика утепления деревянного дома

Проводя мероприятия по монтажу теплоизоляции в доме из бруса или сруба, нужно обязательно учитывать особенности древесины как материала. Их много, но основными являются два – высокая паропроницаемость и подверженность воздействию грибка и прочих микроорганизмов.

Стены деревянного дома отличаются высокой паропроницаемостью

Первое означает, что древесина хорошо впитывает и пропускает через себя влагу как изнутри, так и снаружи. Соответственно, утеплитель для дома, построенного из бруса или сруба, должен обладать сопоставимыми показателями паропроницаемости – в противном случае стены будут постепенно отсыревать, гнить и приходить в негодность. Кроме того, возникает потребность в наличии вентиляционного зазора между внешней отделкой и утеплителем – без него последний будет набирать в себя слишком много воды и терять свои теплоизоляционные качества.

В таблице приведены показатели паропроницаемости для основных стройматериалов и утеплителей. Как можно заметить, у древесины вдоль волокон значение этого параметра выше всех и сопоставимо только с минеральной ватой или автоклавным газобетоном

Слева можно увидеть негативный эффект, возникающий в том случае, если паропроницаемость теплоизоляции и внешней отделки ниже, чем таковая у стены – появляется сырость и конденсат.

А вторая особенность древесины, связанная с восприимчивостью материала к грибку и микроорганизмам, требует обязательной обработки всех стен и деталей системы теплоизоляции антисептическими составами, причем в несколько слоев.

Утепление частного дома можно разделить на две разновидности.

  1. Внутреннее, когда слой теплоизолирующего материала располагается со стороны жилых помещений и закрывается гипсокартоном, вагонкой или любым другим отделочным материалом.
  2. Наружное, когда теплоизоляция располагается на стенах со стороны улицы. Сверху она закрывается ветрозащитной пленкой и внешней отделкой, в качестве которой могут выступать доски, сайдинг, профнастил, искусственный камень и т. п.

Внутреннее утепление стен деревянного дома

Внутреннее утепление в деревянных домах обычно применяется в том случае, когда возникает необходимость сохранить внешний вид здания «под дерево». Обычно это относится к срубам из бревен.

Но при этом подобная система теплоизоляции имеет ряд недостатков:

  • уменьшение полезной площади жилых помещений;
  • неоптимальное положение точки росы, приводящее к появлению сырости и конденсата;
  • постепенное разрушение стен с внешней стороны, обусловленное перепадами температур.

Утепление деревянного дома

Потому более предпочтительным вариантом выглядит внешнее утепление. Подобное решение имеет следующие достоинства.

  1. Экономия жилой площади – слой утеплителя и каркас под него располагается снаружи, а значит, вы сберегаете несколько квадратных метров внутри дома.
  2. Смещение точки росы за пределы стен дома – при хорошей наружной теплоизоляции по всей толщине стены из бруса или сруба температура будет выше нуля. Следовательно, изнутри на стене не будет выпадать конденсат, сырости будет меньше, а срок службы конструкций – больше.
  3. За счет смещения точки росы и применения технологии вентилируемого фасада существенно снижается риск появления плесени и гниения.
  4. Стены из бруса или бревен могут служить внутренней отделкой помещения, сохраняется своеобразная «фактура» загородного коттеджа.

В силу этих преимуществ в статье основное внимание будет уделено тому, как утеплить деревянный дом снаружи и какие материалы для этого подходят.

Разница в положении точки росы для стен с внутренним и с внешним утеплением

Общее устройство внешнего утепления деревянного дома

Двухэтажный деревянный дом

С точки зрения обеспечения качественной теплоизоляции и недопущения появления сырости/конденсата на стене и в утеплителе, наиболее предпочтительным способом защиты дома от холода является обустройство вентилируемого фасада. Вне зависимости от используемого материала, конструкция представляет собой «слоеный пирог», состоящий из следующих элементов:

  • несущая стена дома, изготовленная из бруса или бревен;
  • каркас под утеплитель, создаваемый из бруса или металлопрофиля;
  • слой теплоизоляционного материала и крепежи под него;
  • ветрозащитная мембранная пленка или ветрозащитная плита;
  • обрешетка под внешнюю отделку;
  • внешняя отделка дома.

При этом между утеплителем и внешней отделкой деревянного дома за счет обрешетки образуется вентиляционный зазор, с помощью которого обеспечивается эффективный отвод флаги и снижение риска появления конденсата и сырости.

Утепление стены, сделанной из деревянного бруса. На рисунке можно заметить все элементы вентилируемого фасада – утеплитель, каркас для него, ветрозащитную мембрану, обрешетку под отделку и саму обшивку, представленную вагонкой

Важно! Отдельно стоит уделить внимание такому вопросу, как наличие пароизоляционной пленки между деревянной стеной и утеплителем. Эта пленка уже достаточно давно стала предметом споров. Одни мастера утверждают, что пароизоляция между стеной и утеплителем нужна, иначе теплоизоляционный материал быстро отсыреет из-за поступающей из дома влаги. Другие же придерживаются противоположного мнения и говорят, что пароизоляция нарушит отвод влаги из стен дома, между ней и утеплителем появится конденсат, а затем и плесень. Учитывая оба эти мнения, можно сказать, что устанавливать пленку для защиты теплоизоляционного материала от сырости можно, но только при наличии хорошей вентиляции в доме и зазора между пароизоляцией и деревянной стеной.

Схема утепления деревянного дома с применением пароизоляционной пленки. Можно заметить, что между ней и стеной присутствует небольшой зазор

Различные способы крепления утеплителя к стене из сруба: а) – рулонная теплоизоляция, фиксируемая при помощи реек; б) – однослойная теплоизоляция, закрепляемая на каркасе из бруса; в) двухслойная теплоизоляция, фиксируемая на двойной обрешетке; г) двухслойная теплоизоляция, закрепляемая на каркасе с кронштейнами

Закрепление теплоизоляции на металлические кронштейны и тарельчатые дюбели

Цены на дюбеля для утеплителя

Дюбель зонтик

Ознакомиться с материалами, применяемыми для утепления деревянного дома снаружи, можно из таблицы, приведенной ниже, и в последующих разделах статьи.

Таблица. Утепление деревянного дома снаружи – основные материалы.

Название материалаКраткое описание

Минеральная вата

Рулоны и плиты из тонких волокон базальта и других минералов.

Изоплат

Мягкая древесноволокнистая плита, изготовленная из перемолотой древесины. Не содержит клея и химических связующих. Обладает высокой плотностью и паропроницаемостью.

Пенопласт

Скрепленные в плиты округлые пористые ячейки пенополистирола.

Экструдированный пенополистирол

Разновидность пенополистирола, изготовленная по несколько иной технологии. Отличается большей плотностью и лучшими теплоизоляционными качествами.

Эковата

Бумага и ткань, переработанные в целлюлозу, с добавками, препятствующими слеживанию, гниению и появлению грызунов.

Какой материал выбрать для наружного утепления дома из дерева

Перед тем как приступать к утеплению деревянного дома, нужно решить, чем это именно делать, т. е. каким материалом. Доступные большинству варианты вы можете увидеть в таблице из предыдущего раздела. Это минеральная вата, пенопласт, экструдированный пенополистирол и эковата. Рассмотрим их немного подробнее.

Утепление деревянного дома своими руками

Минеральная вата представляет собой совокупность из множества волокон, полученных из расплавов различных горных пород. Как и в целлюлозной вате, между волокнами располагается большое количество воздуха, за счет чего материал и приобретает свои теплоизолирующие качества.

В пользу минеральной ваты как утеплителя для деревянного дома говорят следующие ее достоинства:

  • простота установки;
  • доступность;
  • неподверженность горению – плавится минеральная вата только при очень большой температуре;
  • паропроницаемость на уровне древесины;
  • отменные тепло- и звукоизоляционные качества.

Утепление фасада минеральной ватой

Но стоит учитывать, что минеральная вата хорошо впитывает влагу и при этом сильно теряет в своих теплоизоляционных свойствах. Потому снаружи утеплитель должен быть защищен мембранной ветрозащитной пленкой.

Хорошим вариантом для утепления деревянного дома является мягкая древесноволокнистая плита Изоплат. Она изготовлена «мокрым способом» из перемолотой фибры хвойных пород деревьев без добавления клея и иных химических связующих. За счет этого плита качественно работает во влажном и холодном климате и не расслаивается от перепадов температур. Сверху плита обработана парафином для защиты от атмосферной влажности. Плита Изоплат обладает высоким показателем паропроницаемости, а значит препятствует отсыреванию стен, образованию грибка и плесени. По теплоизоляционным свойствам 25 см материала сравнимо с 88 мм массива дерева. Также Изоплат обладает высоким показателем звукоизоляции, а значит в доме станет гораздо тише и уютнее.

Утепление деревянного дома плитами «Изоплат»

Другими вариантами утеплителя для деревянного дома являются пенопласт и экструдированный пенополистирол. Оба представляют собой полимеры, состоящие из склеенных друг с другом ячеек с множеством пор и пустот. Последние, заполненные воздухом, и обеспечивают материалу высокие теплоизоляционные качества. Экструдированный пенополистирол изготавливается по немного иной технологии, чем обычный пенопласт, за счет чего материал получается плотнее, а его ячейки — меньше. Сам материал становится прочнее, но и сохраняет при этом свои теплоизоляционные качества.

Утепление пенопластом — не лучший вариант для деревянного дома, но многие прибегают к этому решению из-за дешевизны теплоизоляционного материала

Однако и у пенопласта, и у экструдированного пенополистирола есть серьезный недостаток, из-за которого их использование в качестве утеплителя для деревянного дома сомнительно – это низкая паропроницаемость. Влага и пары воды через данные материалы проникают очень плохо. Потому, если пенопластом будет утеплен деревянный дом, между стеной и слоем теплоизоляции обязательно возникнет влажная среда, благоприятная для развития грибков, прочих микроорганизмов и, как следствие, для гниения и порчи древесины.

Какой пенопласт лучше для утепления дома снаружи

По оценкам экологов, до 40% тепло- и электроэнергии, вырабатываемой в северном полушарии, расходуется на отопление жилых, производственных и иных объектов. По этой причине качественное утепление зданий приносит ощутимую пользу в плане экономии финансов и комфортности проживания. Один из самых популярных теплоизоляторов – пенопласт (пенополистирол, ППС).

Еще один вариант утеплителя – эковата. Этот материал получается из бумажных и текстильных отходов, превращаемых в целлюлозу. Но при этом она дополняется присадками, которые защищают материал от слеживания, гниения, горения и делают его непривлекательным для насекомых и грызунов. Он обладает отличными теплоизолирующими качествами. Но при этом способ его укладки отличается от минеральной ваты и пенопласта – эковату в жидком виде распыляют на поверхность деревянных стен между элементами обрешетки при помощи специального оборудования. Затем материал схватывается, высыхает и становится весьма прочным слоем теплоизоляции. Однако нужно понимать, что без помощи специалиста утепление эковатой выполнить будет невозможно.

Напыление эковаты на поверхность деревянного дома

Теперь, когда вы больше знаете о материалах, используемых для теплоизоляции коттеджей из бруса или бревен, приступим к описанию того, как процесс утепления нужно выполнять.

Цены на теплоизоляционные материалы

Теплоизоляционные материалы

Видео — Утепление стен дома снаружи

Утепление деревянного дома Изоплатом

Утеплить деревянный дом Изоплатом очень легко. Плита – плотный, но в то же время эластичный материал. Достаточно просто прижать её к стене и прибить гвоздями с широкой плоской шляпкой. Изоплат надежно прилегает к основанию и не допускает появление «мостиков холода». Поверх плиты устанавливается вентилируемый фасад. Кроме этого, плиту Изоплат 25 мм и более можно покрыть штукатуркой. Утепление таким способом можно произвести самостоятельно без привлечения специалистов. Это самый быстрый, простой и надежный вариант для утепления деревянного дома.

Утеплять деревянный дом плитами «Изоплат» очень просто

Утепление деревянного дома снаружи минеральной ватой

Рассмотрим, как выполнить один из самых популярных способов утеплить деревянный дом снаружи – с помощью плит минеральной ваты.

Утепление фасада минеральной ватой

Расчет количества утеплителя

Начинается работа с расчета необходимого количества утеплителя. Для этого подсчитайте, сколько квадратных метров дома в поверхностях, подлежащих обшивке минеральной ватой. Решается эта задача по следующему алгоритму.

Работу начинаем с расчетов

Шаг 1. Подсчитайте высоту стен от цоколя до начала фронтона. Если одна часть дома одно-, а вторая — двухэтажная, расчеты для них выполняйте отдельно.

Шаг 2. Определите периметр стен, подсчитав их длину.

Шаг 3. Умножьте периметр стен на высоту и вычтите из полученной цифры площадь проемов – так вы получите примерную площадь поверхности, подлежащей утеплению. Но на этом расчеты не завершаются.

Шаг 4. Используя формулы для определения площади треугольника, подсчитайте, сколько квадратных метров в ваших фронтонах (если вы собираетесь утеплять и их), и просуммируйте полученную цифру с результатом расчетов из предыдущего шага.

Определение площади стены, простого фронтона в виде равнобедренного треугольника и фронтона сложной формы (которая является суммой трапеции и треугольника)

Шаг 5. Определите, минеральную вату какой марки и габаритов вы выбираете. Разделите суммарную площадь утепления на площадь каждой отдельной плиты утеплителя. Затем результат увеличьте на 10-15% для резерва. Полученная вами цифра – количество плит минеральной ваты, которые понадобятся для одного слоя наружного утепления деревянного дома. При этом учитывайте, что в одной упаковке продается несколько панелей утеплителя и, как правило, на них написано, на сколько квадратных метров эта пачка рассчитана.

Минеральная вата ROCKWOOL Лайт Баттс. В одной такой пачке находится шесть плит толщиной 50 мм и с габаритами 600х800 мм. Суммарная их площадь – 2,88 м кв.

Шаг 6. Определите, какой толщины должен быть утеплитель. Как правило, в южных регионах это 50 мм, в средней полосе – 100 мм, в Сибири и северных широтах – 150 мм. Если в один слой выполнить утепление в вашем случае будет невозможно – увеличьте цифру плит минваты из предыдущей операции в два раза.

Рекомендованная толщина утеплителя для различных городов в зависимости от климата и широт

Список инструментов

Прежде всего, вам понадобится что-то, с помощью чего можно резать и пилить материалы для обрешетки. Если каркас под утеплитель будет выполняться из древесины, с этой задачей прекрасно справится электрический лобзик с соответствующим лезвием. Но в случае, когда обрешетка изготавливается из металлического профиля, лучше отдать предпочтение ножницам по металлу.

Электрический лобзик

Цены на популярные модели электролобзиков

Электролобзик

Ножницы по металлу. Хорошо подходят для резки каркасного профиля

Важно! Использование болгарки для резки профиля на каркас под утеплитель допустимо, но нежелательно – в процессе такого распиливания повреждается внешнее антикоррозийное покрытие, что существенно снижает срок службы будущей конструкции.

Далее вам понадобится инструмент для закручивания в дерево или металл саморезов. Учитывая, что работа по утеплению ведется с домом из бруса или бревен, для выполнения этой задачи будет вполне достаточно только шуруповерта и набора насадок. Выбирайте инструмент с аккумулятором – провод не будет болтаться под ногами и мешать.

Шуруповерт с аккумулятором. Отдельно стоит отметить удобное крепление для различных насадок на ручке инструмента

Цены на популярные модели шуруповертов

Шуруповерты

Совет! Опытные мастера используют шуруповерт с двумя аккумуляторами. Пока один работает, второй заряжается. Потом они меняются местами, а человек получает возможность производить монтаж обрешетки для утеплителя без остановок и потерь времени.

Для подгонки некоторых деревянных элементов обрешетки или для работы с тарельчатыми дюбелями вам понадобится молоток или резиновая киянка.

Резиновая киянка

Одним из незаменимых инструментов для строительных работ является нож для резки минеральной ваты. Вам он понадобится для открытия упаковок с минеральной ватой и для резки плит этого материала. Как вариант — можно использовать и строительный нож с выдвижным лезвием.

Нож для резки изоляционных материалов

Закрепление ветрозащитной мембранной пленки на обрешетке утеплителя требует наличия строительного степлера и набора скоб.

Строительный степлер и набор скоб

Обрешетка под утеплитель должна быть как можно более прямой по горизонтали и вертикали. На глаз этого добиться практически невозможно, потому обязательно воспользуйтесь строительным уровнем и отвесом.

Отвес и строительный уровень

Сама стена дома из бруса или сруба и все деревянные элементы обрешетки требуют обязательного нанесения нескольких слоев антисептика, защищающего материалы от гниения. Для этого вам понадобится емкость и валик. Но если вы хотите все сделать быстро – воспользуйтесь пульверизатором для краски.

Пульверизатор (также известный как краскопульт) с компрессором

Как перед, так и во время работ по утеплению деревянного дома у мастера может возникнуть потребность в нанесении различных меток, измерении расстояний и создании записей. Эти задачи успешно выполняются с помощью карандаша, нескольких листов бумаги (или одной тетрадки), рулетки и плотницкого угольника.

Укладка минеральной ваты на каркас из дерева

Рассмотрим сначала наиболее распространенный вариант, когда минеральная вата укладывается между элементами обрешетки из деревянного бруса.

Шаг 1. Подготовьте стены – уберите с их поверхности все выступающие элементы, если таковые имеются. Это могут быть ставни, отливы, декоративные детали и т. п. Затем обработайте стену антисептиком и антипиреном, желательно 2-3 раза. Новый слой наносите только после полного высыхания предыдущего.

Важно! При работе со срубом особое внимание уделяйте обработке углов и торцевых частей бревен – именно они в наибольшей степени подвержены воздействию грибков и прочих микроорганизмов.

Шаг 2. Сделайте обрешетку. Для нее возьмите самый качественный брус, в данном случае применяются изделия сечением 30х30 мм. Древесина не должна иметь на себе следы поражения грибком или гнилью. Сначала установите верхние и нижние бруски, закрепите их при помощи оцинкованных саморезов (использовать другие нежелательно из-за коррозии). Затем установите горизонтальные элементы обрешетки, между которыми будет укладываться минеральная вата первого слоя. Интервал между балками должен быть примерно на 5 мм меньше высоты плиты утеплителя – это необходимо для более плотного закрепления материала и исключения зазоров.

Закрепление нижнего элемента обрешетки

Схема обустройства обрешетки под двухслойное утепление. В качестве материала, помимо бруса, можно использовать гипсокартонный профиль

Шаг 3. Поверх первого «слоя» обрешетки закрепите второй, где элементы располагаются перпендикулярно. В данном случае они монтируются вертикально. Также не забудьте закрепить бруски по периметру оконных и дверных проемов.

На этом изображении вы можете увидеть два слоя утеплителя и, соответственно, две обрешетки, одна наложенная на другую

Бруски от двух слоев обрешетки, уложенные и закрепленные по периметру оконного проема

Шаг 4. Распакуйте и подготовьте плиты минеральной ваты. При необходимости нарежьте их на куски для установки вокруг проемов и в другие места, где полноразмерные элементы утепления не помещаются. Установите плиты между элементами обрешетки первого слоя, проследите за тем, чтобы они плотно держались там. Зафиксируйте их при помощи тарельчатых дюбелей. Затем по тому же принципу выполните укладку плит второго слоя утеплителя. Желательно, чтобы они перекрывали горизонтальные швы между листами минеральной ваты предыдущего слоя.

Укладка минеральной ваты

Стена деревянного дома утеплена

Цены на минвату

Минвата

Шаг 5. Поверх утеплителя уложите и закрепите ветрозащитную мембрану. Отдельные ее отрезки между собой стыкуйте с нахлестом около 10 см (как правило, на пленке для этого нанесена специальная маркировка). К обрешетке мембрану прикрепляйте строительным степлером, а стыки закрывайте специальной клеящей лентой. Особое внимание при работе с ветрозащитной пленкой уделите проемам, которые также необходимо укрыть.

Крепление ветрозащитной мембраны

Шаг 6. Поверх ветрозащитной пленки на деревянные элементы обрешетки утеплителя закрепите толстые рейки, на которых будет держаться внешняя отделка дома.

Рейки для внешней отделки фасада

Шаг 7. На смонтированные рейки произведите укладку внешней отделки. В данном случае для этого используются доски. Затем установите прочие выступающие элементы, такие как оконные и дождевые отливы, ставни, откосы, декоративные детали и многое другое.

Пример обшитой стены деревянного дома

Укладка минеральной ваты на кронштейны

Теперь рассмотрим еще один вариант наружного утепления дома. Здесь минеральная вата крепится не на обрешетку, а на металлические кронштейны.

Шаг 1. Подготовьте стены – обработайте их антисептиком и антипиреном. Затем распакуйте крепежные кронштейны и подсчитайте, какое их количество вам необходимо.

Кронштейн для крепления минеральной ваты

Шаг 2. Закрепите металлические кронштейны на стене при помощи двух длинных кровельных саморезов с пресс-шайбами. Так как впоследствии дом будет отделываться сайдингом, то крепежные элементы располагаются с шагом, соответствующим интервалу между элементами обрешетки под виниловые панели.

Крепление кронштейна, стрелкой показана подкладка из паронита

Важно! Для обеспечения лучшей звуко- и теплоизоляции подкладывайте под ту часть кронштейнов, которая касается древесины, небольшие кусочки паронита.

Шаг 3. Распакуйте минеральную вату, проверьте качество утеплителя  и подготовьте его к монтажу.

Распаковка минеральной ваты

Шаг 4. Установите плиты минеральной ваты на стенах. Для этого насадите их на кронштейны, смонтированные на предыдущих этапах работы. Отверстия для этого можно либо продавливать самими крепежами, либо прорезать ножом.

Укладка минеральной ваты

Плита утеплителя насажена на кронштейны

Шаг 5. Для лучшей фиксации закрутите равномерно по площади каждой отдельной плиты тарельчатые дюбели.

Использование тарельчатого дюбеля

Шаг 6. Повторите две предыдущие операции для всех стен и фронтонов дома.

Стена утеплена

Шаг 7. Поверх слоя утеплителя уложите ветрозащитную пленку. Закрепите ее с нахлестом тарельчатыми дюбелями.

Крепление ветрозащитный пленки

Процесс укладки ветрозащитной пленки

Шаг 8. Ножом или ножницами прорежьте в ветрозащитной пленке щелевые отверстия, через которые должны проходить концы кронштейнов.

Концы кронштейна прошли через заранее проделанные щели

Шаг 9. Подготовьте, отрежьте и закрепите на кронштейнах при помощи саморезов вертикальные и горизонтальные элементы обрешетки из металлического профиля. При этом очень важно добиться ровности каждой отдельной стойки или балки, используя отвес и строительный уровень.

Пример обустройства металлической обрешетки

Шаг 10. На обрешетке, обустроенной на предыдущей операции, установите внешнюю отделку. В данном случае это виниловые панели сайдинга.

Деревянный дом обшит виниловым сайдингом

При грамотном подходе к делу внешнее утепление деревянного дома обеспечит вам уют и комфорт проживания на новом месте.

Утепление фасада деревянного дома: рабочий метод

Содержание статьи:

Принято считать, что деревянные дома – это самые теплые, надежные и экологически чистые сооружения, не требующие дополнительной отделки.

На самом деле, утепление фасада деревянного дома – это такой же важный и необходимый процесс, как утепление кирпичного, бетонного или алюминиевого фасада, учитывая, что дерево пропускает ровно столько тепла, сколько ему будет позволено.

Теплопроводность дерева – что нужно знать?

Совсем не пропускает тепло лишь тот деревянный дом, что вырезан из цельного куска дерева, но такое вряд ли бывает. Технология возведения стен деревянного дома подразумевает сочленение деталей с образованием люфтов, без которых обойтись не получится. Чаще всего мостиками, пропускающими холод в помещение, становятся межвенцовые швы и угловые стыки.

Оптимальным решением для них может стать рубка в чашу с увеличение ширины шва. На практике же увеличить ширину практически невозможно, за исключением тех случаев, когда владельцам по карману оплатить покупку настоящего круглого леса с диаметром не менее 22 сантиметров.

Еще одна проблема деревянных домов – это многочисленные щели. Исключить их можно путем создания паза с формой окружности в нижней зоне венцового бревна, соприкасаемой с венцом предыдущего бревна. Но даже таким способом добиться максимальной герметичности не удастся.

В наши дни в самых лесных областях страны рубка в чашу из круглого леса – это непозволительная для большей части населения роскошь. Чаще используется брус или полубрус для возведения деревянных домов, в результате приходится говорить о 20 сантиметрах ширины межвенцового паза, что еле вписывается в общие нормы строительства частных домов, возведенных в зонах с пониженными температурами.

Такие дома способны будут удержать тепло не более одного сезона, так как в результате колебания конструкции здания максимально плотно сочлиненные в процессе строительства венцы снова дадут щели, а использованный для утепления межвенцовых пазов мох высохнет или будет растащен птицами.

Чтобы не провести всю зиму в валенках и руковицах в помещении собственного новомодного деревянного дома, рекомендуется провести ряд работ, направленных на наружное утепление фасада.

Всего существует два варианта утепления стен деревянного дома:

  1. Создание ветрозащитного экрана;
  2. Утеплитель.

Первый вариант позволит снизить расходы на отопление. Для создания конструкции можно использовать практически любой материал, который сможет образовать собой экран большой площади. Чаще всего это вагонка – тонкие панели, покрытые полимерами с пазами и гребнями для монтажа.

Из недостатков материала можно отметить его недостаточную устойчивость к атмосферным влияниям погоды, а также необходимость проведения обслуживания с регулярным подкрашиванием панелей и очисткой. О материалах для дополнительного утепления фасада деревянного дома подробнее ниже.

Утепление растительными материалами

Схема утепления внешней стороны дома.

Вековая традиция – утеплять деревянные сооружения растительными компонентами. Помимо упомянутой выше пакли, как утеплитель могут быть более удобными в использовании конопляные маты, лен, полотна, а также джутовый шнур, позволяющий уменьшить число теплопотерь не нарушая гармонии конструкции дома.

Подчеркнуть красоту натуральных материалов можно будет, используя в качестве защиты фасада лаковые покрытия, которые не только устойчивы к температурным перепадам, но и смогут выдержать испытания лучами солнца и влажностью.

Минвата и пенополистирол – стандартные утеплители для деревянного дома

Утеплять фасад деревянных домов минеральной водой можно, но не следует, учитывая, что гораздо удобнее использовать рулонный материал для утепления горизонтальных поверхностей.

Впрочем, если заменить утеплитель в рулонах плитами минеральный ваты со стандартными размерами 0,5 метра на 1 метр, то процесс утепления станет немного проще и будет протекать заметно быстрее.

Обратите внимание, что малейшая влага, которая просочится в плиты минеральной ваты, сведет на нет все старания, направленные на утепление дома – материал лишится теплоизоляционных свойств.

Именно поэтому в комплекте с ним рекомендуется использовать специальную гидроизолирующую пленку.

Пенопласт или экструзивный пенополистирол в качестве утеплителей деревянного дома могут быть использованы в крайних случаях. Действительно, материалы отлично сберегают тепло, простые в монтаже и реализуются по доступной цене, но они практически не пропускают воздух.

В результате такого утепления в помещении могут образоваться излишки конденсата, избавиться от которых можно будет только путем механического ежедневного проветривания.

Каменная кладка – надежное и дорогое утепление деревянного фасада

Наиболее дорогостоящий вариант утепления деревянного фасада – это каменная кладка.

На этапе подготовительных работ сооружается фундамент для новой каменной стены. В процессе такого типа утепления по периметру здания роется траншея нужной глубины. Чем глубже будет траншея, тем прочнее и надежнее получится конструкция.

На следующем этапе проводится подготовка основания с обработкой поверхности грунтовой смесью, после чего монтируется обрешетка. На предварительно уплотненное дно в траншее настилается подушка из смеси гравия и песка, после чего слой покрывается пленкой для предотвращения испарения воды. Далее устанавливается арматура с маркировкой, в которой прописана буква С, после этого заливается бетон.

Расстояние между фундаментом здания и фундаментом образованной стены заполняют песком, пенопластом, шлаком и другими устойчивыми к влаге материалами, в том числе и опилками и даже минеральной ватой. Обратите внимание, что сыпучие материалы имеют свойство оседать, поэтому при необходимости их нужно будет досыпать.

Цокольную часть дома лучше возводить из обожжённого кирпича, а для кладки хорошо подойдет камень, ракушечник и другие «теплые» материалы.

Такой вариант утепления позволит дополнительно продлить срок использования сооружения минимум на 30 лет.

Утепление фасада дома из дерева допустимо проводить своими руками, если имеется набор необходимых инструментов и желание следовать рекомендациям специалистов. Чем больше дом и объем работ, тем больше вероятности того, что монтировать утеплитель в одиночку будет проблематично поэтому в таких случаях лучше пригласить в помощники опытных строителей.

своими руками, гидроизоляция, обрешетка, установка материала и облицовка

Жизнь в деревянном доме – это необыкновенные ощущения. В таком доме в полной мере ощущается единение с природой. А все потому, что дерево – материал, который «дышит», и вместе с этим создает особый микроклимат. Дерево впитывает все неприятные запахи, излишки влаги или – наоборот – может увлажнять помещение, если оно пересушено. Воздух в таком доме чистый, полезный для здоровья. Но чтобы деревянный дом был действительно комфортным, необходимо провести утепление его фасада.

Почему необходимо утеплять фасад?

Для строительства деревянного дома не нужен основательный фундамент, поскольку дерево – более легкий материал, чем кирпич или камень. А самое главное, деревянному дому не требуется внешняя или внутренняя отделка. При обработке специальными средствами для древесины такой дом может простоять десятки лет.

Само по себе дерево – материал теплый, и после грамотной конопатки сруба проблемы с утеплением отпадают. Но когда этот метод не помогает, нужно решать проблему другим способом.

Со временем любой свежесобранный сруб начинает пропускать тепло, а при сильном ветре продуваться, от чего в доме могут ощущаться потоки воздуха. Новый дом – конструкция нестабильная, первые годы происходит его усадка. А поскольку дерево имеет свойство усыхать, то при усадке могут образовываться дыры между стыками бревен.

Чтобы решить эту проблему, не нужно прилагать титанических усилий. Утепление фасада деревянного дома – задача несложная.

Технология

Дом, собранный из бруса, утеплить проще всего, поскольку поверхность стен изначально ровная, и теплоизоляционные материалы будут прилегать к стене плотно. А вот с креплением утеплителя на стены бревенчатого дома придется немного повозиться.

Стоит учесть несколько моментов:

  • заниматься утеплением фасада деревянного дома нужно только после полной усадки и конопатки, то есть с постройки дома должно пройти минимум 1,5-2 года;
  • основное правило утепления фасада – паропроницаемость ограждающей конструкции при движении воздуха наружу должна улучшаться. Это важно для деревянных стен, поскольку такой дом «дышит» и способен регулировать микроклимат внутри себя;
  • излишки влаги должны иметь возможность выходить из стен сквозь утеплитель на улицу. По этой причине для теплоизоляции используется негорючий базальтовый утеплитель или его аналоги.

Проведение работ

Перед началом работ необходимо провести обработку поверхности стен антисептическими растворами, поскольку после сделать это уже не получится.

Использование антисептика предотвращает распространение микробов, которые могут вызывать образование грибка и плесени на поверхности древесины. Антисептики обычно имеют жидкую основу и наносятся на дерево как обычная краска.

Средний срок действия антисептика составляет 5-10 лет, после этого, возможно, потребуется обновление слоя.

После того как обработка стен закончена, можно приступать к монтажу утеплителя.

Обрешетка

Для начала на фасаде здания нужно закрепить обрешетку с вертикальными брусьями, на которую впоследствии будет навешан фасад.

Шаг обрешетки должен быть равен ширине используемого утеплителя, но так, чтобы утеплитель входил с небольшим усилием.

Чтобы предотвратить усадку, в местах креплений сначала проделывают вертикальные пазы небольших размеров и по центру этих пазов производят монтаж бруса к стенке длинными шурупами.

После этого базальтовые плиты можно прикреплять специальными шайбами-зонтиками. Теплоизоляционный материал должен плотно прилегать к стене во избежание появления воздушных карманов.

Укладывать утеплитель нужно снизу вверх.

Гидроизоляция

Поверх утеплителя укладывают слой гидрозащитной мембраны. Она предотвращает намокание и выдувание утеплителя потоками воздуха, который может циркулировать под обшивкой.

Затем вертикально на мембрану вдоль обрешетки крепится рейка сечением 2-2,5 см, которая должна быть на 5 см шире бруса. Рейка обеспечит более плотное прилегание утеплителя по краям и создаст необходимый для вентиляции зазор.

Облицовка

Заключительный этап – облицовка фасада. Для облицовки может применяться сайдинг, блок-хаус или фасадные панели. При монтаже облицовочных панелей необходимо сделать продухи таким образом, чтобы в них не попадала вода.

Особенности утепления фасада из бревен

Утепление фасада из бревен производится по-иному: для этого применяют теплоизоляционные маты.

Использовать ли пенопласт?

Пенопласт для утепления бревенчатых стен применять не рекомендуется, хотя многие владельцы домов идут на риск из-за дешевизны этого материала и простоты монтажа. У пенопласта есть большой недостаток: паронепроницаемость. Это значит, что стены, утепленные этим материалом, не смогут «дышать».

Пенопласт имеет свойство производить конденсат, который со временем будет накапливаться между стеной и утеплителем, что неизбежно приведет к гниению дерева. К тому же материал достаточно горюч и при нагреве выделяет ядовитые вещества.

Монтаж

Перед началом монтажа утеплителя на бревенчатые стены закрепляют крепежные уголки, на которые также монтируют обрешетку из вертикальных брусьев. По горизонтали каждый шаг крепежных элементов равен ширине мата. Прикрепляют маты, раскатывая вертикально сверху вниз. Чтобы маты плотно прилегали к бревнам, вдоль горизонтального стыка прибиваются рейки с сечением 2х4 см, которые закрепляются саморезами. Главное – не пережать мат, прикрепляя рейки.

После закрепления на маты сверху укладывают слой гидрозащитной мембраны и закрепляют при помощи еще одной рейки того же размера. Затем монтируется несущий брус обрешетки фасада – его сечение обычно 5х5 см.

Фасадная облицовка монтируется так же, как и в случае монтажа к стене из бруса.

Утепление методом напыления

Есть еще один интересный способ утепления – напыление утеплителя, в роли которого выступает пенополиуретан (ППУ).

Применения ППУ в качестве утеплителя обусловлено рядом положительных факторов:

  • низкая теплопроводность;
  • высокая адгезия к любому основанию;
  • возможность заполнять собою даже самые мелкие трещины.

Основным способом нанесения ППУ на поверхность стены является напыление. Используя технологию напыления, можно получить цельный, абсолютно бесшовный слой теплоизоляции, крепко прикрепленный к поверхности – например, бревенчатой стене.

Технологический процесс напыления ППУ состоит в том, что два компонента в определенной пропорции под высоким давлением подают в распылитель, где они смешиваются при помощи воздействия сжатого воздуха, и затем в виде аэрозольного факела выбрасываются на поверхность. Смесь наносится тонким не вспененным слоем, потом начинается химическая реакция, и слой пены увеличивается в несколько раз. После пена застывает, и образуется монолитный теплоизоляционный слой.

Для утепления стен нужно использовать пенополиуретан с плотностью 40-50 кг/м3 – он не требует дополнительной защиты, сверху достаточно только покраски, и его чаще всего применяют для теплоизоляции стен и потолков. Есть и другие виды ППУ с разной плотностью, которые применяются для внутренней отделки, но для утепления стен они не подходят.

Для использования данного способа теплоизоляции необходимо приобретать специальное оборудование, либо брать его в аренду. Кроме того, на рынке есть множество специалистов, предлагающих свои услуги по напылению ППУ.

Самостоятельное утепление фасада деревянного дома из бруса

Древесина обладает отличными теплоизоляционными качествами. Поэтому стены нового деревянного дома не нуждаются в утеплителе. Утепление фасада дома из бруса производится в том случае, если на срубе есть щели или потери теплоизоляции в следствие естественного старения здания.

Оглавление:

  1. Материалы для утепления фасада деревянного дома
  2. Как самостоятельно утеплить фасад брусового дома пенопластом и пеноплексом
  3. Пошаговое руководство по утеплению фасада дома из бруса минеральной ватой
  4. Как правильно утеплить фасад деревянного дома под сайдинг + видео

Материалы для утепления фасада деревянного дома

Рассмотрим подробнее материалы, используемые для усиления теплоизоляционных свойств стен дома из дерева.

Схема утепления фасада деревянного дома

Пенопласт

Наиболее распространенный ячеистый материал плотной структуры. Отличается простотой в работе и доступностью. Если вы находитесь в раздумьях, чем утеплить фасад деревянного дома- смело выбирайте пеноплекс и не ошибетесь! К его достоинствам относится:

  • Простота монтажа.
  • Высокая звукоизоляция.
  • Плотная структура.
  • Устойчивость к скачкам температуры.
  • Долгий срок службы.
  • Стойкость к разбуханию и воздействию плесени.

Наряду с этим пенопласт обладает и некоторыми минусами:

  • Воспламеняемость.
  • Паронепроницаемость.
  • Экологическая небезопасность.

Минеральная вата

Данный материал продается в рулонном виде. Его активно применяют для того, чтобы утеплять фасады деревянных домов. Вата вырабатывается из сплавов силикатов горных и осадных пород. Этот универсальный материал обладает огромным количеством достоинств. Перечислим их:

  • Устойчивость к механической деформации.
  • Негорючесть и неплавкость.
  • Устойчивость к высокой температуре.
  • Стойкость к агрессивным химическим средам.
  • Невысокая теплопроводность.

Недостатки минеральной ваты:

  • Токсичность при сильном нагреве.
  • Не препятствует попаданию грибка на дерево.

Утепление дома минеральной ватой

Пеноплекс

Вспененный полистирол выпускается в виде плит. Он имеет множество мельчайших ячеек по 0,2 мм. Метод вентилируемого фасада, который используется для данного утеплителя, позволяет предохранить древесину от разрушения путем проветривания. Среди несомненных плюсов пеноплекса:

  • Низкая влагопоглощаемость.
  • Теплосбережение.
  • Износостойкость.
  • Устойчивость к вредному воздействию грибка и плесени.
  • Гигиеничность.
  • Легкость монтажа.

Однако и пеноплекс не лишен некоторых изъянов:

  • Сложный процесс нарезки и подгонки за счет формы выпуска в виде плит (в отличие от рулона).
  • Быстрое разрушение под воздействием растворителей.
  • Паронепроницаемость.

Как самостоятельно утеплить фасад брусового дома пенопластом и пеноплексом

Процесс довольно прост. Для работы (вне зависимости от типа утеплителя) понадобятся такие инструменты:

  • Доска толщиной 40 мм.
  • Пенопласт (пеноплекс).
  • Скоба.
  • Диффузионная мембрана.
  • Молоток.
  • Топор.
  • Гвозди.
  • Пила.

Утепление деревянного дома

Алгоритм процесса пенопластового утепления для фасадов брусовых домов сводится к следующему:

  • Проверить брусья на предмет прилегания стыков и надежности слоя изоляции. При необходимости переложить изолирующий материал заново.
  • Прикрепить доски вертикально с интервалом, равным ширине пенопластовой плиты. Проверить расположение досок в единой вертикальной плоскости.
  • Вбить деревянные рейки посередине досок Высота рейки равна толщине плиты. Интервал расположение реек на полсантиметра меньше, чем ширина плиты пенопласта.
  • Начать утепление фасада брусового дерева с укладки пенопласта внизу, следя за плотным вхождением плит в каркас. Если они входят недостаточно плотно, закрепить их гвоздями или клиньями.
  • Сверху прикрепить диффузионную мембрану, перекрывающую пенопластовые стыки на 10–15 мм. использовать для этой цели степлер.
  • Проклеить стыки мембрану клейкой лентой.

Более подробно как правильно утеплить дом пенопластом своими руками с видео и пошаговой инструкцией можно прочитать в этой статье.

Пошаговое руководство по утеплению фасада дома из бруса минеральной ватой

Steico Flex Wood Fibre Insulation 575 x 100mm

Теплоизоляция минеральной ватой производится в такой последовательности:

  • Очистить наружные стены дома от грязи и пыли.
  • Обработать их антисептиком.
  • Проложить пароизоляционный слой рубероида, пленки или специальной фольги, без которого утепление фасада дома из бруса будет неполным. Это, в свою очередь, чревато распространением плесени гниения на стенах. Между изолирующим слоем и стеной оставить пространство для изоляции.
  • Сделать каркас из деревянных реек для утеплителя. Расположить их вертикально с интервалом, меньшим, чем ширина рулона ваты на пару см.
  • Уложить минеральную вату сначала в один слой. Затем расположить второй слой так, чтобы его края попадали на середину предыдущего слоя. Чтобы предотвратить возникновение щелей при укладывании, утеплитель по краям закрепляют пластмассовым либо металлическим анкером.
  • Проложить гидроизолирующий слой, предотвращающий попадание на утеплитель фасада дома из брусьев, а также на стену влаги.
  • Прикрепить сверху ваты обрешетку из бруска размерами 5×4 см.
  • Обшить дом снаружи облицовочным материалом.

Как правильно утеплить фасад деревянного дома под сайдинг

Подробно изучив процесс наружного утепления брусового дома, нельзя не упомянуть и о сайдинге. Монтаж утеплителя к такому фасаду возможен 3 способами:

Каркасный. Заключается в установке жесткой теплоизоляционной плиты в ячейки обрешетки. Толщина обрешеточного бруска и утепляющего материала равны. При правильном расчете даже нет необходимости дополнительно крепить материал, поскольку он и так надежно и плотно входит в ячейки. При укладывании мембраны необходимо предусмотреть воздушный зазор. Завершается утепление фасада деревянного дома из бревен облицовкой панелями.

Бескаркасный. Наиболее бюджетный способ. Рулонная теплоизоляция просто приклеивается к фасаду. Сверху устанавливается обрешетка, на которую монтируется сайдинг.

По перекрестному каркасу. Наиболее трудоемкий, но и самый надежный вариант утепления фасадов деревянных домов на бревнах. Он просто исключает возможность для холода просочиться в помещение, поскольку двухуровневый каркас с перпендикулярно расположенным утеплителем просто не оставляют для этого места. Последовательность работ при этом такова:

  • Установить металлическую или деревянную обрешетку.
  • Проложить теплоизолирующий слой.
  • Закрепить второй каркас сверху первого перпендикулярно.
  • Заполнить утеплителем ячейки второго каркаса.
  • Установить слой пароизоляции.
  • Закрепить облицовочные панели сайдинга.

Таким образом, утеплить стены дома снаружи минеральной ватой или пенопластом своими руками совсем нетрудно. Главное — четко следовать технологической последовательности и неукоснительно соблюдать правила монтажа.

Изоляция в эпоху экологической сознательности: Примеры проектов с изоляцией из древесного волокна — ДЕТАЛЬ

Компания Gutex, расположенная в пограничном треугольнике Германии, Швейцарии и Франции, позиционирует себя как пионер в области экологически чистой изоляции в Европе. Более 85 лет Gutex производит изоляционные материалы из древесины, полученной из экологически рациональных лесов, расположенных рядом со своим производственным предприятием. Со временем сырье не менялось, но методы обработки и конструкционные свойства постоянно оптимизировались.Результат: изоляционные решения из древесных волокон для фасадов, крыш и интерьеров, экологичность которых подтверждена рядом сертификатов экологичности, здорового образа жизни и устойчивого развития.

Деревянный фасад и изоляция из древесного волокна, способствующие охране природы.
Различные ссылки показывают диапазон возможных применений, которые, в частности, но не исключительно, относятся к деревянному строительству. Например, в конце 2018 года компания Braun + Müller Architekten из Констанца построила многофункциональное здание для Немецкой ассоциации охраны природы.Помимо офисов, в центре NABU Bodensee в Констанце также расположены выставочные площади, мастерская по сохранению ландшафта и жилая зона для волонтеров. Центр передового опыта в области природоохранных работ состоит из двух отдельных зданий, фасады которых отделаны деревом из домашней ели и стеклянными поверхностями. Строительные работы выполняла компания Ettwein Holzbau. Для вентилируемого фасада и внутренней отделки использовались только древесноволокнистые изоляционные материалы.

Реконструкция деревянного строительства в Веймаре
Для многоквартирного дома в Веймаре местная компания Koop Architekten und Ingenieure остановила свой выбор на строительстве из массивной древесины и в основном из экологически чистых строительных материалов.Работы по деревянному строительству выполняла компания Pfeiffer из Ремптендорфа. Новое здание, в котором с января 2018 года разместились четыре семьи по 120 м2 соответственно, стоит на месте 3-этажного здания с башней, разрушенной в 1945 году. Кубическая структура с неоднородной фасадной облицовкой превращает ансамбль памятника Зюдштадт в современную архитектуру. язык. Жюри Государственной премии Тюрингии за инженерные услуги, присудившее объекту специальный приз за деревянное строительство в 2017 году, постановило: «Не только все несущие и жесткие части сделаны из дерева, но и использованная изоляция сделана из экологическая изоляция из древесного волокна.В этой структуре систематически реализованы устойчивость и экология. Благодаря внешнему штукатурному фасаду новое кубическое здание, разделенное выступающими выступами, гармонично вписывается в меланж ».

Изоляция из древесного волокна для проектов реконструкции и ремонта
Два проекта в Берлине и на юге Шварцвальда демонстрируют потенциал дерева волокнистая изоляция в существующих проектах С одной стороны, древесноволокнистая изоляция использовалась при экологической реконструкции крыши берлинского здания конца 19 века.Так называемая берлинская крыша, модификация односкатной крыши, представляет собой сложную задачу как для проектировщиков, так и для мастеров своими крутыми боковыми наклонами между плоскими крышами. Чтобы сделать ранее не вентилируемую плоскую крышу пригодной для использования в берлинском проекте, крыша была оборудована пароизоляцией с изменяемой влажностью и экологической изоляцией каркаса из древесного волокна вместе с изоляцией PIR в качестве огнестойкого перекрытия. Таким образом, по требованию заказчика была реализована экологичная и в то же время прочная конструкция крыши.

При переоборудовании пансиона в оздоровительный центр в Витцнау на юге Германии обеспечение здорового климата в помещении стало первостепенной задачей. Кроме того, по возможности должен был сохраниться внешний вид исторического фасада, а также конструкция балок крыши внутри. Для этого использовалась система внутренней изоляции Gutex, имеющая сертификат RAL. Теплопередача через внешнюю стену уже замедлена со стороны помещения, что исключает риск образования конденсата в кладке.Для изоляции крыши и полов в качестве листового материала и в качестве изоляции полостей использовались изоляционные материалы из древесного волокна.

Микроархитектура с изоляцией из древесного волокна
Экологический изоляционный материал может быть использован даже в небольших проектах, как показывает проект Изабель Теллье «Маленький домик в Берлине». Здесь для кровли, пола и потолка использовались изоляционные материалы из древесного волокна. Берлинский художник, работающий на стыке инновационных технологий, скульптуры и строительства, самостоятельно спроектировал и разработал свою собственную микроквартиру площадью 16 м2.В результате получилась скульптурная деревянная конструкция размером 6 x 2,5 x 4 м, которая, по словам Теллье, была реализована с использованием новейших технологий и экологически безопасных методов строительства с низкими затратами. Кроме того, минимальное жилое пространство закреплено на мобильной раме, заимствованной из судостроения, так что учитывается еще один аспект современной городской жизни — мобильность.

На выставке BAU 2019 Gutex представит свой репертуар изоляционных материалов и системных решений. К ним относятся, например, жесткая подложка Ultratherm, которая позволяет производить установку без стыков с соединением шпунт и паз для сплошного уровня крыши.По заявлению производителя, геометрия запатентованного краевого профиля означает особенно высокую защиту от атмосферных воздействий. Другой темой выставки станет противопожарная защита и возможность использования древесноволокнистого утеплителя в многоэтажном деревянном домостроении. Стенд Gutex находится в зале B5, стенд 302.

www.gutex.de

Вентилируемые фасады: каркасные стены — ремонт

A) Удаление изоляции опилок

Опилки в старых стеновых конструкциях имеют довольно низкую теплоизоляционную способность с чрезвычайно высокой воспламеняемостью.Если вы хотите еще больше улучшить тепловые характеристики внешней стены, замените изоляцию из опилок каменной ватой PAROC. Он изолирует тепло вдвое лучше, чем изоляция из опилок. Заменяйте изоляцию одновременно с заменой внешней облицовки. Заменив старую неэффективную изоляцию на более эффективную изоляцию, вы максимизируете энергоэффективность стены при минимальном увеличении толщины конструкции.


  • Деревянная облицовка
  • Вентиляционный зазор
  • Ветрозащитная изоляция: PAROC WPS 3n
  • Теплоизоляция: старые опилки заменены изоляцией из каменной ваты PAROC eXtra
  • Интернат
  • Паро-воздушный барьер
  • Внутренняя поверхность

B) Дополнительная изоляция внутренней стороны стены с изоляцией из опилок

Если вы хотите повысить энергоэффективность старой конструкции стены, но старая деревянная облицовка находится в хорошем состоянии, установите дополнительную изоляцию на внутренней стороне стены.Заодно можно обновить облицовку помещения.


Новая структура:
  • Внутренняя поверхность
  • Паро-воздушный барьер
  • Шпильки деревянные / PAROC eXtra
Старая постройка:
  • Интернат
  • Бумага подкладочная
  • Деревянный каркас стены из опилок
  • Интернат
  • Вентиляционный зазор
  • Деревянная облицовка

C) Дополнительная изоляция, внешняя сторона стены с изоляцией из опилок

Самый распространенный способ добавить дополнительную изоляцию в старый дом из опилок — это добавить дополнительный слой изоляции на внешней стороне стены.Всегда устанавливайте дополнительную изоляцию при ремонте или замене внешней облицовки. Помните, что одновременно с этим легко добавить дополнительную изоляцию фундамента.

Новая конструкция
  • Деревянная облицовка
  • Вентиляционный зазор
  • Ветрозащитная плита или изоляция
  • Шпильки деревянные / PAROC eXtra
Старая постройка
  • Интернат
  • Бумага подкладочная
  • Изоляция из опилок
  • Интернат
  • Паро-воздушный барьер
  • Внутренняя поверхность

Утепление и обновление фасадов Преимущества деревянных панелей | Идеи дизайна интерьера



Натуральное дерево обладает многими важными преимуществами — и за долгие годы зарекомендовало себя как успешная альтернатива для утепления фасадов Мы дадим вам обзор преимуществ, которые дает деревянная панель ..

Изоляция стен — Деревянный сайдинг для хорошего Абдихтунг


Деревянные панели могут полностью изменить внешний вид вашего дома. Они привносят определенную теплоту и очарование в дизайн. Сегодня доступно множество вариантов, и листы фанеры — популярный выбор. Они не только сохраняют свойства дерева и предлагают хороший внешний вид, но также предлагают, среди прочего, хорошие изоляционные фасады . Тарелки монтируются так, чтобы остался натуральный цвет и оттенки дерева.В конечном итоге получается мозаика из деревянных деталей, которая может покрыть только части дома или весь дом. Поверхность специально обработана, так что она может обладать некоторыми важными свойствами, такими как теплоизоляция, звукоизоляция и герметичность в плохую погоду / дождь / снег. Мало того — в наши дни пластины сделаны так, чтобы их было легко чистить, — таким образом можно легко удалить граффити с поверхности.

Изоляция стен — деревянная вентилируемая



Если вы рассматриваете вопрос об утеплении фасадов , то вентилируемый брус следует рассматривать как покрытие.Такой дизайн не только облегчает установку, но и может быть легко исправлен в будущем, что, очевидно, является важным аргументом в пользу этого. Дерево — это материал, который может оказаться очень энергоэффективным при вставке. Эти деревянные фасады можно ломать, что эффективно против плесени. Сборка осуществляется в несколько этапов. Во-первых, вы должны выбрать нижний слой — поэтому вам будут предложены аксессуары из дерева, алюминия или металла Grundsätzlich. Деревянные панели приклеиваются или вкручиваются в брус, а потом разбегаются.У нас есть несколько примеров деревянных фасадов, собранных для вас — это компания Prodema Spanish spezielisiert to Sanierlösungen и изделия из дерева.




















Пассивный дом с деревянной конструкцией и теплоизоляцией из Neopor

  • Пассивный дом с деревянной конструкцией и теплоизоляцией из Неопора

Один из первых пассивных домов с несущей деревянной конструкцией из многослойных панелей и изоляцией фасада с использованием Neopor ® компании BASF уже завершен.Отдельно стоящий двухуровневый дом, расположенный в Вайнхайме, Германия, выделяется видимой изнутри многоярусной стеной из досок, а также высокоэффективным использованием строительного пространства благодаря арочной крыше, переходящей в наклонную стену. Дополнительное пространство и комфорт стали возможны благодаря внешней теплоизоляционной композитной системе (ETICS) толщиной 30 см с Neopor (EPS: вспенивающийся полистирол). Благодаря высокой теплоизоляционной способности Neopor фасады можно изолировать панелями, которые почти на 20% тоньше, чем панели из обычного пенополистирола.Neopor способствует снижению потерь тепла и снижению выбросов CO 2 . У сертифицированного пассивного дома остаточная потребность в тепле составляет 13 кВтч на квадратный метр в год, что соответствует теплотворной способности 1,3 литра топочного мазута.

Изоляция салона не нужна

Арочная крыша и восточная стена, наклоненная на 5 ° наружу, придают дому силуэт традиционного плетеного шезлонга, а также оптимально используют пространство.В сочетании с гладкой деревянной конструкцией фасад был изолирован с помощью ETICS из Neopor, который проще и быстрее монтировать, чем другие изоляционные материалы. Это также означает, что внутренняя изоляция становится ненужной: вместе с системой вентиляции открытые деревянные стены обеспечивают комфортный климат для проживания. Как это типично для пассивных домов, жилые помещения и спальни вентилируются свежим воздухом, который проходит через холлы и выбрасывается из ванных комнат и кухни.Окна из древесно-алюминиевого композита имеют тройное остекление. Цоколь сделан из сборных железобетонных элементов и изолирован устойчивым к сжатию и водоотталкивающим материалом Styrodur ® C (XPS: панель из жесткого пенополистирола), который служит изоляцией по периметру под фундаментной плитой и в области, соприкасающейся с земля.

Все эти меры способствуют тому, чтобы этот дом в значительной степени не зависел от ископаемого топлива. Общая потребность в первичной энергии для горячего водоснабжения, отопления и вспомогательной энергии составляет 118 кВтч на квадратный метр в год, распределенных по двум жилым домам площадью около 250 квадратных метров.Энергия, которая все еще необходима для отопления и горячего водоснабжения, вырабатывается компактным тепловым насосом и корзинами геотермального теплового насоса; стороны дома, выходящие на фасад, и двор поставляют большую часть солнечного тепла. На южной стене проложены дополнительные трубы для дооснащения гелиотермических модулей.

Концепция пассивного дома: экономическая целесообразность и защита климата

Пассивный дом может обойтись без обычной системы отопления и кондиционирования, но при этом в нем остается прохладно летом и тепло зимой.Пассивные дома не только энергоэффективны, но и имеют ощутимо лучший климат для жизни, чем обычные здания. Текущее положение ЕС устанавливает пассивный дом в качестве энергетического стандарта, который будет требоваться по закону для всех новых зданий в будущем. Типичными элементами этого стиля здания являются хорошо изолированная оболочка здания и усовершенствованная система вентиляции и рекуперации тепла. Необходимые энергетические ресурсы низкие: согласно определению Passivhausinstitut Darmstadt, Германия, вся первичная энергия для любого дополнительного тепла, горячей воды и электричества должна оставаться ниже 120 кВтч на квадратный метр в год.

Дополнительная информация доступна на сайте: www.neopor.de.

Примечание для редакций: фотографию для прессы можно скачать с сайта www.basf.de/pressphotos под ключевым словом «Пластмассы». В ближайшем будущем этот текст и фотография будут доступны в архиве пресс-релизов BASF по пластмассам на сайте www.basf.de/plastics/pressreleases.

Р-09-102

Что такое EIFS / ETICS?

Что такое EIFS / ETICS?

Система отделки внешней теплоизоляции (EIFS), также известная как EWI (Системы изоляции наружных стен) или композитные системы внешней теплоизоляции (ETICS), представляет собой тип системы облицовки, который обеспечивает наружные стены с изолированной готовой поверхностью и гидроизоляцией из интегрированного композитного материала. материальная система.Другими словами, система отделки внешней теплоизоляции / композитная система внешней теплоизоляции может быть определена как идеальная энергоэффективная термоизоляция или изоляция фасада, наносимая на внешние поверхности здания, на которые затем наносится долговечная декоративная и защитная стена. покрытие, которое можно установить на любой тип строительства.

В строительной отрасли существует несколько версий EIFS / ETICS. Самый простой и распространенный EIFS / ETICS называется барьер EIFS, также известный как традиционный или обычный EIFS / ETICS, который применяется к сплошной стене (кирпичная кладка, блочная кладка, сборные панели и т.п.).Другой тип называется EIFS / ETICS с дренажем, который представляет собой барьер EIFS / ETICS, к которому была добавлена ​​возможность отвода воды. Делается это в основном для деревянных конструкций.

Вид в разрезе типовой фасадной изоляции EIFS / ETICS на сплошной стене

Вид в разрезе типичного EIFS / ETICS на деревянной основе


В чем разница между Stucco и EIFS / ETICS?

Внешне похожая на штукатурку (или обычную штукатурку), EIFS / ETICS — это система облицовки наружных стен, состоящая из компонентов и требований к установке, которые сильно отличаются от традиционной штукатурки.EIFS / ETICS также требует совсем другого ухода и ухода, чем его «похожий» кузен, традиционная штукатурка.

Для правильного функционирования EIFS / ETICS необходимо архитектурно спроектировать и установить как систему обученными специалистами по нанесению покрытий.

Компоненты EIFS / ETICS
Создавая вид штукатурки (или обычной штукатурки), EIFS / ETICS на самом деле представляет собой многослойную стеновую систему, которая состоит из следующих компонентов:

  • Клей — Используется для «приклеивания» изоляционной плиты к поверхности внешней стены.
  • Изоляционная плита — Изготовлена ​​из полистирола или минеральной ваты, которая крепится к внешней поверхности стены.
  • Механические крепления — Используются для крепления изоляционной плиты к поверхности внешней стены.
  • Базовое покрытие — наносится поверх изоляции и укрепляется стекловолоконной сеткой EIFS.
  • Finish Coat — наносится поверх загрунтованного основного слоя, обеспечивая декоративную, прочную, стойкую к растрескиванию поверхность.


История Terraco EIFS / ETICS
Terraco впервые представила свои системы EIFS / ETICS в Турции и Корее в 1980-х годах, а затем в 1990-х годах расширилась до России, Китая и Ближнего Востока.Сегодня Terraco предлагает 3 различных системы EIFS / ETICS — EIFS Alpha, EIFS Polar и EIFS Perma — разница заключается в типе изоляционных материалов, используемых в каждой системе. Terraco также предлагает систему для изолированной бетонной опалубки — ICF Zenith.

История EIFS / ETICS
1950-е годы

  • В 1952 г. произошли два важных события, которые привели к развитию EIFS / ETICS в Европе. Первый патент был выдан на изоляционную плиту из пенополистирола (EPS), и была разработана первая синтетическая штукатурка, органическая штукатурка с использованием связующих на водной основе.Совместное использование пенополистирола и синтетических смол началось в конце 1950-х годов.

1960-е годы

  • EIFS / ETICS продавался в Европе, поскольку отвечал потребностям европейского строительного рынка в материале, который мог бы изолировать старые каменные конструкции и улучшить их внешний вид. Европейский EIFS (ETICS) имел тенденцию иметь более толстую и грубую отделку, чтобы обеспечить лучшую гидроизоляцию. Системы, используемые в Европе, также отличались использованием меньшего количества портландцемента и более высокого содержания смолы в базовом покрытии, что придает системе большую гибкость и водостойкость.
  • Технология для EIFS / ETICS была передана в Соединенные Штаты в конце 1960-х годов, где было разработано использование EIFS / ETICS для каркаса с шипами и обшивкой (вместо сплошных стен).

1970-е годы

  • Во время нефтяного кризиса начала и середины 1970-х годов EIFS в Соединенных Штатах приобрела популярность среди экономных строителей и покупателей, которые иногда вдвое снижали счета за электроэнергию. В Соединенных Штатах EIFS начинался с того, что использовался почти исключительно на рынке коммерческого строительства, и лишь постепенно был принят для использования в домах.

1980-е годы

  • К 1980 году облицовка EIFS составляла 0,5% рынка жилого жилья в США.
  • К 1995 году около 18 миллионов м² EIFS ежегодно устанавливались на наружных стенах в Северной Америке, преимущественно на деревянных конструкциях.

1990-е годы

  • К середине 1990-х годов отрасль в Соединенных Штатах потерпела неудачу, когда было обнаружено несколько домов, облицованных EIFS, с повреждениями от влаги, вызванными утечкой воды, что было общенациональной проблемой.Попадание воды было связано с плохой детализацией конструкции и методами монтажа. Групповые иски были поданы и урегулированы производителями в Соединенных Штатах.
  • К концу 1999 года Исследовательский центр Национальной ассоциации строителей жилья США (NAHB) определил, что наиболее распространенными проблемами, связанными с проникновением воды в EIFS, являются окна, двери, электрические розетки, кровельные покрытия, выступы, вентиляционные отверстия и установка ниже уровня земли. Были введены строительные нормы и правила, которые предписывали EIFS использовать дренаж в деревянных каркасных зданиях и проводить дополнительные проверки на месте.


На рубеже веков в Европе решения многих правительств ввести систему рейтинга энергопотребления для зданий, поддерживаемых государственным финансированием / скидками, расценили как быстрый рост EIFS. Хотя использование EIFS поверх каркаса с гвоздиками и обшивкой (вместо массивных стен) — это метод, который все еще используется во всей Северной Америке, некоторых частях Европы и Тихоокеанского региона.

В настоящее время перед отраслью EIFS / ETICS стоит задача разработки огнестойких систем отделки наружной изоляции за счет использования огнезащитных материалов и / или противопожарных разрывов в системе, на чем Terraco уделяет особое внимание в течение некоторого времени.

Легкая фасадная стена из композитного дерева с улучшенными тепловыми характеристиками

Особенности

Была спроектирована тонкая (68 мм) фасадная стена из композитного дерева с улучшенными тепловыми характеристиками.

Помимо древесины, использовались коммерчески доступные вакуумная теплоизоляция и материал с фазовым переходом.

Положение слоев VIP и PCM в композитной стене было оптимизировано с помощью численного анализа.

Для оптимизированной композитной стены была достигнута задержка в 9–12 часов, сравнимая с тяжелыми конструкциями.

Тепловые потери композитной фасадной стены в ночное время как минимум на 90% ниже, чем у клееной стены.

Реферат

При возведении современных энергоэффективных зданий легкие конструкции становятся все более популярными среди проектировщиков. Законодательство ЕС поощряет такой дизайн, особенно если дерево является экологически чистым материалом.Однако легкая ограждающая конструкция здания, как правило, демонстрирует плохие динамические термические свойства, которые особенно выражены в сборных металлических стенах и тонких деревянных или композитных строительных панелях, таких как дверные наполнители или непрозрачные части (парапеты) сборных стен с остеклением каркасные постройки. Целью этого исследования была разработка композитной деревянной фасадной стены, которая не будет превышать толщину строительных элементов, таких как двери и окна, и будет соответствовать требованиям энергоэффективности и иметь улучшенные динамические термические свойства.Строительный элемент из композитного дерева толщиной 68 мм, который включает в себя два слоя передовых технологий: вакуумную изоляционную панель (VIP) и материал с фазовым переходом (PCM), был разработан и оптимизирован. Оптимизация включала параметрическое исследование положения панелей VIP и PCM в тонкой и легкой стене здания. Исследования показали, что могут быть достигнуты динамические термические свойства, сопоставимые с тяжелыми конструкциями ограждающих конструкций (задержка волны тепла до 12 часов); кроме того, значительно снижается коэффициент теплопередачи.

Ключевые слова

Легкая оболочка здания

Стена из композитного дерева

Вакуумная изоляционная панель

Материал фазового перехода

Устойчивые здания

Рекомендуемые статьиЦитирующие статьи (0)

Полный текст

© 2018 Elsevier Ltd.

Рекомендуемые статьи

Ссылки на статьи

Frontiers | Проектирование массивных деревянных панелей в качестве теплообменников (динамическая изоляция)

1.Введение

На строительство зданий приходится 28% выбросов парниковых газов (ПГ), в то время как 11% выбросов связаны со строительной деятельностью, в основном с производством строительных материалов, таких как цемент и сталь (Международное энергетическое агентство и Программа Организации Объединенных Наций по окружающей среде, 2018 г. ). В ближайшие десятилетия рост и урбанизация мирового населения создаст огромный спрос на новые здания и инфраструктуру. Таким образом, «воплощенные» выбросы в строительном секторе должны резко возрасти, так же как и глобальные выбросы должны резко сократиться (Röck et al., 2020). Возможно ли превратить эту потенциальную угрозу для глобальной климатической системы в мощное средство смягчения последствий изменения климата?

1.1. Утилизация углерода

Возрастает вероятность того, что для достижения климатических целей потребуются методы удаления углерода, также известные как «отрицательные выбросы». Ученые и практики начали анализировать потенциал новых зданий как глобального поглотителя углерода (Churkina et al., 2020; Hoxha et al., 2020; Pomponi et al., 2020). Существует ряд материалов, которые могут хранить C или CO 2 , включая древесину, бетон, бамбук, пеньку и солому.Бетон традиционно является источником выбросов CO 2 из-за интенсивного производственного процесса, но может реабсорбировать значительное количество углерода в течение длительного срока службы (Cao et al., 2020). Последние достижения в области производства — адаптация процесса отверждения для поглощения большего количества углерода или минерализация CO 2 , полученного в дымоходе для использования в качестве заполнителя, — открывают возможности для использования углерода в бетонной промышленности после карбонизации в течение всего срока службы (Monkman and MacDonald, 2017; Habert et al., 2020). Между тем, биогенные материалы, такие как древесина и бамбук, растут путем фотосинтеза, улавливая углерод в своей биомассе. Собранные продукты биомассы могут обеспечивать отрицательные выбросы в течение жизненного цикла, если леса или посевы хорошо управляются и продукты являются достаточно долгоживущими по сравнению с их циклом роста биомассы (Guest et al., 2013; Levasseur et al., 2013). Композиты, такие как растительный бетон — бетоны, в которых в качестве связующих используются такие быстрорастущие культуры, как конопля или солома, — потенциально могут использовать влияние накопления как биогенного поглощения углерода, так и карбонизации (Pittau et al., 2018). Согласно недавнему анализу, древесина и бетон могут хранить ~ 0,5 Гт CO 2 в год при условии надлежащей координации их производственных циклов (Hepburn et al., 2019). Эти потенциальные количества ставят новые здания в один ряд с другими лидерами в использовании атмосферного углерода в техносфере.

Если здания могут работать вместе с лесами в качестве глобального поглотителя углерода, то интеграция проектирования может многократно увеличить потенциал сокращения выбросов. Например, если массивные деревянные конструкции могут активно создавать внутренний климат, используя только низкопотенциальное тепло, потребность в дополнительных материалах и механических системах будет меньше.Показатель умножения сокращений выбросов ПГ за счет функционального замещения известен как «фактор замещения» (Smyth et al., 2018; Seppälä et al., 2019; Hurmekoski et al., 2020). Однако для того, чтобы использование CO 2 полностью раскрыло свой потенциал, материалы, накапливающие углерод, должны делать больше, чем заменять обычные материалы по частям. Материалы должны выполнять как можно больше функций, чтобы они могли заменить целые системы с интенсивным выбросом вредных веществ.

1.2. Радикальная интеграция

Какие достижения в области материаловедения могут обеспечить такую ​​радикальную интеграцию? «Разработанные пористые среды» — это материалы, имеющие внутреннюю и внешнюю форму для обмена теплом и массой (Bejan et al., 2004). Подобно «Архитектурным материалам» (Estrin et al., 2019) и «Формоактивным структурам» (Wu et al., 2020), инновационный аспект заключается в том, как морфология материала управляет потоком энергии. Применение этих новых методов может стать ключом к совершенствованию строительных материалов, хранящих углерод.Не только для улучшения их структурных характеристик, но и для интеграции функций охлаждения и вентиляции, поэтому дополнительные материалы и механические системы не требуются.

Одним из примеров является проектирование массивных деревянных панелей в качестве теплообменников или «дышащих стен». Принцип состоит в том, чтобы ввести воздушные каналы в твердое тело и оптимизировать их размер и расстояние, чтобы исходящая проводимость нагревала входящий воздух. Этот метод может сделать изоляцию и облицовочные материалы ненужными, помогая упростить системы отопления, вентиляции и кондиционирования воздуха.Рисунок 1 объясняет концепцию теплообмена и принцип оптимизации геометрии. В недавнем исследовании использовались физические эксперименты для проверки корреляции для оптимизации теплообменных материалов (Craig and Grinham, 2017). Расчетная корреляция была первоначально разработана другими исследователями (Kim et al., 2007) для экстремальных температурных условий, но результаты исследования 2017 года показывают, что она работает и для строительных материалов в умеренных условиях. Этот документ является продолжением их работы. В нем рассматривается, как применить соотношение и принципы проектирования к массовым деревянным панелям.«Массовая древесина» относится к изделиям из инженерной древесины, ламинированным из более мелких плит на структурные компоненты, такие как клееные балки (клееный брус) или панели из поперечно-клееной древесины (CLT).

Рисунок 1 . Как оптимизировать размер и расстояние между каналами, чтобы спроектировать массивную деревянную панель в качестве теплообменника. Расчетные корреляции (уравнения 1–14) были первоначально разработаны для аэрокосмических приложений (Kim et al., 2007), но было показано, что они работают для строительных материалов (Craig and Grinham, 2017).Это исследование применяет их к массивной древесине.

1,3. Динамическая изоляция

Использование конструкционного материала в качестве теплообменника делает его разновидностью технологии динамической изоляции (DI). DI начинался как новая стратегия вентиляции сельскохозяйственных зданий в холодном климате. Инженеры описали, как всасывать свежий воздух через слой волокнистой изоляции, уменьшая потери проводимости и одновременно нагревая воздух (Bartussek, 1981). В начале девяностых исследователи установили DI в жилом доме в Японии и сообщили о сокращении потерь тепловой оболочки на 50% (Dalehaug et al., 1993). Вскоре последовали два значительных прогресса в теории DI. Была разработана простая аналитическая модель для описания устойчивого теплообмена в DI, когда известны температура внутренней поверхности или скорость поверхностной конвекции (Taylor et al., 1996, 1998; Taylor and Imbabi, 1997, 1999, 2000). Подробная аналитическая модель была также разработана, чтобы учесть эффекты аккумулирования тепла и показать влияние периодических изменений во внешней среде (Krarti, 1994).

В последние годы возобновился интерес к теории, измерениям и проектированию систем DI.Группа из Миланского политехнического университета описала микроскопические эффекты теплообмена в волокнистой изоляции и разработала прибор для тестирования панелей с диэлектриком (Alongi and Mazzarella, 2015a, b). Они использовали устройство для проверки поведения теплообмена в установившихся и периодических условиях по сравнению с простыми и подробными аналитическими моделями (Alongi et al., 2017a, b, 2020). Группа из Университета Хуачжун разработала конечно-разностную модель и аппарат для тестирования DI (Wang et al., 2018; Zhang et al., 2019а, б). Их работа показывает, как уменьшить рост оболочки летом, вытесняя отработанный воздух через изоляцию. Многие сотрудники разработали стратегии управления DI и определили потенциальную экономию энергии для «переключаемых» значений U в различных контекстах (Park et al., 2015; Menyhart and Krarti, 2017; Shekar and Krarti, 2017; Rupp and Krarti, 2019). ; Даббаг и Крарти, 2020; Дехва и Крарти, 2020). Вместо использования пористого материала в качестве теплообменника они разработали перегородки, которые можно открывать или закрывать, чтобы контролировать конвекцию внутри герметичной панели.

1,4. Почему Вуд?

Было показано, как ввести воздушные каналы в стандартные строительные материалы и оптимизировать их для теплообмена (Craig and Grinham, 2017). Эта новая возможность предлагает другой способ строительства, более подходящий для задач удаления углерода. Вместо того, чтобы строить конструкцию и облицовывать ее слоями специальных материалов, можно объединить все основные функции в одном материале. Но какой материал? Как уже говорилось, такие материалы, как древесина, бетон, бамбук, солома и конопля, могут накапливать углерод в глобальном масштабе (Hepburn et al., 2019; Чуркина и др., 2020). Древесина и бетон — единственные, которые сегодня широко используются в строительной отрасли, но в каждом случае необходимо преодолеть серьезные проблемы. Например, биогенные материалы должны быть достаточно долгоживущими по сравнению с ростом их биомассы, чтобы увеличивать накопление углерода в строительном секторе, не нанося ущерба лесам или запасам углерода насаждениям (Guest et al., 2013; Pingoud et al., 2018). Лесам требуются десятилетия, чтобы отрасти, в то время как для таких культур, как бамбук, конопля и солома, период ротации может составлять всего 1 год.Однако эти быстрорастущие материалы требуют более интенсивного производства и дополнительных материалов, чтобы превратить их в монолитный материал, пригодный для предлагаемого метода теплообмена. Между тем, бетон требует значительных изменений в процессах отверждения и производства, чтобы сократить выбросы от колыбели до ворот, но сохраняет карбонаты в течение десятилетий или столетий, в то время как биогенные материалы, такие как древесина, подвержены риску высвобождения в поздний срок.

Несмотря на препятствия, цепочки поставок и жизненные циклы продуктов для всех инженерных материалов нуждаются в коренном пересмотре, и в обеих областях необходимо провести важные исследования.Отрасли, вероятно, потребуются технологии как биогенного хранения углерода, так и технологии декарбонизации в бетонной промышленности, чтобы иметь шанс обратить вспять тенденцию к увеличению выбросов в ближайшие десятилетия. Основное внимание в этом исследовании уделяется древесине, поскольку она уже широко используется, а ее тепловые свойства делают ее идеально подходящей для предлагаемого метода теплообмена. На рисунке 2 сравнивается устойчивый теплообмен двух панелей, одной деревянной и одной бетонной. Оба они оптимальны, рассчитаны на одинаковую относительную скорость теплообмена.Однако бетонная панель нецелесообразна, потому что абсолютные требования к нагреву и тепловые потери слишком высоки. Причина в теплопроводности бетона, которая в 10 раз выше, чем у дерева (см. Рисунок 6 в разделе 4). Низкая теплопроводность древесины делает ее уникальной по сравнению с другими конструкционными материалами. Он не только может накапливать углерод и поддерживать здание, но также может соответствовать строгим стандартам по потерям проводимости без чрезмерной вентиляции или перегрева.

Рисунок 2 .Принцип теплообмена, показанный на рисунке 1, изображен в виде санки: U 0 представляет потери тепла по базовой линии, U 1 общий теплообмен, U 2 приток тепла от вентиляции и U 3 кондуктивные потери тепла. Древесина имеет более низкую теплопроводность, чем бетон, поэтому потери теплопроводности ( U 3 ) можно уменьшить без чрезмерной вентиляции ( U 2 ) или перегрева ( U 1 ), что делает ее более подходящей. к этому приложению.

1,5. Граничные условия

Один давний вопрос в исследованиях DI с пористыми материалами — какие граничные условия использовать при моделировании. Полевые эксперименты показали, что температура на внутренней поверхности ниже прогнозируемой, что отрицательно сказывается на тепловом комфорте и экономии энергии (Dalehaug et al., 1993).

Как ведет себя конвективная пограничная пленка на внутренней поверхности? Этот вопрос важен для исследования DI, потому что пористые материалы должны получать тепло из комнаты, прежде чем они смогут обменять его с входящим воздухом.Используя визуализацию Шлирена, исследователи обнаружили, что пористые материалы теряют тепловой контакт с комнатным воздухом, когда входящий воздух поднимает граничную пленку с внутренней поверхности (Craig and Grinham, 2017). Они также обнаружили тонкие эффекты на внешней поверхности. Конвекционная теплопередача была увеличена в несколько раз, а тепло в граничной пленке засасывалось обратно в материал. Они пришли к выводу, что существует возможность рекуперации тепла на внешней поверхности, и что лучше всего нагревать внутреннюю поверхность путем прямого контакта.

Следуя этой рекомендации, тестовые панели в настоящем исследовании нагреваются непосредственно на внутренней поверхности. Не требуется много обогрева. Например, для примера деревянной панели на Рисунке 2 требуется только U1 = 2 (Вт / м2 · K), что находится в диапазоне стандартных полов с подогревом. В настоящем исследовании использовался электрический резистивный нагрев, поскольку это было практично с учетом имеющихся ресурсов. Специальная гидравлическая панель была изготовлена ​​для нагрева испытательных панелей в исследовании Шлирена. Стандартные капиллярные трубки также подходят для прямого контактного нагрева.Для будущих применений предпочтительны гидравлические контуры. Технологии обогрева или охлаждения, в которых используются большие теплообменные поверхности внутри помещений, называются излучающими системами или термоактивными поверхностями (TAS) (Moe, 2010; Rhee and Kim, 2015; Rhee et al., 2017). Большой TAS с водяным контуром, подключенным к тепловому насосу с низким подъемом, может использовать небольшие перепады температур от возобновляемых стоков и источников, таких как солнечная, геотермальная и инфракрасная область неба (Meggers et al., 2012 ; Лим, 2019).

1.6. Естественная вентиляция

Если гидронные поверхности идеально подходят для мономатериальных теплообменных оболочек, есть ли другие возможности для интеграции функций HVAC? Естественная вентиляция играет важную роль в минимизации инфраструктуры HVAC и ее выбросов в течение жизненного цикла (Kiamili et al., 2020). Значительные успехи были достигнуты в понимании жидкостной механики выталкивающей вентиляции, которая управляется теплом, а не ветром. Например, прорыв произошел в 2009 году, когда исследователи охарактеризовали автоматический механизм рекуперации тепла, известный как «естественное перемешивание» (Woods et al., 2009). Когда теплый воздух поднимается и выходит, свежий воздух заменяет его, попадая через то же отверстие. Выходящий воздух предварительно нагревает входящий воздух в состоянии динамического равновесия.

Некоторые исследователи изучили возможность сочетания DI с естественной вентиляцией (Etheridge and Zhang, 1998; Ascione et al., 2015; Park et al., 2016). Связь может быть усилена за счет использования мономатериалов, теплообменных оболочек (то есть «дышащих стен»). Используя эффект плавучести, все тепло- и воздухообмены можно контролировать с помощью встроенной гидравлической поверхности.На рисунке 3 показаны две возможности. С левой стороны плавучесть обеспечивает вентиляцию, но на выходе нет рекуперации тепла. Справа показана гипотеза о том, как восстановить вентиляцию на выходе с помощью двойной оболочки. В этой статье не рассматриваются естественные контуры рекуперации тепла. Тем не менее, он делает первый шаг, показывая, что возможно соединить дышащие стены с выталкивающей вентиляцией в идеальных условиях.

Рисунок 3 . Умозрительные схемы, подсказывающие, как соединить «дышащие стены» с вытяжной вентиляцией. (слева) Плавучесть обеспечивает вентиляцию, но нет рекуперации тепла на выходе. (справа) Гипотеза о том, как восстановить вентиляцию на выходе с помощью двойной оболочки.

1,7. Outlook

В данной статье представлены результаты трех экспериментов, которые характеризуют поведение массивных деревянных панелей, оптимизированных в качестве теплообменников. Предоставляется приложение, чтобы читатели могли самостоятельно оценить возможные варианты дизайна (Craig and Fortin, 2020). В первом эксперименте измеряется устойчивое состояние панели, подвергшейся ступенчатому изменению нагрева.Во втором эксперименте измеряются изменения теплообмена из-за изменения температуры. Последний эксперимент показывает, что можно втягивать вентиляцию через панели, используя тепловую плавучесть вместо вентилятора, при сохранении ожидаемой скорости теплообмена.

2. Теория

2.1. Устойчивый теплообмен

На рис. 1 показан принцип оптимизации параллельных каналов в твердом материале для «встречного» теплообмена. Для этого сценария были разработаны две численные корреляции (Kim et al., 2007). Обе корреляции были экспериментально подтверждены (Craig and Grinham, 2017). Первая корреляция дает оптимальное расстояние между каналами:

HoptL = 3,22 Be − 1/3 Φ − 0,85 (kka) 0,17 (1)

, где H opt — оптимизированное расстояние между каналами, L — толщина панели, k — теплопроводность материала панели, а k a — теплопроводность воздух. Число Беджана, Be , определяется как:

. Be = ΔP L2μα (2)

, где Δ P — расчетное давление, μ — динамическая вязкость воздуха, а α — коэффициент температуропроводности воздуха.Пустотная доля панели Φ определяется как:

Φ = π D24 h3 (3)

, где D — диаметр каналов. Геометрия показана на рисунке 4.

Рисунок 4 . Определение геометрии панели.

Вторая корреляция предсказывает общую (нормализованную) теплопередачу через оптимальную конструкцию:

NTU = 0,41Be1 / 3 Φ0,6 (kka) -0,65 (4)

Количество тепловых единиц, NTU , представляет собой отношение общего коэффициента теплопередачи во время теплообмена, U 1 , к базовому условию при отсутствии теплообмена, U 0 :

NTU = U1U0 = q1 ″ / (Ts-Te) k / L (5)

, где q1 ″ — тепловой поток на нагретой внутренней поверхности, T s — температура нагретой внутренней поверхности, а T e — температура наружного воздуха (который входит по каналам).Во время ощутимого устойчивого теплообмена поверхностный тепловой поток (q1 ″) частично передается входящему воздуху (q2 ″), а оставшаяся часть (q3 ″) теряется во внешнюю среду из-за теплопроводности:

q1 ″ = q2 ″ + q3 ″ (6)

Рисунок 2 иллюстрирует этот баланс теплообмена, который также может быть определен в терминах коэффициентов теплопередачи:

где:

U1 = q1 ″ (Ts-Te) = NTU U0 (8) U2 = q2 ″ (Ts-Te) = ε NTU U0 (9) U3 = q3 ″ (Ts-Te) = (1-ε) NTU U0 (10)

, а ε — эффективность теплообмена:

Эти определения ε и NTU действительны до тех пор, пока поверхностный тепловой поток (q1 ″) или температура поверхности ( T s ) постоянны и однородны.Интегрированная гидроника может точно аппроксимировать оба граничных условия (Craig and Grinham, 2017). В любом случае ε эквивалентно относительному увеличению температуры поступающего воздуха:

ε = Ти-ТэЦ-Те (12)

, где T i — температура входящего воздуха в момент его выхода из каналов и попадания во внутреннее пространство. Обратите внимание, что при ε → 1, T i T s .

Следуя соглашению в литературе по динамической изоляции, U 3 в уравнении (10) может называться «динамическим значением U ». Однако важно подчеркнуть баланс, выраженный в уравнении (7) и проиллюстрированный на рисунке 2. То есть достижение низких значений для U 3 не должно происходить за счет чрезмерной вентиляции ( U 2 ) или перегрев ( U 1 ). Расход воздуха на единицу площади панели определяется как:

u = D2 Φ ΔP32 мкл (13)

и имеет блоки м / с или м 3 / м 2 / с .Наконец, есть важный предел размеров, на который следует обратить внимание:

Уравнения (1) и (4) недействительны, если этот предел превышен. Панель слишком тонкая относительно расстояния между каналами. Физически недостаточно места для того, чтобы тепло могло отклоняться к каналам, как показано в правой части рисунка 1 (тепло распространяется только на более низкие температуры, поэтому « изгиб » потока более чем на 90 ° будет противоречить второму закону термодинамика).

Приведенные выше уравнения описывают устойчивый теплообмен в оптимизированных панелях.Каковы последствия проектирования для массивной древесины? На рисунке 5 показан снимок экрана приложения, которое можно загрузить бесплатно и которое решает вышеуказанные уравнения, чтобы помочь оценить варианты оптимизации массовых деревянных панелей в качестве теплообменников (Craig and Fortin, 2020). В приложении есть четыре управляющих параметра. Дизайнеры могут выбирать значения для каждого параметра из указанного диапазона (эти диапазоны легко настроить, изменив исходный код):

• Теплопроводность к ( Вт / м · К ) основного материала.Диапазон 0,1 < k <0,4 был выбран для охвата большинства пород древесины хвойных и лиственных пород, независимо от ориентации волокон (см. Рисунок 6).

• Коэффициент теплопроводности, то есть U3 (Вт / м2 · К), «динамическое значение U ». Этот широкий диапазон был выбран для того, чтобы исследователи могли оценивать различные конструкции, выбирая между стандартами U в разных странах или высокопроизводительными стандартами, такими как Passivhaus .

• Коэффициент нагрева поверхности U1 (Вт / м2 · K) (который можно регулировать с помощью встроенного жидкостного нагрева).Диапазон 1 < U 1 <4 намеренно занижен, как и в случае стандартных полов с подогревом. (Напомним, что иметь низкие потери проводимости бессмысленно, если для достижения этой цели требуется слишком много тепла)

• Расчетное давление △ P ( Па ), которое прикладывается к панели посредством всасывания. Диапазон 2 <△ P <8 был выбран потому, что эти давления можно поддерживать механически с помощью вентилятора или естественным образом с использованием тепловой плавучести (эффект суммирования).

Рисунок 5 . Скриншот приложения, написанного для партнера по этой статье, которое можно бесплатно загрузить здесь (Craig and Fortin, 2020). Он решает уравнения (1) — (14), показывающие, как оптимизировать массовые деревянные панели в качестве теплообменников.

Рисунок 6 . Измерения тепловых свойств сосны южной желтой: проводимость ( k) , коэффициент диффузии (α) и объемная теплоемкость (ρ c ). Измерения проводились на радиальных и поперечных образцах.Данные нанесены на график вместе с другими древесными материалами и строительными материалами для справки. Образцы сосны были испытаны в комнатных условиях (T = 23 C и относительная влажность 49%).

В таблице 1 сравниваются три возможных проекта теплообменных деревянных панелей, рассчитанных с помощью приложения. Во всех трех гипотетических случаях достигается одно и то же низкое «динамическое значение U », U3 = 0,2 Вт / м2 · К, что находится в диапазоне значений U , установленных строгими правилами энергоэффективности. Различия между вариантами дизайна связаны с панельным отоплением, которое изменяется с небольшими приращениями (U1 = 2,3,4 Вт / м2 · K).Панели становятся тоньше по мере увеличения нагрева поверхности ( L ≈ 23, 18, 15 см ). Обратите внимание, что эта толщина находится в диапазоне стандартных толщин для панелей CLT. Другое изменение касается расхода воздуха на единицу площади панели, который увеличивается ( u ≈ 10, 14, 16 l / s / m 2 ) по мере того, как панели становятся тоньше. Эти показатели означают, что примерно один квадратный метр панели удовлетворяет потребности одного человека в вентиляции. Для контекста международные стандарты рекомендуют скорость вентиляции ~ 10 л / с на человека в офисной среде, хотя неблагоприятные последствия для здоровья или производительности были задокументированы, когда скорость вентиляции достигает 25 л / с на человека (Carrer et al., 2015).

Таблица 1 . Три примерных варианта деревянных теплообменных панелей, каждый из которых оптимизирован для U3 = 0,2 Вт / м2 · K.

Прилагаемое приложение показывает, что относительно высокая интенсивность вентиляции (5 < u <20 l / s / m 2 ) необходима для обеспечения эффективности теплообмена (ε> 0,6), что приводит к низкому нагреву -коэффициенты потерь (0,1

Поскольку панели требуют относительно высокой скорости вентиляции, они лучше всего подходят для относительно больших зданий с высокой посещаемостью. Рассмотрим кубическое здание квадратной длины x = 12 м . Он террасированный, поэтому видны только два фасада. Скорость вентиляции на единицу площади панели составляет × = 0,01 м 3 / с / м 2 (т.е.е., 10 л / с / м 2 ). Количество воздухообменов в час составляет N = 3, 600 · u · 2 x 2 / x 3 = 7200 u / x . Если панели занимают 100% площади фасада, N = 6. Если панели занимают 50% площади фасада, N = 3 и так далее.

2.2. Переходный теплообмен

Работа деревянных панелей при устойчивом теплообмене является многообещающей, но сколько времени требуется для достижения устойчивого состояния и как суточные колебания внешней температуры влияют на теплообмен?

Модель 1994 года, описывающая переходное поведение динамической изоляции, недавно была проверена в контролируемых периодических условиях (Krarti, 1994; Alongi et al., 2020). Однако эта модель предназначена для теплообмена в одном пространственном измерении. Он подходит для волокнистых изоляционных материалов или изоляционных материалов с открытыми порами в противофлюсе, но не применяется к материалам, где поток проводимости изменяется в двух или трех пространственных измерениях, как показано на Рисунке 1. Основа принципа «дышащей стены», показанного на На рисунке 1 показано исследование, показывающее, как оптимизировать параллельные каналы для устойчивого теплообмена в экстремальных тепловых условиях (Kim et al., 2007). Эти исследователи расширили свою работу, оптимизируя древовидные каналы в установившемся состоянии, а затем охарактеризовав переходную реакцию на внезапное нагревание (Kim et al., 2008, 2009). Однако их переходный анализ применим только к древовидным каналам.

2.2.1. Время перехода в устойчивое состояние

Похоже, что в литературе нет модели для описания переходного встречного теплообмена в панели с параллельными каналами. Вместо этого тепловой отклик можно аппроксимировать как функцию числа Фурье:

Fo = α tLc2 (15)

, где α — коэффициент температуропроводности материала, t — время в секундах, а L c — характерная длина, определяемая как отношение объема твердого тела к открытой площади поверхности, которая для геометрия, определенная на рисунке 4, составляет:

Lc = (h3-π D24) L 2 (h3-π D24) + π D L (16)

Число Фурье — это мера времени без единиц измерения.Это соотношение, где 1 означает, что тепло проникло на всю глубину объекта. Тепловая реакция «дышащей стены» на скачкообразное изменение температуры поверхности или теплового потока поверхности теперь может быть охарактеризована как:

NTU (t) = (a1 NTU + a2Fo) LLc (17)

, где NTU — расчетное значение в установившемся режиме, определенное уравнением (4), а a 1 и a 2 — эмпирические коэффициенты. Напомним, что трехмерная эволюция теплового потока через материал неизвестна.Следовательно, оба коэффициента действуют как поправочные коэффициенты для эффектов формы. На графике NTU ( t ) и Fo , 1 контролирует положение кривой (и, следовательно, величину теплопередачи), а 2 контролирует кривизну. Для калибровки стандартные аналитические растворы служат полезным ориентиром (Bart and Hanjalić, 2003; Incropera et al., 2007). Плоская стена — это сплошная стена, подверженная нагреву с обеих поверхностей.При панельном отоплении с постоянным тепловым потоком:

А при панельном обогреве с постоянной температурой:

, где a 1 = 0 для обоих условий. Таким образом, мы предполагаем, что при ступенчатом изменении нагрева поверхности общий теплоперенос через «дышащую стену» будет развиваться аналогично плоской стенке той же характерной длины с небольшими различиями из-за формы. эффекты.

2.2.2. Периодический теплообмен

Что делать, если внешняя температура периодически меняется в течение суточного цикла? Когда применяется постоянная температура поверхности или поверхностный тепловой поток, и по прошествии достаточного времени для достижения установившегося состояния квази , общий (нормализованный) теплоперенос должен периодически колебаться вокруг среднего установившегося значения.Поведение должно приближаться к полубесконечному твердому телу, но, опять же, с различиями из-за эффектов формы (Bart and Hanjalić, 2003; Incropera et al., 2007):

NTU (t) = NTU + a1 Lcω / α sin (ωt + π / 4) (20)

, где ω — угловая частота (2π / 86400). Здесь коэффициент a 1 калибрует величину колебаний. Мы предполагаем, что значение для a 1 будет одинаковым в обоих уравнениях (17) и (20).

2.3. Теплообмен с вытяжной вентиляцией

Рассмотрим здание в левой части рисунка 3, работающее в устойчивом состоянии и без людей.Только встроенный TAS (термоактивная поверхность) обогревает комнату. Других явных тепловыделений или скрытых эффектов теплопередачи нет. Часть тепла от TAS передается в комнату, а остальное теряется в окружающую среду за счет теплопроводности:

, где q 0 — общий нагрев с (обеих сторон) TAS, q hx — общий теплообмен в комнату, а q cl — это полная потеря проводимости через оболочку.Теплообмен от ТАС к помещению ( q hx ) происходит двумя способами. Во-первых, за счет передачи поступающему воздуху через теплообменную панель. Во-вторых, при прямом контакте с комнатным воздухом через открытую поверхность:

qhx = q1 ″ A1 ε + h A1 (Ts-Tii) (22)

Новые термины: A 1 , h и T ii — это общая площадь интегрированного TAS, средний коэффициент теплопередачи между нагретой поверхностью и воздухом в помещении и температура внутреннего воздуха соответственно.Для простоты предположим, что теплообмен внутри комнаты незначителен, а внутренний воздух хорошо перемешан.

Потери проводимости ( q cl ) также происходят двумя способами. Во-первых, через заднюю часть теплообменных панелей, а во-вторых, через части оболочки здания, не участвующие в теплообмене:

qcl = q1 ″ A1 (1-ε) + UA (Tii-Te) (23)

Термин UA — это полная проводимость ( W / K ) оболочки здания, не участвующей в теплообмене.Тепло, содержащееся в вентиляционном потоке, теперь можно определить как:

Q ρcp (Tii-Te) = q0 — qcl (24)

, где ρ c p — объемная теплоемкость воздуха, а Q — интенсивность вентиляции за счет разницы температур внутри / снаружи:

Q = A * (г ZTii-TeTe) 12 (25)

, где г, — сила тяжести Земли, Z — это изменение высоты между входом и выходом потока (например, от середины теплообменной панели до верха дымохода) и A * — общая эффективная вентиляционная площадь (Acred, 2014)

А * = (12c12A12 + 12c22A22) -12 (26)

, который возникает из определения объемной скорости:

, где A 1 и A 2 — физические площади входа и выхода, а c 1 и c 2 — соответствующие коэффициенты расхода соответственно.Для теплообменных панелей A 1 — это общая площадь поверхности, а коэффициент расхода равен:

c1 = (△ Pρu2 / 2) -12 (28)

Переставив уравнение (13), перепад давления в теплообменнике можно определить как:

△ P = 32 мкл uD2 Φ (29)

Для простоты предположим, что перепад давления по высоте панели одинаков. На рисунке 3 показано более реалистичное изменение давления из-за плавучести. Подстановка уравнения (29) в уравнение (28) дает:

c1 = (64 L μD2 u ρ Φ) -12 (30)

Наконец, коэффициент расхода для выпускного отверстия, если предположить, что он имеет острую кромку, можно приблизительно оценить как (Acred, 2014)

Следующие уравнения описывают существенные особенности тепловой связи между «дышащими стенками» и вытяжной вентиляцией.Забегая вперед, в разделе 4.3 представлены результаты экспериментального устройства, предназначенного для демонстрации этой связи в действии. Теплообменная панель устанавливается горизонтально на уровне пола, поэтому давление по поверхности панели равномерное, а внутренний воздух хорошо перемешивается. Следует подчеркнуть, что это идеализированные обстоятельства. Возможна горизонтальная установка, но в будущем более вероятны вертикальные или наклонные оболочки. Если панель расположена вертикально, давление на ней будет изменяться с высотой, равно как и скорость и теплообмен.Внутренний воздух может расслаиваться ниже верхней части панели, в зависимости от высоты дымохода относительно верхней части панели. В этом случае будет отток через верхние каналы. Все эти эффекты были специально разработаны на основе эксперимента, описанного в 4.3, чтобы проверить основные элементы тепловой связи.

Аппарат высотой с комнату (для создания разумного давления в дымовой трубе) по своим пропорциям напоминает тонкий дымоход. Следовательно, вместо сжатия потока на выходе необходимо вычислить потери на трение на боковых стенках.После преобразования коэффициентов трения в коэффициенты расхода (Jones et al., 2016), если поток ламинарный, то:

, а если поток турбулентный, то:

c2 = 10,079 Re − 0,25 (33)

, где число Рейнольдса потока:

3. Материалы и методы

Были спроектированы и выполнены эксперименты для проверки эффективности теплообмена в установившихся и переходных условиях, а также когда вентиляция приводится в действие плавучестью, а не вентилятором. Первый эксперимент измеряет теплообмен в установившемся режиме и время достижения установившегося состояния, когда панели подвергаются ступенчатому изменению нагрева.Во втором эксперименте измеряется, как теплообмен периодически изменяется при ежедневных изменениях внешней температуры. В последнем эксперименте измеряется внутренняя температура и скорость потока внутри прокси-здания, когда вентиляция через испытательную панель приводится в действие тепловой плавучестью, а не вентилятором.

3.1. Тестовые панели

Были изготовлены две испытательные панели: одна из цельной древесины, другая из акрила. Для деревянного панно была выбрана южная желтая сосна. Акрил был выбран в качестве контроля, потому что он имеет такие же тепловые свойства, что и древесина, за исключением того, что тепловые свойства изотропны, а не анизотропны, и он не впитывает влагу.Панели имели размеры 12 дюймов × 16 дюймов (30,48 × 40,64 см) с площадью теплообмена 12 дюймов × 12 дюймов (30,48 × 30,48 см) и толщиной 2 дюйма (5,08 см). Обе панели были оптимизированы для расчетного давления 3 Па. В таблице 2 приведены свойства каждой панели, и они показаны рядом на рисунке 7.

Таблица 2 . Параметры конструкции тестовой панели.

Рисунок 7 . Экспериментальная установка для вентиляции с приводом от вентилятора. Этот прибор использовался для первого и второго экспериментов (см. Раздел 3.2), измерение (1) стационарного поведения панели, подвергшейся ступенчатому изменению нагрева и (2) периодических изменений теплообмена из-за изменения внешней температуры.

3.1.1. Тепловые свойства

Свойства материала, необходимые для прогнозирования устойчивой и переходной проводимости, включают теплопроводность k ( W / м K ), температуропроводность α ( м 2 / с ) и объемную теплоемкость ρ . c ( J / м 3 · K ).Для древесины эти свойства зависят от породы, направления и места измерения, а также от условий окружающей среды. Для измерения тепловых свойств южной желтой сосны использовали измерительное устройство (анализатор теплопроводности C-Therm) и метод источника переходной плоскости (ASTM D7984). Образцы были приготовлены из той же партии, что и испытательная панель, и разрезаны в радиальном и поперечном направлениях к волокнам. Было приготовлено по пять образцов каждого направления зерен, каждый испытан по десять раз.Результаты показаны на Рисунке 6 в сравнении с другими древесными породами и строительными материалами.

3.1.2. Датчики
Датчики

FluxTeq Ultra 09 (85 × 95 мм) использовались для измерения теплового потока и температуры на обеих поверхностях тестовых панелей. «Внутренний» датчик теплового потока был помещен в выемку с выемкой так, чтобы TAS (см. Раздел 3.1.3) прилегал к поверхности заподлицо. Размер датчиков теплового потока определял расстояние между каналами в панелях. Температуру воздуха измеряли с помощью термопар Omega Type T.Температура T e была измерена путем размещения наконечников двух термопар над центром двух каналов с последующим вычислением среднего значения. Это измерение было близко сравнимо с измерением температуры вне испытательного бокса. Измерения регистрировались с использованием регистратора данных GL240. Небольшой канал сделал невозможным измерение T и с помощью термопар. При размещении над каналом TAS воздействовал на термопару, и вставка термопары в канал блокировала поток.

3.1.3. Термоактивная поверхность

Поверхностный нагреватель, называемый здесь термически-активной поверхностью (TAS), был изготовлен с использованием нагревательных проводов электрического сопротивления. Матрица из 26 Ga нихрома 60 была установлена ​​на алюминиевом листе толщиной 0,063 дюйма, в котором просверлены отверстия, соответствующие каналам в испытательной панели. Проволочная решетка была намотана вокруг секций из ПТФЭ стержня 1/2 дюйма высотой 1/4 дюйма. Стержни были приклеены к алюминиевой пластине с шагом 1 дюйм для создания расстояния между проволоками 1/2 дюйма. Проволока была электрически изолирована от алюминия листом полиэфирной пленки с клейкой основой.Покрытая алюминием полиэфирная пленка была закреплена на проволочной сетке с помощью аэрозольного клея. TAS был разделен на две параллельные цепи и был подключен к регулируемому источнику питания Extech 600 Вт.

3.2. Аппарат с вентилятором

Это устройство позволяло всасывать воздух через испытательную панель при постоянном давлении. Испытательная камера была сделана из деревянных рам, собранных с натянутым на них тонким прозрачным пластиковым листом (см. Рис. 7). Использовались тонкие листы, поэтому камера была герметичной, но не накапливала тепло.Стыки камеры были заделаны герметиком и слоем ленты. К одному концу коробки прикрепляли деревянную раму с непрерывным уплотнительным кольцом, которое прижималось к краю испытательной панели. Стержни с резьбой, по одному в каждом углу, проходили через панель. Для крепления панели к раме и сжатия прокладки использовались резиновые шайбы и гайки. На другом конце коробки был установлен кусок жесткой изоляционной панели размером 2 дюйма с отверстием для установки откалиброванного вентилятора серии RetroTec 5000. Вентилятор снижает давление внутри коробки, имитируя интерьер здания.Перепад давления контролировали и отслеживали с помощью расходомера RetroTec DM32 и набора трубок Пито. TAS наносили на поверхность панели, обращенную внутрь камеры, и управляли регулируемым источником питания Extech 600 Вт.

3.2.1. Устойчивый теплообмен, время до установившегося состояния

Испытания проводились при расчетном давлении (3 Па) и увеличивающемся приращении давления (5, 7, 9 Па). Устойчивое состояние было определено как точка, когда тепловой поток (q1 ″) достиг ± 5% от заданного теплового потока.Для каждого давления был проведен цикл из трех испытаний с использованием расчетного теплового потока (то есть теплового потока, оптимизированного для 3 Па). Затем был проведен еще один цикл из трех испытаний для каждого давления, на этот раз постепенно увеличивая тепловой поток, как если бы панель была оптимизирована для этого давления. Разница между обоими методами была незначительной, и результаты всех раундов были объединены для расчета стандартной ошибки.

3.2.2. Периодический теплообмен

В этом эксперименте использовалось то же оборудование, что и в стационарном эксперименте.Тест проводился на открытом воздухе в затененном месте. Постоянное давление ( P = 3 Па ) поддерживалось на протяжении всего эксперимента, который длился 5 дней. Также поддерживалась постоянная электрическая мощность ТАС, так что средний тепловой поток находился в пределах ± 5% от расчетного теплового потока.

3.3. Аппарат с приводом от плавучести

Отдельная камера, выступающая в качестве прокси-здания, была изготовлена ​​для испытания муфты с вытяжной вентиляцией. Теплообменная панель была установлена ​​горизонтально на уровне пола, чтобы обеспечить равномерное давление на поверхности TAS и хорошее перемешивание внутреннего воздуха (как описано в разделе 2.3, если бы панель была вертикальной, давление на ней изменялось бы с высотой, как и скорость и теплообмен, и возник бы риск обратного потока, если бы внутренний воздух расслаивался; эти эффекты будут изучены в будущих исследованиях). Аппарат имел высоту 8 футов (2,44 м), высоту помещения, для создания приемлемого давления в дымовой трубе. Камера была тонкой с конусом, похожим на дымоход, чтобы избежать обменных потоков наверху. Камера была покрыта войлоком и жесткой изоляцией (см. Рис. 8). Испытательная панель была установлена ​​на дне камеры так, чтобы ТАС была обращена внутрь.Слой ленты был наложен на стык между камерой и панелью для создания герметичного уплотнения. Верхнее отверстие камеры было 2 на 2 дюйма (5 × 5 см). Вся сборка была установлена ​​на ножках, которые удерживали дно камеры 2 ′ (60 см) от земли. Термопары были расположены в тех же местах над каналами, что и эксперимент с вентилятором, и с равными интервалами внутри дымохода. Датчики перепада давления Sensirion SDP800 были прикреплены к трубке Пито для измерения скорости воздуха на выходе.Испытания проводились путем постепенного увеличения мощности нагрева ТАС. Перед проведением измерений панели позволили достичь установившегося состояния (определяемого в этом исследовании, когда тепловой поток достигает ± 5% от расчетного теплового потока).

Рисунок 8 . Экспериментальная установка для вентиляции, управляемой плавучестью. Этот прибор использовался в третьем эксперименте (см. Раздел 3.3), измеряя внутреннюю температуру и скорость потока в промежуточном здании, когда вентиляция через испытательную панель приводится в действие тепловой плавучестью, а не вентилятором.

4. Результаты и обсуждение

4.1. Устойчивый теплообмен

На рис. 9 показаны общие нормализованные результаты теплопередачи для обеих панелей. Черные пунктирные линии представляют уравнение (4), а заштрихованные маркеры показывают измерения при расчетном давлении, а именно 3 Па. Слева направо незатененные маркеры показывают измерения при нерасчетном давлении, а именно 5, 7 и 9. Па. Таблицы 3, 4 суммируют результаты в терминах U 1 , NTU и ε.

Рисунок 9 .Измерения устойчивого теплообмена для акрила (слева) и сосны (справа). Данные нанесены на график относительно прогнозируемого теплообмена по уравнению (4) при расчетном (заполнено) и нерасчетном давлении (открыто). Вторичные пунктирные линии показывают новые корреляции (уравнения 35, 36) для теплообмена для всего диапазона давлений.

Таблица 3 . Замеры для устойчивого теплообмена, сосновая панель.

Таблица 4 . Замеры для устойчивого теплообмена, акриловая панель.

Обратите внимание, что «расчетное давление» — это давление, для которого оптимизирована данная панель. Уравнение (1) показывает, как оптимизировать геометрию панели при расчетном давлении. Уравнение (4) предсказывает общую (нормализованную) теплопередачу оптимизированной панели при расчетном давлении. Его можно использовать для прогнозирования производительности при гибком изменении технических характеристик (например, теплопроводности, толщины панели) после указания расчетного давления, как показано в прилагаемом приложении (Craig and Fortin, 2020).

Таблица 3 показывает, что нормализованная теплопередача при расчетном давлении составила NTU = 1,47 ± 0,05 для деревянной испытательной панели по сравнению с прогнозируемым значением NTU = 1,53 ± 0,03. Для «контрольной» тестовой панели согласие было еще более тесным (см. Таблицу 4). Тесное соответствие между прогнозами и измерениями при расчетном давлении расширяет результаты недавней экспериментальной проверки (Craig and Grinham, 2017) и подчеркивает надежный характер исходных корреляций.Эти корреляции были разработаны для экстремальных тепловых условий (Kim et al., 2007), поэтому примечательно, что они так точно переносятся на строительные материалы в условиях окружающей среды. Анизотропия текстуры древесины не оказала существенного влияния на результаты при расчетном давлении, вызывая лишь небольшое снижение общей теплопередачи. Необходимы дальнейшие исследования, чтобы понять, существует ли способ использования текстуры древесины для повышения эффективности теплообмена.

Уравнение (4) предсказывает только теплопередачу при расчетном давлении.Поэтому неудивительно, что измерения при 5, 7 и 9 Па отклоняются от уравнения (4). Характеристики акриловой панели для всего диапазона давлений коррелировали следующим образом:

NTU акрил = 1,12 NTU 0,44 (35)

, а для сосновой панели:

NTUpine = 1,37 NTU 0,15 (36)

Где NTU — полная теплопередача при расчетном давлении, определяемом уравнением (4). Коррелирующие коэффициенты и показатели в уравнениях (35) и (36) были найдены автоматически с помощью функции LinearModelFit в системе Mathematica.Коэффициент детерминации (R 2 ) был> 0,999 для обеих моделей линейной подгонки. В следующих экспериментах уравнение (36) используется для прогнозирования устойчивой теплопередачи испытательной панели при нерасчетных давлениях (давлениях, для которых панель не была оптимизирована).

Уравнения (35) и (36) имеют разные наклоны (показатели степени). Поэтому кажется, что анизотропия действительно играет роль в ограничении общей теплопередачи при нерасчетных давлениях. Пологий наклон для NTU, как видно из уравнения (36), подразумевает значение U с двумя состояниями.То есть значение U , которое не сильно зависит от давления, но которое переключает между расчетными значениями U 0 и U 3 .

Общая теплопередача ( U 1 , q1 ″, NTU) ведет себя так, как ожидалось. Однако таблицы 3, 4 показывают несоответствие между предсказаниями и измерениями ε. Какое объяснение? Он помогает рассмотреть методы измерения эффективности теплообмена, которых существует четыре. Первый метод — измерить его косвенно, измерив NTU:

.

Этот метод делает предположение о том, как ведет себя эффективность теплообмена, на основе стандартной теории теплообменников.Второй метод измеряет отношение исходящей проводимости к общей теплопередаче:

ε = 1-U3U1 = 1-q3 ″ q1 ″ (38)

Это прямое измерение, которое использовалось в настоящем исследовании. Чтобы подтвердить это измерение, необходимо отслеживать теплообмен с вентиляционным потоком, который можно измерить напрямую двумя способами. Либо:

ε = U2U1 = q2 ″ q1 ″ (39)

или:

ε = Ти-ТэЦ-Те (40)

Оба метода требуют точного измерения T i , поскольку q2 ″ = u ρc (Ti-Te).Однако было невозможно измерить T i с помощью существующего прибора. Малый диаметр каналов означал, что термопара либо блокировала канал, либо находилась под воздействием TAS (см. Раздел 3.1.2). Следовательно, хотя этот эксперимент подтверждает общую теплопередачу, необходимы дальнейшие исследования, чтобы понять, какая часть тепла передается входящей вентиляции. Вопреки здравому смыслу, тепло, исходящее от внешней поверхности, не может полностью передаваться окружающей среде.Оптическое отображение Шлирена показало, что во время всасывания конвекция на внешней поверхности усиливается, а граничная пленка втягивается в каналы (Craig and Grinham, 2017). Следовательно, более высокие, чем ожидалось, значения для q3 ″ и U 3 могут быть признаком рекуперации тепла в действии, а не увеличения потерь. В дальнейших исследованиях для измерения T i можно использовать метод, такой как фоновый шлирен, так что измерения эффективности теплообмена можно триангулировать, а влияние рекуперации тепла внешней пленки может быть определенный.

4.2. Переходный теплообмен

4.2.1. Время перехода в устойчивое состояние

На рисунке 10 показано, как теплообмен развивается при ступенчатом изменении нагрева поверхности. Данные взяты из сосновой панели, усредненные по трем испытаниям при расчетном давлении (3 Па). Электрическая мощность нагрева поверхности была постоянной на протяжении всего эксперимента. Левый график показывает общую теплопередачу ( NTU ( t )), правый график показывает эффективность теплообмена (ε). Оба графика отслеживают изменение числа Фурье, определяемого уравнением (15), относительного показателя того, как проводимость развивается внутри объекта с течением времени.Характерная длина панели составляла L c = 0,021, рассчитанная с использованием уравнения (16). Эксперименты длились чуть более 240 мин. Следовательно, Fo = 1 означает ~ 1 час. Это также знаменует важный порог: время, когда тепло предположительно проникает на всю глубину объекта.

Рисунок 10 . Испытательная панель из сосны, время достижения устойчивого теплообмена в зависимости от числа Фурье. Fo = 1 составляет ~ 1 час. Измерения общего теплообмена (NTU) и эффективности теплообмена (ε) сравниваются с эталонными прогнозами для плоской стенки (уравнения 17–19).

На поверхности испытательной панели тепловой поток q1 ″ достигал ± 5% от прогнозируемой скорости через ~ 110 мин, когда Fo ~ 1,8. (После этого данные использовались для измерения устойчивого теплообмена, см. Раздел 4.1). Fo ~ 1.8 знаменует собой еще один важный момент, когда данные выходят за рамки тестов, обозначенных черными пунктирными линиями. Эти эталоны представляют собой передачу тепла через плоскую стенку той же характерной длины во время ступенчатого изменения нагрева, при постоянной температуре или постоянном тепловом потоке, приложенном к обеим поверхностям (см. Уравнения 17–19).Как и предполагалось, до достижения установившегося состояния теплопередача развивается аналогично плоской стенке той же характерной длины с небольшими различиями из-за эффектов формы. Данные для NTU ( t ) хорошо коррелируют с уравнением (17), когда:

и:

, когда уравнение (36) заменяет уравнение (4). Напомним, что a 1 управляет положением кривой, описанной уравнением (17), а a 2 контролирует кривизну.Необходимы дальнейшие исследования, чтобы установить, в какой степени эти коэффициенты формы для переходной проводимости изменяются в зависимости от размеров панели, если вообще изменяются. Физические эксперименты или анализ методом конечных элементов — подходящие способы решения этого вопроса.

Правый график показывает, как эффективность теплообмена изменяется со временем согласно двум методам ее измерения. Как уже говорилось, остается вопрос относительно фактической эффективности теплообмена и дополнительных измерений, необходимых для ее подтверждения.Кривая отклонения на правом графике фиг. 10 может отражать улучшенную теплопередачу на внешней поверхности из-за всасывания. Кроме того, рекуперация тепла на внешней поверхности из-за засасывания пограничной пленки в каналы может компенсировать отклонение между двумя кривыми. Короче говоря, хотя U 3 и q3 ″ больше, чем ожидалось, значительная часть этого тепла, вероятно, рекуперируется, а не теряется во внешнюю среду.

4.2.2. Периодический теплообмен

Панель из сосны была испытана в затененных уличных условиях с использованием того же устройства с вентилятором, что и в предыдущих экспериментах.Постоянное давление (3 Па) и постоянная электрическая мощность для нагрева применялись в течение 3 дней. Цель эксперимента состояла в том, чтобы увидеть, будет ли общая (нормализованная) теплопередача периодически изменяться около установившегося значения, как предсказывается уравнением (20). На рисунке 11 показаны результаты. График (a) показывает изменение температур ( T e , T s , T s T e ) во времени (b) показано изменение коэффициентов теплопередачи ( U 1 , U 3 ).Обратите внимание, что базовое значение U составляет U 0 = k / L = 2,95 (см. Таблицу 2).

Рисунок 11 . Периодический теплообмен в уличных условиях для испытательной панели из сосны. (A) Температуры. (B) Коэффициенты теплопередачи. (C) Полная (нормализованная) теплопередача. (D) Эффективность теплообмена.

Графики (a) и (b) включены для справки, но графики (c) и (d) представляют собой результаты, представляющие общий интерес, поскольку образцы для NTU (t) и ε должны быть воспроизведены в разных климатических условиях с разными дизайнами панелей. .Общая (нормализованная) теплопередача действительно вела себя так, как предсказано уравнением (20), несмотря на воздействие легкого бриза и нормальных изменений внешней температуры (то есть изменений, которые не были идеально синусоидальными). Уравнение (20) включает коэффициент a 1 , который учитывает эффекты формы и калибрует величину теплопередачи. Здесь использовалось значение a 1 , определенное в предыдущем эксперименте, уравнение (41). Тот факт, что 1 одинаковы в обоих экспериментах, предполагает, что это допустимый коэффициент формы для переходной проводимости (Bart and Hanjalić, 2003).Если это правда, это не изменится значительно, если размеры панели будут отличаться (хотя и оптимизированы).

Предыдущие два эксперимента выявили несоответствие между двумя методами измерения ε (см. Таблицу 3 и Рисунок 10B). Это несоответствие усиливается на Рисунке 11D. Сигнал данных от метода измерения 2 (уравнение 38) ниже и более изменчив, чем метод измерения 1 (уравнение 37). На рисунке 11 метод измерения 2, показанный на графике (d), накладывает сигналы для U 1 и U 3 , показанных на графике (b).Напомним, что более высокие, чем ожидалось, значения для U 3 не обязательно приводят к большим потерям. Как обсуждалось, необходимы дальнейшие исследования для измерения теплопередачи к вентиляционному потоку (уравнения 39 и 40), чтобы можно было полностью определить граничные эффекты на внешней поверхности и их влияние на ε.

4.3. Теплообмен с вытяжной вентиляцией

Отдельная камера, выступающая в качестве прокси-здания, была изготовлена ​​для проверки соединения с выталкивающей вентиляцией в установившемся режиме.На рисунке 12 представлены результаты. График (а) показывает относительную температуру внутри помещения ( T ii T e ) как функцию общего нагрева от TAS ( q 0 ). График (b) показывает скорость выталкивающей вентиляции (Q), а также как функцию общего нагрева от TAS. На графиках показаны две прогнозируемые кривые, представляющие ламинарный (синий) или полностью турбулентный (красный) поток. Эти прогнозы были сделаны путем численного решения системы уравнений из раздела 2.3, где уравнения (32) и (33) оценивают коэффициент расхода дымохода в соответствии с любым режимом потока.

Рисунок 12 . Испытательная панель из сосны, теплообменник сцепления с вытяжной вентиляцией. (A) Температура внутри помещения (относительно наружного воздуха) и (B) расход вентиляции в зависимости от увеличения тепловложения.

По мере увеличения обогрева ( q 0 ), увеличивается также скорость выталкивающей вентиляции (Q) и средняя температура внутри ( T ii ).Большинство точек попадают в заштрихованную область, подтверждая теорию, описанную в разделе 2.3. Эти результаты являются дополнительным подтверждением того, что ожидаемые скорости теплообмена имеют место.

Обратите внимание, что погрешность измерения температуры больше, чем для вентиляции. Скорость вентиляции измерялась в самом узком месте дымохода, чуть ниже его вершины, где поток сходился перед выходом. Измерения температуры проводились в нескольких точках вверх по дымоходу и усреднялись.Изменение температуры с высотой было незначительным, но датчики действительно испытывали турбулентность.

Этот эксперимент демонстрирует, что можно втягивать вентиляцию через панели, используя тепловую плавучесть вместо вентилятора, при сохранении ожидаемых скоростей теплообмена и давления. Следует подчеркнуть, что это идеализированные обстоятельства. Возможна горизонтальная установка, но в будущем более вероятны вертикальные или наклонные оболочки. Если бы панель была вертикальной, давление на ней изменялось бы с высотой, равно как и скорость и теплообмен.Внутренний воздух может расслаиваться ниже верхней части панели (в зависимости от высоты дымохода относительно верхней части панели). В этом случае был бы отток через верхние каналы. Все эти эффекты были специально разработаны вне эксперимента, чтобы подтвердить основные элементы тепловой связи. Требуются дальнейшие исследования, чтобы определить, что происходит, когда панели расположены вертикально (или наклонно), а не горизонтально. Также необходимы дальнейшие исследования, чтобы увидеть, есть ли способы естественной рекуперации тепла из вентиляции.В правой части рисунка 3 показана одна возможная конфигурация.

5. Заключение

Общая тема заключается в том, как радикально упростить проектирование деревянных зданий, чтобы сократить объемные и эксплуатационные выбросы углерода и облегчить хранение углерода в глобальном масштабе. Наше исследование было сосредоточено на том, как оптимизировать каналы в массивных деревянных панелях, чтобы они обменивались теплом с входящим воздухом. Анализ и эксперименты показывают, что можно достичь низких тепловых потерь (0,1 0,6), что, в свою очередь, требует относительно высокой скорости вентиляции (5

Мы предоставили приложение, чтобы коллеги-исследователи могли оценить влияние различных параметров на оптимальную геометрию и теоретические характеристики деревянных панелей при устойчивом теплообмене. Можно быстро увидеть, как теплопроводность, расчетное давление, внутренний тепловой поток и целевое значение U влияют на эффективность теплообмена и скорость вентиляции, а также на толщину панели, размер и расстояние между каналами. .

Мы провели эксперимент, чтобы проверить общую теплопередачу при установившемся теплообмене, измерить эффективность теплообмена и изолировать влияние анизотропии из-за структуры волокон в древесине. Нормализованная теплопередача при расчетном давлении составила NTU = 1,47 ± 0,05 по сравнению с прогнозируемым значением NTU = 1,53 ± 0,03. Следовательно, анизотропия древесины не оказала существенного влияния на общую теплопередачу при расчетном давлении. Расчетный теплообмен при расчетном давлении составил ε = 0.78 ± 0,01 по сравнению с косвенным измерением ε = 0,62 ± 0,02. В будущих экспериментах потребуется изолировать эффекты внешнего пограничного слоя, чтобы правильно измерить эффективность теплообмена.

Затем мы использовали те же экспериментальные данные, чтобы охарактеризовать переходную реакцию испытательной панели на скачкообразное изменение температуры. Мы обнаружили, что общая теплопередача происходит через плоскую стенку эквивалентной характеристической толщины, переходя в стационарное состояние, когда Fo ≈ 2.Затем мы протестировали устройство на открытом воздухе, чтобы охарактеризовать теплопередачу в ответ на естественные колебания внешней температуры, применяя постоянный нагрев поверхности и давление. Общая теплопередача периодически изменялась около среднего значения — расчетного значения в установившемся режиме. Простая модель, описывающая периодические колебания, которая включала эмпирический коэффициент формы, полученный в эксперименте со ступенчатым изменением, учитывала теплопередачу с точностью до R 2 = 0,9953 ± 0,0023.

Наконец, мы показали, что возможно соединить дышащие стены с вытяжной вентиляцией.Образец для испытаний устанавливали горизонтально на дне дымохода. Аппарат был сконструирован таким образом, чтобы воздух в помещении оставался хорошо перемешанным. Хотя это представляло идеализированные условия, это позволило нам подтвердить ключевые отношения тепловой связи, как выражено системой уравнений в разделе 2.3. Измерения внутренней температуры и скорости вентиляции находились в пределах прогнозируемых пределов в зависимости от ламинарного или турбулентного потока. Согласно этим результатам, скорость теплообмена через панель произошла, как и ожидалось.

Заявление о доступности данных

Наборы данных, созданные во время и / или проанализированные в ходе текущего исследования, доступны в репозитории Scholars Portal Dataverse, https://doi.org/10.5683/SP2/DCEJJR.

Авторские взносы

SC: концептуализация, методология, программное обеспечение, формальный анализ, ресурсы, курирование данных, написание — первоначальный черновик и написание — просмотр и редактирование. AH, KF, PR и JE: программное обеспечение, формальный анализ, расследование, курирование данных, написание — исходный черновик, написание — просмотр и редактирование, визуализация и администрирование проекта.AF: надзор, ресурсы, администрирование проекта, получение финансирования и написание — проверка и редактирование. ДК и КМ: надзор и написание — просмотр и редактирование. Все авторы внесли свой вклад в статью и одобрили представленную версию.

Финансирование

Финансирование. Это исследование было поддержано подарочным фондом Rural Studio (http://ruralstudio.org/give/) и инициативой McGill Sustainability Systems Initiative (MSSI).

Конфликт интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Благодарности

Авторы хотели бы поблагодарить весь персонал и преподавателей сельской студии Обернского университета, особенно Стивена Лонга, за предоставленные ресурсы и среду, которые сделали это исследование возможным. Также спасибо доктору Дэниелу Харрису и доктору Чандону Рою, которые помогли с тестированием тепловых свойств. Наконец, спасибо Инициативе устойчивого лесного хозяйства за интерес и поддержку.

Список литературы

Acred, A. (2014). Естественная вентиляция в многоэтажных зданиях: эскизный подход (докторская диссертация), Имперский колледж Лондона.

Google Scholar

Алонги А., Анджелотти А. и Маццарелла Л. (2017a). Аналитическое моделирование «дышащих стен»: экспериментальная проверка с помощью лабораторного термобокса с двумя вентилируемыми воздуховодами. Energy Proc . 140, 36–47. DOI: 10.1016 / j.egypro.2017.11.121

CrossRef Полный текст | Google Scholar

Алонги А., Анджелотти А. и Маццарелла Л. (2017b). Экспериментальное исследование стационарного поведения дыхательных стенок с помощью нового лабораторного оборудования. Сборка. Окружающая среда . 123, 415–426. DOI: 10.1016 / j.buildenv.2017.07.013

CrossRef Полный текст | Google Scholar

Алонги А., Анджелотти А. и Маццарелла Л. (2020). Экспериментальная проверка устойчивой периодической аналитической модели для дыхательных стен. Сборка. Окружающая среда . 168: 106509. DOI: 10.1016 / j.buildenv.2019.106509

CrossRef Полный текст | Google Scholar

Алонги А. и Маццарелла Л. (2015a). Характеристика волокнистых изоляционных материалов при их применении в технологии динамической изоляции. Energy Proc . 78, 537–542. DOI: 10.1016 / j.egypro.2015.11.732

CrossRef Полный текст | Google Scholar

Алонги А. и Маццарелла Л. (2015b). Термобокс с двойной вентиляцией: лабораторный прибор для тестирования технологий воздухопроницаемых ограждающих конструкций. Energy Proc . 78, 1543–1548. DOI: 10.1016 / j.egypro.2015.11.198

CrossRef Полный текст | Google Scholar

Ascione, F., Bianco, N., Stasio, C.D., Mauro, G.M., и Vanoli, G.П. (2015). Динамическая изоляция оболочки здания: численное моделирование в переходных условиях и связь с ночным естественным охлаждением. Заявл. Therm. Eng . 84, 1–14. DOI: 10.1016 / j.applthermaleng.2015.03.039

CrossRef Полный текст | Google Scholar

Барт, Г. К. Дж., И Ханьялич, К. (2003). Оценка коэффициента формы для переходной проводимости. Внутр. Дж. Рефриг . 26, 360–367. DOI: 10.1016 / S0140-7007 (02) 00079-8

CrossRef Полный текст | Google Scholar

Бартуссек, Х.(1981). Porenluftung, eine zugfreie Stalluftung. DLZ 32, 48–58.

Google Scholar

Бежан А., Динсер И., Лоренте С., Мигель А. и Рейс Х. (2004). Пористые и сложные структуры течения в современных технологиях . Нью-Йорк, штат Нью-Йорк: Springer-Verlag.

Google Scholar

Цао, З., Майерс, Р. Дж., Луптон, Р. К., Дуан, Х., Сакки, Р., Чжоу, Н. и др. (2020). Эффект губки и возможности сокращения выбросов углерода в глобальном цементном цикле. Nat. Коммуна . 11: 3777. DOI: 10.1038 / s41467-020-17583-w

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Carrer, P., Wargocki, P., Fanetti, A., Bischof, W., Fernandes, E. D. O., Hartmann, T., et al. (2015). Что в научной литературе говорится о взаимосвязи вентиляции и здоровья в общественных и жилых зданиях? Сборка. Окружающая среда . 94, 273–286. DOI: 10.1016 / j.buildenv.2015.08.011

CrossRef Полный текст | Google Scholar

Чуркина, Г., Органски А., Рейер К. П. О., Рафф А., Винке К., Лю З. и др. (2020). Здания как глобальный поглотитель углерода. Nat. Выдержать . 3, 269–276. DOI: 10.1038 / s41893-019-0462-4

CrossRef Полный текст

Крейг, С., и Гринхэм, Дж. (2017). Дышащие стены: конструкция из пористых материалов для теплообмена и децентрализованной вентиляции. Energy Build . 149, 246–259. DOI: 10.1016 / j.enbuild.2017.05.036

CrossRef Полный текст | Google Scholar

Даббаг, М., и Крарти, М. (2020). Оценка эффективности системы динамической изоляции, подходящей для изменяемой оболочки здания. Energy Build . 222: 110025. DOI: 10.1016 / j.enbuild.2020.110025

CrossRef Полный текст | Google Scholar

Далехауг А., Фукусима А. и Йошинори Х. (1993). Динамическая изоляция в стене: изоляция, вентиляция, энергосбережение . Собрание отчетов Архитектурного института Японии, № 66, 261–264.

Google Scholar

Дехва, А.Х.А., Крарти М. (2020). Влияние переключаемой изоляции крыши на энергоэффективность жилых домов в США. Сборка. Окружающая среда . 177: 106882. DOI: 10.1016 / j.buildenv.2020.106882

CrossRef Полный текст | Google Scholar

Эстрин Ю., Бреше Ю., Данлоп Дж. И Фратцл П. (ред.). (2019). Архитектурные материалы в природе и технике: Архиматы . Чам: Издательство Springer International.

PubMed Аннотация | Google Scholar

Этеридж, Д.У. и Чжан Дж. Дж. (1998). Динамическая изоляция и естественная вентиляция: технико-экономическое обоснование. Сборка. Серв. Англ. Res. Технол . 19, 203–212. DOI: 10.1177 / 014362449801

  • 3

    CrossRef Полный текст | Google Scholar

    Гость, Г., Керубини, Ф. и Стрёмман, А. Х. (2013). Потенциал глобального потепления выбросов углекислого газа из биомассы, хранящейся в антропосфере и используемой для биоэнергетики в конце жизни. J. Ind. Ecol . 17, 20–30. DOI: 10.1111 / j.1530-9290.2012.00507.x

    CrossRef Полный текст | Google Scholar

    Habert, G., Miller, S. A., John, V. M., Provis, J. L., Favier, A., Horvath, A., et al. (2020). Воздействие на окружающую среду и стратегии обезуглероживания в цементной и бетонной промышленности. Nat. Rev. Earth Environ . 1, 559–573. DOI: 10.1038 / s43017-020-0093-3

    CrossRef Полный текст | Google Scholar

    Хепберн, К., Адлен, Э., Беддингтон, Дж., Картер, Э. А., Фасс, С., Доуэлл, Н. М. и др.(2019). Технологические и экономические перспективы утилизации и удаления CO 2 . Nature 575, 87–97. DOI: 10.1038 / s41586-019-1681-6

    PubMed Аннотация | CrossRef Полный текст | Google Scholar

    Ходжа Э., Пассер А., Сааде М. Р. М., Триго Д., Шаттлворт А., Питтау Ф. и др. (2020). Биогенный углерод в зданиях: критический обзор методов LCA. Сборка. Города 1, 504–524. DOI: 10.5334 / bc.46

    CrossRef Полный текст | Google Scholar

    Хурмекоски, Э., Myllyviita, T., Seppälä, J., Heinonen, T., Kilpeläinen, A., Pukkala, T., et al. (2020). Влияние структурных изменений в деревообрабатывающей промышленности на чистые выбросы углерода в Финляндии. J. Ind. Ecol . 24, 899–912. DOI: 10.1111 / jiec.12981

    CrossRef Полный текст | Google Scholar

    Incropera, F., DeWitt, D., Bergman, T. L., and Lavine, A. S. (2007). Основы тепломассообмена . Хобокен, Нью-Джерси: Джон Уайли и сыновья.

    Google Scholar

    Джонс, Б.М., Кук, М. Дж., Фицджеральд, С. Д., и Иддон, К. Р. (2016). Обзор терминологии в области вентиляционных отверстий. Energy Build . 118, 249–258. DOI: 10.1016 / j.enbuild.2016.02.053

    CrossRef Полный текст | Google Scholar

    Киамили К., Холлберг А. и Хаберт Г. (2020). Детальная оценка воплощенного углерода систем HVAC для нового офисного здания на основе BIM. Устойчивость 12: 3372. DOI: 10.3390 / su12083372

    CrossRef Полный текст | Google Scholar

    Ким, С., Лоренте, С., Бежан, А. (2007). Васкуляризированные материалы с нагревом с одной стороны и нагнетанием охлаждающей жидкости с другой стороны. Внутр. J. Тепломассообмен 50, 3498–3506. DOI: 10.1016 / j.ijheatmasstransfer.2007.01.020

    CrossRef Полный текст | Google Scholar

    Ким С., Лоренте С. и Бежан А. (2008). Васкуляризация дендритов для противодействия интенсивному нагреву сбоку. Внутр. J. Тепломассообмен 51, 5877–5886. DOI: 10.1016 / j.ijheatmasstransfer.2008.04.063

    CrossRef Полный текст | Google Scholar

    Ким С., Лоренте С. и Бежан А. (2009). Преходящее поведение васкуляризированных стенок при внезапном нагревании. Внутр. J. Therm. Sci . 48, 2046–2052. DOI: 10.1016 / j.ijthermalsci.2009.03.019

    CrossRef Полный текст | Google Scholar

    Левассер А., Лесаж П., Маргни М. и Самсон Р. (2013). Биогенный углерод и временное хранение решаются с помощью динамической оценки жизненного цикла. Дж.Инд. Ecol . 17, 117–128. DOI: 10.1111 / j.1530-9290.2012.00503.x

    CrossRef Полный текст | Google Scholar

    Меггерс Ф., Риттер В., Гоффин П., Бетчманн М. и Лейбундгут Х. (2012). Внедрение низкоэксергетических строительных систем. Энергия 41, 48–55. DOI: 10.1016 / j.energy.2011.07.031

    CrossRef Полный текст | Google Scholar

    Менихарт, К., и Крарти, М. (2017). Возможная экономия энергии за счет использования динамических изоляционных материалов для жилых домов в США. Сборка. Окружающая среда . 114, 203–218. DOI: 10.1016 / j.buildenv.2016.12.009

    CrossRef Полный текст | Google Scholar

    Мо, К. (2010). Термически активные поверхности в архитектуре . Нью-Йорк, Нью-Йорк: Princeton Architectural Press.

    Google Scholar

    Монкман, С., и Макдональд, М. (2017). Об использовании углекислого газа как средстве повышения устойчивости товарного бетона. J. Clean. Прод . 167, 365–375. DOI: 10.1016 / j.jclepro.2017.08.194

    CrossRef Полный текст | Google Scholar

    Парк, Б., Срубар, В. В., и Крарти, М. (2015). Анализ энергоэффективности ограждающих конструкций с переменным тепловым сопротивлением в жилых домах. Energy Build . 103, 317–325. DOI: 10.1016 / j.enbuild.2015.06.061

    CrossRef Полный текст | Google Scholar

    Пак, К.-С., Ким, С.-В., и Юн, С.-Х. (2016). Применение дышащих архитектурных элементов для естественной вентиляции пассивного солнечного дома. Энергии 9: 214. DOI: 10.3390 / en14

    CrossRef Полный текст | Google Scholar

    Пингоуд, К., Экхольм, Т., Сиеванен, Р., Хуусконен, С., и Хайнинен, Дж. (2018). Компромисс между запасами углерода в лесах и урожайностью в устойчивом состоянии — многокритериальный анализ. J. Environ. Менеджер . 210, 96–103. DOI: 10.1016 / j.jenvman.2017.12.076

    PubMed Аннотация | CrossRef Полный текст | Google Scholar

    Pittau, F., Krause, F., Lumia, G., and Habert, G.(2018). Быстрорастущие материалы на биологической основе как возможность для хранения углерода в наружных стенах. Сборка. Окружающая среда . 129, 117–129. DOI: 10.1016 / j.buildenv.2017.12.006

    CrossRef Полный текст | Google Scholar

    Помпони, Ф., Харт, Дж., Арехарт, Дж. Х. и Д’Амико, Б. (2020). Здания как глобальный поглотитель углерода? Проверка на реальность пределов осуществимости. One Earth 3, 157–161. DOI: 10.1016 / j.oneear.2020.07.018

    CrossRef Полный текст | Google Scholar

    Ри, ​​К.-N., И Ким, К. В. (2015). 50-летний обзор фундаментальных и прикладных исследований в области систем лучистого отопления и охлаждения для искусственной среды. Сборка. Окружающая среда . 91, 166–190. DOI: 10.1016 / j.buildenv.2015.03.040

    CrossRef Полный текст | Google Scholar

    Ри, ​​К.-Н., Олесен, Б. В., и Ким, К. В. (2017). Десять вопросов о системах лучистого отопления и охлаждения. Сборка. Окружающая среда . 112, 367–381. DOI: 10.1016 / j.buildenv.2016.11.030

    CrossRef Полный текст | Google Scholar

    Рек, М., Сааде, М. Р. М., Балукци, М., Расмуссен, Ф. Н., Биргисдоттир, Х., Фришкнехт, Р. и др. (2020). Воплощенные выбросы парниковых газов от зданий — скрытая проблема для эффективного смягчения последствий изменения климата. Заявл. Энергия 258: 114107. DOI: 10.1016 / j.apenergy.2019.114107

    CrossRef Полный текст | Google Scholar

    Рупп, С., и Крарти, М. (2019). Анализ многоступенчатых стратегий управления системами динамической изоляции. Energy Build . 204: 109459. DOI: 10.1016 / j.enbuild.2019.109459

    CrossRef Полный текст | Google Scholar

    Сеппяля, Дж., Хейнонен, Т., Пуккала, Т., Килпеляйнен, А., Маттила, Т., Мюллювиита, Т., и др. (2019). Влияние увеличения объемов заготовки и использования древесины на требуемые коэффициенты вытеснения парниковых газов древесными продуктами и топливом. J. Environ. Менеджер . 247, 580–587. DOI: 10.1016 / j.jenvman.2019.06.031

    PubMed Аннотация | CrossRef Полный текст | Google Scholar

    Шекар В. и Крарти М.(2017). Стратегии контроля динамических изоляционных материалов, применяемых в коммерческих зданиях. Energy Build . 154, 305–320. DOI: 10.1016 / j.enbuild.2017.08.084

    CrossRef Полный текст | Google Scholar

    Смит, К. Э., Смайли, Б. П., Магнан, М., Бердси, Р., Дуган, А. Дж., Ольгин, М., и др. (2018). Смягчение последствий изменения климата в лесном секторе Канады: пространственно конкретное тематическое исследование для двух регионов. Управление балансом углерода . 13:11. DOI: 10.1186 / s13021-018-0099-z

    PubMed Аннотация | CrossRef Полный текст | Google Scholar

    Тейлор, Б.Дж., Коуторн, Д. А., и Имбаби, М. С. (1996). Аналитическое исследование стационарного поведения динамических и диффузионных ограждающих конструкций зданий. Сборка. Окружающая среда . 31, 519–525. DOI: 10.1016 / 0360-1323 (96) 00022-4

    CrossRef Полный текст | Google Scholar

    Тейлор, Б. Дж., И Имбаби, М. С. (1997). Влияние термического сопротивления воздушной пленки на поведение динамической изоляции. Сборка. Окружающая среда . 32, 397–404. DOI: 10.1016 / S0360-1323 (97) 00012-7

    CrossRef Полный текст | Google Scholar

    Тейлор, Б.Дж. И Имбаби М. С. (1999). Динамическая изоляция в многоэтажных домах. Сборка. Серв. Англ. Res. Технол . 20, 179–184. DOI: 10.1177 / 014362449

    0403

    CrossRef Полный текст | Google Scholar

    Тейлор, Б. Дж., И Имбаби, М. С. (2000). «Экологический дизайн с использованием динамической изоляции», ASHRAE Transactions . 106, 15–28.

    Google Scholar

    Тейлор Б. Дж., Вебстер Р. и Имбаби М. С. (1998). Оболочка здания как воздушный фильтр. Сборка. Окружающая среда . 34, 353–361. DOI: 10.1016 / S0360-1323 (98) 00017-1

    CrossRef Полный текст | Google Scholar

    Ван, Дж., Ду, К., Чжан, К., Сюй, X., и Ганг, В. (2018). Механизм и предварительный анализ эффективности изоляции вытяжного воздуха ограждающей стены здания. Energy Build . 173, 516–529. DOI: 10.1016 / j.enbuild.2018.05.045

    CrossRef Полный текст | Google Scholar

    Вудс, А. В., Фицджеральд, С., и Ливермор, С. (2009).Сравнение требований к предварительному подогреву зимой для естественной вентиляции и вентиляции с естественным смешиванием. Energy Build . 41, 1306–1312. DOI: 10.1016 / j.enbuild.2009.07.030

    CrossRef Полный текст | Google Scholar

    Ву, Х., Лью, А., Меле, Т. В., и Блок, П. (2020). Анализ и оптимизация сводчатого перекрытия с ребрами жесткости для обеспечения динамических характеристик. Eng. Struct . 213: 110577. DOI: 10.1016 / j.engstruct.2020.110577

    CrossRef Полный текст | Google Scholar

    Чжан, К., Ганг, В., Сюй, X., Ли, Л., и Ван, Дж. (2019a). Моделирование, экспериментальные испытания и проектирование активной воздухопроницаемой стены с использованием низкокачественного отработанного воздуха. Заявл. Энергия 240, 730–743. DOI: 10.1016 / j.apenergy.2019.02.087

    CrossRef Полный текст | Google Scholar

    Чжан К., Ван Дж., Ли Л. и Ганг В. (2019b). Динамические тепловые характеристики и параметрический анализ ограждающих конструкций здания с рекуперацией тепла на основе воздухопроницаемых пористых материалов. Энергия 189: 116361.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *