Толщина стены наружной: Толщина кирпичных наружных стен

Толщина наружных стен дома с примером расчета на газобетоне

Методический материал для самостоятельного расчета толщины стен дома с примерами и теоретической частью.

Часть 1. Сопротивление теплопередаче – первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м2·°С/Вт), где:

δ – толщина материала, м;

λ — удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).

Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен

Материал стены

Сопротивление теплопередаче (м2·°С/Вт) / область применения (°С·сут)

конструкционный

теплоизоляционный

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Кирпичная кладка

Пенополистирол

5,2/10850

4,3/8300

4,5/8850

4,15/7850

Минеральная вата

4,7/9430

3,9/7150

4,1/7700

3,75/6700

Керамзитобетон (гибкие связи, шпонки)

Пенополистирол

5,2/10850

4,0/7300

4,2/8000

3,85/7000

Минеральная вата

4,7/9430

3,6/6300

3,8/6850

3,45/5850

Блоки из ячеистого бетона с кирпичной облицовкой

Ячеистый бетон

2,4/2850

2,6/3430

2,25/2430

Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) — предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Часть 2. Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.

Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче Rо2·°С/Вт) ограждающей конструкции рассчитывается как

Rо = R1+ R2+R3, где:

R1=1/αвн, где αвн – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R2 = 1/αвнеш, где αвнеш — коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R3 – общее термосопротивление, расчет которого описан в части 1 настоящей статьи.

При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи αвнеш равным 10,8 Вт/(м2·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Жилые здания для различных регионов РФ

Градусо-сутки отопительного периода, D, °С·сут

Нормируемые значения сопротивления теплопередаче , R, м2·°С/Вт, ограждающих конструкций для стен

Астраханская обл., Ставропольский край, Краснодарский край

2000

2,1

Белгородская обл., Волгоградская обл.

4000

2,8

Алтай, Красноярский край, Москва, Санкт Петербург, Владимирская обл.

6000

3,5

Магаданская обл.

8000

4,2

Чукотка, Камчатская обл.,

г. Воркута

10000

4,9

 

12000

5,6

Уточненные значения градусо-суток отопительного периода,  указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.

Часть 4. Расчет минимально допустимой толщины стены на примере газобетона для Московской области.

Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ – толщина стены, λ – теплопроводность материала, а R – норма теплосопротивления по СНиП.

Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.

  1. Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C: Rreq= 0,00035·5400 + 1,4 = 3,29 м2°C/Вт
  2. Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% = 0,147 Вт/м∙°С.
  3. Минимальная толщина стены из газобетонного камня D400: R·λ = 3,29·0,147 Вт/м∙°С=0,48 м.

Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм , либо блок с шириной 400 мм и последующим утеплением (минвата+оштукатуривание, например), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.

Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.

Материал

Толщина стены, м

Тепло-

проводность,

 Вт/м∙°С

Прим.

Керамзитоблоки

0,46

0,14

Для строительства несущих стен используют марку не менее D400.

Шлакоблоки

0,95

0,3-0,5

 

Силикатный кирпич

1,25

0,38-0,87

 

Газосиликатные блоки d500

0,40

0,12-0,24

Использую марку от D400 и выше для домостроения

Пеноблок

0,20-0.40

0,06-0,12

строительство только каркасным способом

Ячеистый бетон

От 0,40

0,11-0,16

Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен.

Арболит

0,23

0,07 – 0,17

Минимальный размер стен для каркасных сооружений

Кирпич керамический полнотелый

1,97

0,6 – 0,7

 

Песко-бетонные блоки

4,97

1,51

При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха.

Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене.

Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:

Rобщ= R1+ R2+…+ Rn+ Ra.l где:

R1-Rn — термосопротивления различных слоев

Ra.l – сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)

Пример расчета толщины минераловатного утеплителя для многослойной стены (шлакоблок — 400 мм, минеральная вата — ? мм, облицовочный кирпич — 120 мм) при значении сопротивления теплопередаче 3,4 м2*Град С/Вт (г. Оренбург).

R=Rшлакоблок+Rкирпич+Rвата=3,4

Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м2×°С/Вт

Rкирпич = δ/λ = 0,12/0,6 = 0,2 м2×°С/Вт

Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м2×°С/Вт (<3,4).

Rвата=R-(Rшлакоблок+Rкирпич) =3.4-1,09=2,31 м2×°С/Вт

δвата=Rвата·λ=2,31*0,045=0,1 м=100 мм (принимаем λ=0,045 Вт/(м×°С) – среднее значение теплопроводности для минеральной ваты различных видов).

Вывод: для соблюдения требований по сопротивлению теплопередачи можно использовать керамзитобетонные блоки в качестве основной конструкции с облицовкой ее керамическим кирпичом и прослойкой из минеральной ваты теплопроводностью не менее 0,45 и толщиной от 100 мм.

Необходимая толщина внешних стен для дома в Московской области

Главный вопрос любого застройщика:  Какой   должна   быть   толщина   однослойных стен без дополнительного утепления   из   дерева,   арболита, газобетона,   поризованного    крупноформатного   камня,  керамического одинарного эффективного рядового кирпича   в Московской области? 

В данном материале я попытался ответить на этот, волнующий всех частных застройщиков вопрос. Подчеркиваю, что в этом  материале речь идет исключительно об однослойных стенах без использования какого-либо утеплителя.

До 21.10.2003 г. основным документом, который регулировал строительные нормы, был СНиП II-3-79* Строительная теплотехника.

 В этом документе были приведены таблицы и приложения, в которых были указаны конкретные цифры и коэффициенты по теплопроводности различных материалов, а также требования по сопротивлению теплопередаче стен, окон и дверных проемов, перекрытий подвалов и чердаков. Формула определения расчетного сопротивления теплопередачи стены (R req) , которая использовалась при строительстве жилых домов, выглядит так:  

 R req = 1/

а1 + толщина материала в метрах / на коэффициент теплопроводности материала + 1/а2

 


  где а1 — это коэффициент теплообмена у внутренней поверхности ограждения, равный 8,7 Вт/мC;

где а2   —  это коэффициент теплообмена у наружной поверхности ограждения, равный 23 Вт/мC;

 

Исходя из этой формулы, для Москвы и Московской области норматив на сопротивление теплопередаче для стен высчитывался 

3,16 мC/Вт. Поэтому огромное количество частных застройщиков, начиная строить свои дома сейчас, пытаются рассчитать толщину стен в своем доме, опираясь именно на эту цифру. Несмотря на то, что СНиП II-3-79* Строительная теплотехника прекратил свое действие 21.10.2003 г. я сделал два расчета на базе этого уже не существующего СНиПа для того, чтобы показать, как реально выглядели сухие и правдивые цифры для толщины стены согласно этому СНиПу: 

       для   материалов в сухом состоянии; 

     для   материалов при условиях эксплуатации Б 

____________________________________________________________________________________

Расчетная толщина стены, при использовании данных о сопротивлении теплопередаче материалов  в сухом состоянии в соответствии с приложениями 1 и 2  СНиП II-3-79* Строительная теплотехника и ГОСТ 19222-84, ГОСТ 25485-89, ГОСТ 530-2007 (без учета штукатурного слоя):

1) сухая сосна плотностью 500 кг/м3 ,  теплопроводность в сухом состоянии =  0,09 Вт/мC:  

     1/8,7+ 0,27/0,09+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 27 см.

2) арболит плотностью 500 кг/м3 , конструкционный,  со средней плотностью свыше 500 до 850 кг/м3, ГОСТ 19222-84 «Арболит и изделия из него. Общие технические условия»; теплопроводность в сухом состоянии = 0,095 Вт/мC:  

     1/8,7+ 0,29/0,095+1/23=0,1149+3,0526+0,0434=        3,21 мC/Вт = стена 29 см.

3) газобетон плотностью 500 кг/м3 , конструкционно-теплоизоляционный, маркаD500 по ГОСТ 25485-89 БЕТОНЫ ЯЧЕИСТЫЕ; теплопроводность в сухом состоянии = 0,12 Вт/мC:  

     1/8,7+ 0,36/0,12+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 36 см.

  

 3) газобетон плотностью 400 кг/м3 , теплоизоляционный, марка D400 по ГОСТ 25485-89  БЕТОНЫ ЯЧЕИСТЫЕ; теплопроводность в сухом состоянии = 0,11 Вт/мC: 

     1/8,7+ 0,33/0,11+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 33 см.

Примечание: согласно ГОСТ 25485-89  БЕТОНЫ ЯЧЕИСТЫЕ (этот ГОСТ прекратил свое действие в части касающейся ячеистых бетонов автоклавного твердения 01.01.2009 г.) газобетон марки D400 являлся теплоизоляционным, и его нельзя было использовать для строительства несущих стен. Это было связано с низкой прочностью газобетона марки 

D400. У газобетона марки  D400 класс по прочности на сжатие был B1; B1,5    

 4) камень рядовой поризованный RAUF 14,5NF (510х253х219)  плотностью800 кг/м3, конструкционный — ГОСТ 530-2007 Кирпич и камни керамические. Общие технические условия; теплопроводность в сухом состоянии = 0,18 Вт/мC:  

     1/8,7+ 0,54/0,18+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 54 см.

5) керамический одинарный эффективный рядовой кирпич (250х120х65)  плотностью 1280 кг/м3

, конструкционный — ГОСТ 530-2007 Кирпич и камни керамические. Общие технические условия; теплопроводность в сухом состоянии = 0,41 Вт/мC:  

     1/8,7+ 1,23/0,41+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 1 м. 23см.

___________________________________________________________________________________

Прежде, чем привести расчеты о толщине стены при условиях эксплуатации Б, стоит пояснить, а что же это такое — условия эксплуатации Б?  Необходимо ли для вашего дома делать расчеты на основании условий эксплуатации Б или нет, зависит от того, какой у вас в доме влажностный режим, и в какой климатической зоне с точки зрения влажности, ваша местность находится. Все данные и таблицы об этом есть в  СНиП II-3-79* Строительная теплотехника, но я в этой статье, приведу лишь 2 таблицы:  

Режим 

Влажность внутреннего воздуха, %, при температуре 

  

до 12С 

св. 12 до 24С 

св. 24С 

Сухой 

До 60 

До 50 

До 40 

Нормальный

Св. 60 до 75 

Св. 50 до 60 

Св. 40 до 50 

Влажный 

Св. 75 

Св. 60 до 75 

Св. 50 до 60 

Мокрый 

Св. 75 

Св. 60 


 

Влажностный режим помещений
(по табл. 1)

Условия эксплуатации А и Б
в зонах влажности (по прил. 1*)

 

сухой 

нормальный

влажный 

Сухой 

А 

А 

Б 

Нормальный 

А 

Б 

Б 

Влажный или мокрый 

Б 

Б 

Б 

Хочу лишь отметить, что по СНиП II-3-79* Строительная теплотехника есть 3 зоны по влажности: сухая, нормальная и влажная. Московская область находится  в нормальной зоне по влажности и в ней расчеты принимаются при условиях эксплуатации Б.  

Расчетная толщина стены при использовании данных о сопротивлении теплопередаче материалов при условиях эксплуатации Бв соответствии с приложениями 1 и 2 СНиП II-3-79* Строительная теплотехника и ГОСТ 19222-84, ГОСТ 25485-89, ГОСТ 530-2007  (без учета  штукатурного слоя):

1) сосна плотностью 500 кг/м3 ,  теплопроводность в условиях эксплуатации Б = 0,18 Вт/мC:

       1/8,7+ 0,54/0,18+1/23=0,1149+3,0526+0,0434=          3,16 мC/Вт = стена 54 см.

2) арболит плотностью 500 кг/м3 , конструкционный — со средней плотностью свыше 500 до 850 кг/м3, СНиП II-3-79* Строительная теплотехника; теплопроводность при условиях эксплуатации Б = 0,19 Вт/мC:  

     1/8,7+ 0,57/0,19+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 57 см.

3) газобетон плотностью 500 кг/м3 , конструкционно-теплоизоляционный, маркаD500 по ГОСТ 25485-89 БЕТОНЫ ЯЧЕИСТЫЕ; теплопроводность при условиях эксплуатации Б (взята линейная интерполяция между марками 400 и 600  СНиП II-3-79* Строительная теплотехника) = 0,21 Вт/мC:  

     1/8,7+ 0,63/0,21+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 63 см.

3) газобетон плотностью 400 кг/м3 , теплоизоляционный, марка D400 по ГОСТ 25485-89 БЕТОНЫ ЯЧЕИСТЫЕ; теплопроводность при условиях эксплуатации Б = 0,15 Вт/мC:  

     1/8,7+ 0,45/0,15+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 45 см.

Примечание: согласно ГОСТ 25485-89  БЕТОНЫ ЯЧЕИСТЫЕ (в части, касающейся ячеистых бетонов автоклавного твердения, этот ГОСТ прекратил свое действие 01.01.2009 г.) газобетон марки D400 являлся теплоизоляционным, и его нельзя было использовать для строительства несущих стен. Это было связано с низкой прочностью газобетона марки D400. У газобетона марки  D400 класс по прочности на сжатие был B1; B1,5    

4) камень рядовой поризованный RAUF 14,5NF (510х253х219)  плотностью 800 кг/м3, конструкционный, ГОСТ 530-2007 Кирпич и камни керамические. Общие технические условия; теплопроводность при условиях эксплуатации Б (при влажности материала 2%)  = 0,24 Вт/мC:  

     1/8,7+ 0,72/0,24+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 72 см.

5) керамический одинарный эффективный рядовой кирпич (250х120х65)  плотностью 1320 кг/м3, конструкционный, ГОСТ 530-2007 Кирпич и камни керамические. Общие технические условия; теплопроводность при условиях эксплуатации Б ( при влажности материала 2%)         = 0,58 Вт/мC:  

     1/8,7+ 1,74/0,58+1/23=0,1149+3+0,0434=                   3,16 мC/Вт = стена 1 м. 74 см.  

Как видно из расчетов, несущие стены дома для вышеперечисленных строительных материалов при условиях эксплуатации Б должны быть толщиной 50 см. и более. Но ведь в реальности этого нет. Стены из сосны толщиной в 54 см. не встречаются даже в тайге, где лес бесплатный. Да и стены домов из арболита и газобетона толщиной 57 см. и 63 см. соответственно, тоже представить трудно. Тогда встает резонный вопрос: А какой толщины должны быть стены, и какими нормами надо руководствоваться при строительстве своего дома сегодня?. Застройщикам Московской области в наши дни  следует руководствоваться одним основным документом:

1. СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003

В нашей стране есть огромное количество жилых домов с толщиной стен в 2,5  керамического или силикатного полнотелого кирпича (62 см.) Такой кирпич имеет теплопроводность примерно 0,7 Вт/мC при условиях эксплуатации Б (при влажности материала 2%). Для того чтобы выполнить условия СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003 в наше время стены из такого кирпича в Московском регионе должны иметь ширину 2 м. 10 см. На этом простом примере видно, что современные требования к условиям энергосбережения почти в 4 раза жестче, чем старые. В Советском Союзе топливо стоило копейки, поэтому вопросам энергосбережения никто не уделял никакого внимания. Ну а как же миллионы россиян, живущих в домах со стенами из полнотелого кирпича толщиной 62 см.? Ведь у них в квартирах те же самые 20 градусов по Цельсию, да и жить  в кирпичных домах им так же комфортно, как и современным застройщикам. Просто все дело в том, что СНиП II-3-79* СТРОИТЕЛЬНАЯ ТЕПЛОТЕХНИКА, действовавший до 21.10.2003 г. и последний СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003 не распространяются на дома, построенные до их введения. Поэтому в нашей системе ЖКХ и осуществляется перекрестное субсидирование коммунальных услуг, в результате чего мы получаем среднюю температуру по больнице — тариф на отопление одинаков как для жителей старых домов, полностью не соответствующих современным требованиям, так и для домов новых серий и конструкций, полностью удовлетворяющих требованиям  СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003.

Итак, какие же требования к толщине стен предъявляет СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003 ?

     5.1 Нормами установлены три показателя тепловой защиты здания:  

     а) приведенное сопротивление теплопередаче отдельных элементов ограждающих конструкций здания;

     б) санитарно-гигиенический, включающий температурный перепад между температурами внутреннего воздуха и на поверхности ограждающих конструкций и температуру на внутренней поверхности выше температуры точки росы;

     в) удельный расход тепловой энергии на отопление здания, позволяющий варьировать величинами теплозащитных свойств различных видов ограждающих конструкций зданий с учетом объемно-планировочных решений здания и выбора систем поддержания микроклимата для достижения нормируемого значения этого показателя.

     Требования тепловой защиты здания будут выполнены, если в жилых и общественных зданиях будут соблюдены требования показателей «а» и «б» либо «б» и «в». В зданиях производственного назначения необходимо соблюдать требования показателей «а» и «б».

5.2 С целью контроля соответствия нормируемых данными нормами показателей на разных стадиях создания и эксплуатации здания следует заполнять согласно указаниям раздела 12 энергетический паспорт здания. При этом возможно превышение нормируемого удельного расхода энергии на отопление всего здания при соблюдении требований пункта 5.3., а именно: нормируемые значения сопротивления теплопередаче ограждающих конструкций должны соответствовать цифрам, приведенным в СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003, таблица 4. 

Также, в таблице 4 используется такое понятие как Градусо-сутки отопительного периода (ГСОП). Чтобы определить конкретную цифру ГСОП для Москвы, необходимо заглянуть в ТСН НТП — 99 МО. Для Москвы ГСОП (градусо-сутки отопительного периода) равны 5027 Ссут.

Таким образом, чтобы выполнить требования СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003 по тепловой защите своего дома, у вас есть два варианта:

Вариант №1. Вы должны полностью выполнить требования п.5.3 СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003, и ваши стены должны иметь сопротивление теплопередаче при условиях эксплуатации Б не ниже 3,16 мC/Вт (для Московской области). Помните, что вы должны все расчеты осуществлять на основе реальных расчетных показателей, подсчитанных при условиях эксплуатации Б. И если по таким расчетам, у вас будет получаться стена из какого-либо материала без утеплителя, скажем толщиной в 60 см., то вы должны сделать стену именно такой толщины. При соблюдении данного условия, к вам никто не будет предъявлять требований по  удельному расходу энергии на отопление.

Вариант №2. Вы можете не соблюдать требование по толщине стены, и ваши стены могут иметь сопротивление теплопередаче стены ниже 3,16 мC/Вт   (для Московской области).  Но в этом случае, вы обязаны выполнить подпункты б и впункта 5.1. СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003, а именно:

      б) санитарно-гигиенический показатель тепловой защиты здания, включающий температурный перепад между температурами внутреннего воздуха и на поверхности ограждающих конструкций и температуру на внутренней поверхности выше температуры точки росы;

     в) удельный расход тепловой энергии на отопление здания, позволяющий варьировать величинами теплозащитных свойств различных видов ограждающих конструкций зданий с учетом объемно-планировочных решений здания и выбора систем поддержания микроклимата для достижения нормируемого значения этого показателя.

Чтобы понять, какой все-таки должна быть толщина стен для домов в Московской области в соответствие с вариантом №2, необходимо пояснить, что такое уровеньсанитарно-гигиенического комфорта в помещении.

Температура внутренней поверхности дома не должна сильно отличаться от температуры воздуха в помещении. Разница должна быть менее заданного значения, т.е. нормируемого температурного перепада. Чем больше тепловое сопротивление ограждения, тем выше температура на его внутренней поверхности. Вот данные из СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003, таблица 5 (нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции)

 

Здания и помещения

Нормируемый температурный перепад в C для 


 

 

наружных стен

 

покрытий и чердачных перекрытий

 

перекрытий над проездами, подвалами и подпольями

зенитных фонарей

 

1. Жилые, лечебно-профилактические и детские учреждения, школы, интернаты

4,0

3,0

 

2,0

 

 
 

 

Из этой таблицы видно, что нормируемый температурный перепад для наружных стен = 4 C. Почему взяли именно такое значение нормируемого температурного перепада, а не какое-то иное? Все дело в том, что при таком значении нормируемого температурного перепада или при значении нормируемого температурного перепада для наружных стен меньше  4 C не происходит образования конденсата. Чтобы понять, почему это важно, необходимо вспомнить школьные знания. В школьном курсе физики изучалось такое понятии, как точка росы. Что это такое? Точка росы — это такое соотношение температуры и влажности воздуха, при котором на более холодной поверхности конденсируется вода из воздуха. Мы с этим явлением сталкиваемся постоянно в повседневной жизни —  например, запотевание посуды, вынутой из холодильника; или стекла автобусов, покрывающиеся инеем в холодную погоду и т.д. Выпадающий конденсат увеличивает влажность стен, тем самым снижая сопротивление теплопередаче этих стен и сокращая срок службы ограждающих конструкций дома. Именно поэтому, для того, чтобы в вашем доме соблюдались условия санитарно-гигиенического комфорта в помещении, значение нормируемого температурного перепада для наружных стен должно быть равно 4 C или должно быть ниже 4 C.

Если произвести соответствующие расчеты, то будет видно, что минимальное значение полного сопротивления теплопередачи наружной стены при условиисанитарно-гигиенического комфорта в помещении будет не более 1,2 м2.оС/Вт. Этот показатель можно применить  для большинства районов Центрального региона России. 

Таким образом, первым условием соответствия требованиям СНиП ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ 23-02-2003 по тепловой защите зданий по варианту №2 будет сопротивление теплопередаче стены вашего дома не ниже 1,2 м2.оС/Вт.

Вторым условием по варианту №2 будет выполнение требований по удельному расходу тепловой энергии всего здания. Согласно п.п. 21 п. П3.VI. Теплотехнические показатели ТСН НТП — 99 МО  в случае удовлетворения главному требованию по удельному расходу тепловой энергии системой теплоснабжения на отопление всего здания приведенное сопротивление теплопередаче для отдельных элементов наружных ограждений может приниматься ниже требуемых значений.  Т.е. фактическое сопротивление теплопередачи стены вашего дома, может быть согласовано в сторону уменьшения. На основании этого пункта, вы можете иметь сопротивление теплопередаче стены ниже

Как выбрать блоки и толщину стены

Разбираем советы и методические рекомендации по выбору блоков Сибит для строительства в Сибири. Учтите это, чтобы ваш новый дом получился надежным, теплым, долговечным и, что немаловажно, экономичным.

Как читать условную марку

Применение блоков

Блоки Сибит предназначены для кладки несущих и самонесущих элементов в наружных стенах зданий и сооружений, а также для межквартирных и межкомнатных стен.

Блоки Сибит для наружных стен

Как не ошибиться в расчете толщины наружной стены и как правильно выбрать блоки из газобетона для возведения ограждающих конструкций здания.

Для городов Сибири, находящихся в зоне умеренного климата, норма сопротивления теплопередаче наружных стен составляет 3,65 м2 °С/Вт*. Это значение учитывает возможные теплопотери, связанные с архитектурным проектом дома.

Например:

  • Отсутствие входного тамбура.
  • Увеличенная площадь остекления.
  • Эркеры, башенки и иные элементы сложной архитектуры.
  • Узлы и инженерные решения, приводящие к накоплению влаги.
  • Неэффективное расположение дома по сторонам света.
  • Неоднородность применяемых материалов (холодные включения).

Расчет толщины наружной стены и подбор блоков из газобетона для возведения ограждающих конструкций здания.

Обладая большим опытом в проектировании жилых домов для суровых условий Сибири, завод Сибит может рекомендовать несколько подходов к выбору характеристик блоков и расчету толщины стены из газобетона.

Кладка «Стандарт»

Решение для наружных стен домов, предназначенных для постоянного проживания.

Наружная стена 400 мм. Блоки Б4.
Марка плотности блоков D500.
Коэффициент теплосопротивления: 3,0 м2 °С/Вт.

Кладка «Стандарт»

Решение для наружных стен домов, предназначенных для постоянного проживания.

Кладка в два блока. Стена 500 мм. Блоки Б2 и Б3.
Марка плотности блоков D600.
Коэффициент теплосопротивления: 3,0 м2 °С/Вт.

Кладка «Стандарт»

Решение для наружных стен домов, предназначенных для постоянного проживания.

Кладка в два блока.
Стена 390мм (400 мм). Блоки Б1,5 и Б2,4.
Марка плотности блоков D500.
Коэффициент теплосопротивления: 3,0 м2 °С/Вт.

Кладка «Комфорт»

Решение для сохранения температуры в доме с существенной экономией на энергозатратах.

Кладка в два блока.
Стена 500мм. Блоки Б2 и Б3.
Марка плотности блоков D500.
Коэффициент теплосопротивления: 3,72 м2 °С/Вт.

Кладка «Комфорт+»

Решение для сохранения температуры в доме с существенной экономией на энергозатратах.

Стена 400 мм. Блоки Б4.
Марка плотности блоков D400.
Коэффициент теплосопротивления: 3,7 м2 °С/Вт.

Кладка «Комфорт+»

Решение для сохранения температуры в доме с существенной экономией на энергозатратах.

Стена 400 мм. Блоки Б4 и Б2.
Марка плотности блоков D400.
Коэффициент теплосопротивления: 3,7 м2 °С/Вт.

Кладка «Термолюкс»

Решение для строительства энергоэффективных домов.

Кладка в два блока. Стена 500 мм. Блоки Б2 и Б3.
Марка плотности блоков D400.
Коэффициент теплосопротивления: 4,58 м2 °С/Вт.

БЛОКИ СИБИТ ДЛЯ СТЕН ПОДВАЛОВ И ЦОКОЛЕЙ

Выбор блоков для возведения стен подземных и цокольных этажей.

При соблюдении технологии строительства подвала и цокольного этажа, и применении качественных гидроизоляционных материалов, получить сухой, теплый подвал и цоколь из газобетона – вполне решаемая задача.

При жестком фундаменте, исключающем неравномерные вертикальные деформации, стены подвала или цоколя могут быть выполнены из газобетонных блоков Б4 D600/B2,5-3,5 с кладкой в один блок.

Кладка для подвалов и цоколей

Оптимальное решение для сохранения сухости и тепла в помещении.

Наружная стена 400 мм.
Марка плотности блоков D600.
Класс прочности на сжатие B2,5-B3,5.

БЛОКИ СИБИТ ДЛЯ НЕСУЩИХ СТЕН

Как правильно выбрать блоки Сибит для кладки внутренних несущих стен.

Для внутренних стен важны следующие свойства:

  • Отличная звукоизоляция.
  • Крепежеспосбность.
  • Аккумулирующие свойства.
  • Возможность выполнения в стене трубопроводов, электропроводки, вентиляции и прочих инженерных коммуникаций.

Все эти свойства увеличиваются при увеличении плотности газобетонного блока. Поэтому оптимальным решением для внутренних несущих стен станут блоки с плотностью D600.

Если пролеты перекрытий более 6 м, необходимо выполнить проверку несущей способности в проектной организации.

Кладка с опиранием на стену перекрытия одной комнаты

Решение для внутренних несущих стен.

Стена 200-240 мм. Блоки Б2 и Б2,4.
Марка плотности блоков D600.
Класс прочности на сжатие B2,5-B3,5.

Кладка с опиранием на стену плит двух смежных комнат

Решение для внутренних несущих стен.

Стена 300-400 мм. Блоки Б3 и Б4.
Марка плотности блоков D500/D600.
Класс прочности на сжатие B2,5-B3,5.

ПЕРЕГОРОДОЧНЫЕ БЛОКИ СИБИТ

Как правильно выбрать блоки Сибит для возведения внутренних ненесущих стен: межкомнатных, межквартирных, а также для перегородок тамбуров, санузлов, котельных, лестниц и балконов.

Межквартирная или межкомнатная стена несомненно должна иметь следующие свойства:

  • Отличную звукоизоляцию.
  • Крепежную прочность.
  • Аккумулирующую способность.
  • Возможность выполнения в стене трубопроводов, электропроводки, вентиляции и прочих инженерных коммуникаций.

Все эти свойства увеличиваются при увеличении плотности газобетонного блока. Поэтому оптимальным решением для внутренних межкомнатных и межквартирных стен станут блоки с плотностью D600 и прочностью на сжатие В2,5.

Межкомнатные перегородки 100 мм

Решение для стены длиной до 6 м высотой до 3 м.

Межкомнатная стена 100 мм.
Марка плотности блоков D600.

Межкомнатные перегородки 120 мм

Решение для стены длиной до 8 м высотой до 3,5 м.

Межкомнатная стена 120 мм.
Марка плотности блоков D600.
Стандартная звукоизоляция.

Межкомнатные перегородки 150 мм

Решение для стены длиной до 10 м высотой до 4 м.

Межкомнатная стена 150 мм.
Марка плотности блоков D600.
Повышенная звукоизоляция.

Перегородки помещений

Решение для возведения ненесущих стен тамбура, санузлов, котельных, лестниц и балконов.

Перегородка 150 мм.
Марка плотности блоков D600.
Повышенная звукоизоляция.

  • Стеновые блоки Сибит продаются поддонами.
  • Деревянный поддон является невозвратной тарой.
  • Продукция на поддоне упаковывается в пленку.

толщина по ГОСТу. Кирпичная кладка :: SYL.ru

Несмотря на интенсивное развитие строительных технологий и появление новых стройматериалов, кирпич по-прежнему остается наиболее популярным и востребованным. Объяснить это просто: он обладает непревзойденными эксплуатационными характеристиками и долговечностью. Возведенная по всем правилам кирпичная стена, толщина которой рассчитана с учетом типа и назначения постройки, сможет прослужить десятки, а то и сотни лет.

кирпичная стена толщина

Достоинства кирпича

Прежде всего, кирпич – очень надежный материал. Если кирпичная кладка имеет нужную толщину и выполнена с соблюдением технологий, она сможет без проблем выдерживать значительные нагрузки от этажей и кровельной конструкции. Помимо этого, данный строительный материал обладает такими качествами, как низкая теплопроводность, хорошая звукоизоляция, высокая стойкость к деформации и изгибу.

Рассчитанная в соответствии с установленными стандартами кирпичная кладка не требует массивного фундамента, при этом она будет обладать отличной несущей способностью.

кирпичная кладка

Стандартные показатели толщины кирпичной стены

Толщина стен строения может варьироваться в довольно значительном диапазоне – от 12 до 64 см. Толщина кладки в два кирпича является самой распространенной в малоэтажном строительстве, так как способна обеспечить высокую устойчивость и надежность строения. Помимо этого, такие стены смогут гарантировать максимальную прочность даже жилым сооружениям высотой до 5 этажей. Толщина кирпичных стен, по ГОСТу, для строений в пределах этой этажности, расположенных в зонах умеренного климата, составляет минимум 51 см, а это и есть кладка в два кирпича.

Выбор типа кладки

При выборе толщины кладки обязательно учитываются следующие факторы:

  • Предполагаемая нагрузка. Помимо этажности строения, большую роль играет функциональное значение кладки, то есть нужно определиться, будет ли это наружная кирпичная стена, или внутренние несущие либо ненесущие перестенки.
  • Климатические условия. При строительстве любого здания обязательным условием является его способность обеспечивать необходимые температурные показатели. Другими словами, когда возводится кирпичная стена, толщина ее должна быть такой, чтобы она не промерзала и сохраняла тепло в помещении в холодное время года без использования отопительных приборов.
  • Четкое соответствие стандартам. Расчет кирпичной стены должен производиться в строгом соответствии с действующими ГОСТами, чтобы сооружение было полностью безопасным при эксплуатации.
  • Эстетическая составляюща. Различные виды кладки смотрятся по-разному. Наиболее элегантно выглядит тонкая кладка.
наружная кирпичная стена

Виды и функциональное предназначение различных кладок

  • Внутренние несущие кирпичные стены должны иметь толщину не менее 25 см. Это соответствует длине одного кирпича.
  • Перегородки, служащие для разделения помещения на зоны, согласно установленным стандартам, могут иметь толщину 12 см (кладка в полкирпича). Дополнительная жесткость таким конструкциям придается путем армирования швов с помощью обычной проволоки.
  • В регионах с холодными зимами сохранение тепла в жилых помещениях является приоритетной задачей. В таких случаях оптимальная толщина кирпичной стены составляет 64 см. При этом следует учесть, что общая масса строения увеличивается, поэтому фундамент должен быть более мощным.
  • При строительстве сооружений в южных регионах вполне применима кладочная схема в 1,5 кирпича.
  • Для постройки сараев и прочих подсобных помещений достаточная толщина кладки — один кирпич.
расчет кирпичной стены

Габариты кирпича

Современный рынок строительных материалов предлагает различные виды кирпича:

  • Одинарный. Типоразмеры: длина – 25 см, ширина – 12 см и высота — 6,5 см.
  • Полуторный – 25 х 12 х 0,88 см.
  • Двойной – 25 х 12 х 13,8 см.

С экономической точки зрения, наиболее эффективными вариантами являются полуторные и двойные кирпичи. Их размеры позволяют сооружать несущие стены или цоколь зданий большой толщины с использованием меньшего количества раствора, нежели требуется при строительстве аналогичных конструкций из одинарного кирпича. Внутренние ненесущие перегородки целесообразно строить из половинчатого либо одинарного кирпича. Согласно действующим стандартам, минимальная толщина внутренних кирпичных стен должна составлять 1/20-1/25 от высоты одного этажа. Например, при высоте этажа в 3 метра внутренние стены должны иметь толщину не менее 15 см.

толщина кладки

Параметры, зависящие от правильного расчета толщины кирпичных стен

  • Прочность, устойчивость и надежность строения. Следует учесть, что, когда строится несущая внутренняя или несущая кирпичная стена, толщина ее должна быть достаточной для обеспечения устойчивости дома. При этом стены должны выдерживать не только вес всех этажей и перекрытий, но и отрицательное внешнее воздействие природных явлений, таких как дождь, снег и ветер.
  • Долговечность строения. Данный параметр обеспечивают многие факторы, в том числе и правильный подбор материалов, соблюдение технологий строительства с учетом особенностей грунта и климата и т. д. Однако толщина и прочность стен стоят в этом списке на первом месте.
  • Тепловая и звуковая изоляция. Когда возводится кирпичная стена, толщина ее должна быть рассчитана таким образом, чтобы она могла оптимально обеспечивать изоляцию от внешних звуков и холода. Таким образом, чем толще стены, тем они эффективнее защищают от этих факторов. Однако, принимая во внимание стоимость строительных материалов, сооружать стены толще, чем предусматривают стандарты для определенных климатических зон, попросту нерационально.

Разновидности кирпича

По своей структуре кирпичи подразделяются на пустотелые и полнотелые.

Пустотелый кирпич имеет воздушные карманы. На его изготовление идет меньше материала, поэтому стоимость таких изделий ниже. При этом прочность пустотелого кирпича не хуже, чем у полнотелого, а теплосберегающие свойства даже выше из-за наличия воздушных пустот.

Полнотелый кирпич является более дорогостоящим вариантом по сравнению с пустотелым. Он характеризуется высокими прочностными характеристиками и низкой теплопроводностью.

Подбор оптимальной толщины кладки

 толщина кирпичных стен по госту

Казалось бы, достаточно сделать стены толще, и вопросы звукоизоляции и сохранения тепла в будущем доме будут решены. Однако следует учесть, что кроме внешних кирпичных стен в строениях большой площади должны быть возведены еще и внутренние несущие стены, а также не несущие перестенки. Толщина этих конструкций должна находиться в определенном соотношении с параметрами внешних несущих стен. Таким образом, расчет толщины всех планируемых стен должен производиться на стадии проектирования дома, а не в процессе строительства.

При выборе оптимальной толщины внешних стен учитывают такие факторы:

  • особенности климатической зоны;
  • характеристики места расположения будущего строения;
  • размер и планировка дома;
  • бюджет строительства.

При этом следует понимать, что толщина внешних стен не может быть менее 38 см, что соответствует кладке в полтора кирпича. В холодных климатических зонах рекомендуемая толщина кладки составляет 51-64 см.

Способы уменьшения толщины несущих стен при одновременном улучшении теплоизоляции

Любого человека, планирующего строительство собственного дома, волнует цена вопроса. Естественным желанием является удешевить этот процесс, но сделать это так, чтобы экономия не сказалась на долговечности, надежности и теплоизоляционных свойствах постройки.

Способ такой существует. Данная технология называется колодцевидной кладкой. Принцип ее заключается в строительстве несущих стен в два ряда, между которыми остается пустое пространство в 25 см, которое потом заполняется определенным пористым материалом. В качестве такого заполнителя используют:

  • легкую бетонную смесь;
  • шлак;
  • органический утеплитель;
  • керамзит;
  • пенополистирол.

Такая конструкция несущих стен позволяет сократить количество требуемого кирпича, снизить общий вес постройки, повысить уровень шумо- и теплоизоляции. Стены получаются толстыми, прочными и надежными.

несущие кирпичные стены

Дополнительная теплоизоляция

Для создания непреодолимого барьера для холода рекомендуется соорудить вентилируемый фасад с помощью специальных теплоизоляционных панелей, различных облицовочных материалов либо штукатурки.

При отделке наружной стены облицовочным кирпичом с внутренней стороны ее необходимо утеплить. Выполняется эта операция по следующей схеме:

  • Внутренние поверхности несущих наружных стен обшивают утеплителем.
  • На слой утеплителя монтируют пароизоляционную пленку.
  • Полученную конструкцию покрывают армирующей металлической сеткой и штукатурят (в качестве отличной альтернативы штукатурке можно применить гипсокартон).
  • Окончательным этапом является декоративная отделка внутренних стен. Выбор отделочных материалов обусловлен лишь вкусовыми предпочтениями владельцев дома.

Такая технология обеспечивает дому высокие эксплуатационные характеристики и при этом позволяет сократить расходы на строительство. Используя колодцевидную кладку наружных несущих стен с последующим дополнительным утеплением, удается снизить первоначальную себестоимость объекта в среднем на 20 %.

Толщина стен каркасного дома — зависимость и рассчет. |

 

Конструкция каркасной стены определяет её толщину, которая важна для выбора размера ленты фундамента. Также на толщину стены влияют выбор утепляющего материала, его ширина, выбор внутренней и наружной стеновой отделки. Какой может быть толщина каркасного дома? И как рассчитать её значение для различных вариантов утепления?

Конструкция стены и её толщина

Толщина стен каркасного дома определяется их конструкцией, наличием вентзазоров и выбором утеплителя. Традиционно каркасная стена состоит из следующих прослоек:

  • Наружная стеновая обшивка – её толщина может варьироваться от нескольких миллиметров (если это металлический профилированный лист) до нескольких сантиметров (если это более массивная обшивка – стружечная плита ОСБ или цементно-стружечные плиты ЦСП).
  • Вентиляционный зазор между наружной стеновой обшивкой и утеплителем – он составляет как минимум 30-50 мм и обеспечивает свободное движение воздуха.
  • Минеральный утеплитель обязательно применяют с мембранной защитой. Сама по себе мембрана не занимает много места. Её ширина измеряется микронами. А вот минеральный утеплитель – определят размер стены, поскольку является самым толстым материалом стенового «пирога». Ширина утепления варьируется от условий климата и предназначения дома (сезонности проживания – круглый год или только лето). Обычно она составляет хотя бы 50 мм для летнего строения и более 150 мм – для круглогодичного. Толщина стены каркасного дома для постоянного проживания – больше, поскольку строение эксплуатируется в период холода и зимних температур. При необходимости теплоизолятор кладут в два слоя, увеличивая толщину наружной стены. Тогда толщина утепления каркасного дома может увеличиваться вдвое.
  • Внутренняя стеновая обшивка – её толщина также зависит от выбора стенового материала. Внутренняя обшивка может быть толще наружной, если она выполнена из деревянных материалов (блок-хауса, бруса). Возможна тонкая внутренняя обшивка – фанерой или панелями МДФ.
В разрезе устройство каркаса.

А теперь рассмотрим подробнее как строить каркасный дом, какая толщина стен будет у постройки?

Толщина утеплителя

При расчётах толщины стен начинают с выяснения, какая необходима толщина утеплителя в каркасном доме. От него ведутся все другие расчёты, поскольку вид утеплителя определяет не только его размеры, но также выбор внутренней конструкции самой стены. Ватный утеплитель требует обустройства вентиляционного зазора. Пенополистирольный или пенополиуретановый утеплители выполняются без пустотелой щели в стене. Поэтому начнём с выбора теплоизолятора.

 

Утепление минеральной ватой

Традиционное утепление каркасной стены – минеральная вата. Она имеет высокие характеристики теплосбережения и среднюю долговечность. Маты из минеральной ваты ограничивают 99% потерь тепла и пропускают десятые доли Вт через 1 кв. м площади.

На заметку

Главным показателем способности изолировать внутреннее тёплое помещение является характеристика теплопроводности. Для стекловаты она составляет 0,035-0,055 Вт/м°С, для минеральной базальтовой ваты – 0,039-0,045 Вт/м °С. Это обозначает, что с 1 кв. м стены может утечь не более 0,055 (или 0,045 – для базальтовой ваты) Вт тепла.

Разбег в характеристиках теплопроводности определяется структурой и жёсткостью материала. Если минвата имеет форму жёстких плит, предназначенных под штукатурку, то она отличается плотной структурой и большей теплопроводностью (0,04-0,045 Вт/м°С). Если же минвата поставляется в форме сжимаемых матов, её структура – более пористая. У такой минеральной ваты показатели теплопроводности соответствуют нижней границе – 0,035 – 0,039 Вт/м°С

 

Для эффективного утепления выбирают материал с возможно более низкой характеристикой теплопроводности. В зависимости от этой характеристики рассчитывают его толщину. Какая толщина утеплителя для каркасного дома будет нужна для проживания круглый год?

Правильный пирог с утеплением.

Выбрать толщину можно по специальным таблицам, в которых указывается ширина теплоизолятора в зависимости от уличных температур, -5°С, -10°С, -15°С или -20°С. Толщина минваты каркасного дома выбирается с учётом крайних зимних температур. К примеру, если стабильно в январе месяце наблюдается температура -10, но иногда бывает -20 или -25, то утеплитель рассчитывают на самую низкую температуру холодного месяца.

Таблица – толщина минваты для утепления стен каркасного дома

РегионгородТолщина минваты
Магадан170-180 мм
Иркутск160 -170 мм
Новосибирск150-160 мм
Екатеринбург140-150 мм
Санкт-Петербург130-140 мм
Краснодар90-100 мм
Сочи70-80 мм

Расчет утеплителя из минваты

S = теплосопротивление стены х коэффициент теплопроводности.

 

Величина теплосопротивления стены выбирается в зависимости от региона строительства. Она учитывает уровень зимних температур и крайних самых низких холодов. Коэффициент теплопроводности является характеристикой материала утеплителя. Он указывается на упаковке товара, также его значение можно определить по справочным таблицам.

Таблица – теплосопротивление стен дома по регионам

РегионгородНеобходимое сопротивление передаче тепла, м2·°C/Вт
Якутск5,28
Магадан4,33
Иркутск4,05
Новосибирск3,93
Екатеринбург3,65
Владивосток3,25
Санкт-Петербург3,23
Ростов-на-Дону2,75
Краснодар2,44
Сочи1,79

На примере разберем, как ведётся строительство каркасных домов во Владивостоке. Как правильно рассчитывается толщина утеплителя для стен каркасного дома, если утепление выполняется минватой с коэффициентом теплопроводности 0,04 Вт/м°C.

Для Владивостока теплосопротивления стен жилого строения должно быть равным 3,25 м2°C/Вт. Итого получаем: 0,04 х 3,25 = 0,13 м или почти 130 мм.

Большинство производителей выпускают минеральную вату в двух вариантах толщины – 50 или 100 мм. Поэтому необходимо использовать два слоя утеплителя – один по 100 мм., а другой по 50 мм.

При этом дом будет утеплён с запасом толщины теплоизолятора в 20-30 мм. 100 мм минеральной ваты заменяют по теплоёмкости 2 м. кирпичной стены или 400 мм. дерева. Соответственно 30 мм. дополнительного утепления заменят 600 мм. кирпичной кладки.

 

Утепление пенополистиролом

Этот вид утепления часто используется при каркасно-щитовом строительстве, когда стену дома сооружают из готовых блоков, утепленных в процессе производства на заводе. Иногда пенопластом утепляют стены каркасных домов, используя его в дополнение к минвате. Какой толщины должны быть стены каркасного дома? Для тёплой зимы в южных регионах используют пенопласт толщиной 70 мм. Для Москвы – необходимы плиты толщиной 150 мм.

Постройка утеплена пеноплексом.

Для стенового утепления рекомендуется использовать пенопласт плотностью не менее 25 кгм3. Эта характеристика также влияет на выбор ширины плиты. Для сравнения: утепление пенопластом плотностью 25 кгм3 и шириной 100 мм эквивалентно утеплению пенопластом плотностью 35 кгм3 толщиной 50 мм. Плотностью и шириной варьируют, выбирая оптимальный вариант материала.

Пенополистирол имеет практически такие же характеристики теплопроводности, что минеральная вата. Они лежат в пределах 0,03- 0,045 Вт/м°С. Расчёт толщины утепления полистиролом будет аналогичным. Необходимо умножить теплосопротивление стены вашего региона на характеристику теплопроводности.

Для Подмосковья получим 0,035 х 3,9 = 140 мм утеплителя.

На заметку

При заказе плит пенопласта можно оговорить толщину их распиливания. Таким образом, можно выполнить утепление в требуемом размере – 115 мм, без переплаты за лишние миллиметры материала.

Пенопласт используется в утеплении полов. Поэтому его толщина важна, когда определяется толщина плиты каркасного дома. Которая влияет на его теплоёмкость, возможность сохранять внутри тепло. Чем сильнее уличный холод, тем больше должна быть толщина утепляющего слоя.

Вентиляционный зазор

Паропроницаемость стены – характеристика, которая показывает наличие естественной вентиляции. Если паропроницаемость низкая или отсутствует, то тогда есть необходимость сооружения принудительной вытяжки. Стенам из натуральных материалов свойственна естественная паропропускная способность. Говорят, что они «дышат». У многих искусственных материалов, пенопластовых утеплителей, паропроницаемости нет. Поэтому они блокируют газообмен через стену.

Устройство вентзазора в каркасном доме.

Стена, сделанная только из минеральной ваты, имеет высокую паропроводящую способность. При этом в утеплителе скапливается конденсат, который нарушает теплопроводные свойства утеплителя. Для того чтобы стена не пропускала холод, необходимо правильно построить пирог стены каркасного дома. Для защиты от паров из дома делается пароизоляция, снаружи монтируется мембранная пленка и  предусматривается наличие вентиляционного зазора.

Хороший каркасный дом утепляется минеральной ватой с обязательным устройством вентиляционной щели между утеплителем и наружной стеновой обшивкой. При этом снаружи утеплитель закрывают пароизолирующей мембраной, которая предупреждает проникновение пара в утеплитель. Но не препятствует выходу возможного пара наружу, из утепляющего слоя. Таким образом, вентзазор в каркасном доме является щелью, через который влажный пар может выйти из стены.

Также вентзазор предупреждает конденсат на внутренней стороне облицовки.

Необходимость в использовании вентзазора

  • Если минеральный утеплитель теряет свои теплосберегающие свойства при намокании.
  • Если наружная отделка выполнена из материала, который не пропускает пар. В таком случае каркасный дом без вентзазора будет конденсировать влагу с внутренней стороны сайдинга.

Толщина вентиляционного пространства между утеплителем и наружной обшивкой определяется его расположением, и длиной стены, чем длиннее, тем шире должен быть вентзазор. Ширина вентзазора в каркасном доме снаружи составляет минимум 25 мм. При большой площади стены она должна составлять минимум 50 мм.

Правильное устройство.

Иногда в целях удешевления строения используют утепление каркасного дома пеноплексом. Этот утеплитель является воздухонепроницаемым, поэтому не требует наличия воздушного вентиляционного зазора. Нужен ли вентзазор в каркасном доме?

  • Материал утеплителя паронепроницаем.
  • Наружная стеновая отделка пропускает пар. Минвату можно закрывать штукатуркой без вентзазора, если штукатурная смесь имеет высокую паропроницаемость, выше, чем у минваты.

 

В таком случае, толщина утепления стен каркасного дома не требует установки вентиляционного зазора внутри и снаружи.

Толщина стен

Внешняя стеновая отделка выполняет две важные функции. Она защищает внутреннюю стену от осадков и поддерживает прочность дома, усиливает каркас. Выбор стеновой обшивки учитывает не только характеристики водо- и влагостойкости, а также прочность на изгиб, способность противостоять ветровым нагрузкам.

Внешняя стеновая обшивка

Наружная стеновая обшивка может быть выполнена различными материалами. Используются плиты ОСБ на каркасный дом, металлопрофиль, цементностружечные плиты, деревянные доски – вагонка, блок-хаус, брус. Каждый из них имеет собственные характеристики и размеры.

Изоплат для обшивки.

Чаще других используются плиты ОСБ – в силу ценовой доступности. Выбор их толщины определяется этажностью строения. Толщина ОСП для стен каркасного дома в одноэтажных постройках составляет минимум 9 мм. Для двухэтажных домов она должна быть не меньше 12 мм. Таким образом, в каркасном доме толщина ОСБ определяет его прочность, долговечность, устойчивость к ураганному ветру.

Внутренняя стеновая обшивка

Внутренняя обшивка стены может выполняется листовыми материалами. Это может быть ОСБ толщиной 9 или 12 мм. Она также может быть собрана из тонких материалов – фанеры, МДФ, толщина которых не превышает 5 мм. Она может быть сделана из гипсокартона, толщина листов которого составляет 12-13 мм.

Расчеты толщины

А теперь приведём пример, какой должна быть толщина стен каркасного дома для зимнего проживания в Подмосковье.

 

Толщина утеплителя, определённая ранее – 200 мм. Наружная обшивка дома ОСБ толщиной 12 мм. Наружная штукатурка – до 5 мм. Вентиляционный зазор – 70 мм. Внутренняя стеновая обшивка – гипсокартон – 13 мм. Итого после суммирования толщины всех материалов каркасного «пирога» толщина стены получается равной почти 230 мм.

 

расчет стен дома для строительства

Толщина стен дома из газобетона – очень важный параметр, который нужно уметь правильно рассчитать, ориентируясь на действующие ГОСТы, СНиПы, особенности климата в регионе строительства, используемые отделочные материалы и т.д. Ввиду того, что пористый бетон демонстрирует прекрасные теплосберегающие характеристики, оптимальная толщина газобетона обычно в разы меньше в сравнении с другими материалами при условии тех же свойств.

Газобетон производят из цемента, песка, воды, алюминиевого порошка, который выступает в роли газообразователя, благодаря чему внутри структуры камня формируются воздушные поры. Наличие воздушных пузырей в застывшем материале уменьшает плотность и вес блока, повышает тепло/звукоизоляционные характеристики.

При выборе газобетона для строительства важно найти баланс между прочностью и теплосбережением – плотные и прочные блоки хуже сохраняют тепло, материал с большим числом пор гарантирует более высокий уровень теплосбережения, но недостаточно прочен для строительства. Таким образом, марки с низкой плотностью используют для изоляции, высокой – строительства.

плюсы и минусы газобетонаплюсы и минусы газобетона

Выбор газобетона для строительства дома:
  • До D350 – самонесущий утеплитель, теплоизоляционный газобетон.
  • D400-D600 – теплоизоляционно-конструкционные блоки.
  • D700 и выше марки – конструкционные блоки (для строительства).

Обычно газобетон не утепляют – стандартной толщины стен из газобетона марки D400-D500 с оптимальной прочностью и теплопроводностью на уровне 0.117-0.147 Вт/(м*К)) вполне достаточно и без утеплителя. Если же дом возводится в особо холодных регионах, то тут нужно выполнить верные расчеты и дополнить газобетон подходящим по показателям теплоизоляционным материалом.

Плюсы и минусы блочного материала

Как и любой другой строительный материал, газобетон обладает определенными преимуществами и недостатками. Ключевой фактор в определении главных особенностей газобетонных блоков – их особая пористая структура, которая влияет как на процесс монтажа, так и на эксплуатацию.

толщина газобетонных блоковтолщина газобетонных блоков

Главные достоинства газобетонных блоков:
  • Высокие показатели теплосбережения – благодаря наличию воздуха в структуре материала он прекрасно сохраняет тепло внутри здания, не требуя дополнительной изоляции и позволяя экономить на отоплении при проживании в доме до 30-40%.
  • Прекрасная звукоизоляция, что также важно для жилых домов.
  • Огнестойкость, безопасность и экологичность – для людей газобетон не представляет никакой опасности, плохо горит, в процессе эксплуатации не выделяет токсинов и т.д.
  • Простой, легкий и недорогой монтаж – за счет большого размера, идеальной геометрии и малого веса блоков строить дом можно своими руками, не привлекая дополнительно сотрудников или спецтехнику.

какой толщины должны быть стены из газобетонакакой толщины должны быть стены из газобетона

  • Возможность реализовать любой проект – за счет того, что газобетон хорошо режется и пилится, создание доборных блоков осуществляется быстро и без усилий.
  • Широкий выбор отделочных материалов – для защиты газобетона снаружи и внутри, и также придания ему эстетичного внешнего вида.
  • Малый вес всей конструкции, что позволяет сэкономить на фундаменте, некоторых элементах.
  • Возможность еще понизить теплопотери, выполняя кладку блоков не на цементный раствор, а на специальный клей, исключающий вероятность появления мостиков холода.

Из недостатков материала стоит отметить такие, как сравнительно невысокая прочность (поэтому из газобетона строят предпочтительно малоэтажные здания и перегородки внутренние в высотках), гигроскопичность (способность впитывать воду высокая, поэтому отделывать дом из газоблоков нужно правильно подобранными материалами, ассортимент которых сегодня достаточно велик).

Толщина несущих стен

Определяя, какая оптимальная толщина стены должна быть у дома в определенном регионе, желательно предварительно выполнить геологические изыскания, принять во внимание все климатические факторы, изучить свойства выбранной марки газобетона, других материалов, использующихся в строительстве. Обязательно выполняют расчет, составляют проект.

Что учитывают при определении толщины стены:
  • Требования и нормы СНиП 23-02-2003, который дает все нужные данные для экономии энергии и поддержания комфортной температуры внутри помещений, а также регламентирует все правила для здания с отоплением, постоянным проживанием.
  • Стойкость выбранной марки газобетона к температурам, морозу, влаге и т.д.
  • Материалы, используемые для защиты газобетона от увлажнения, утепления стен и т.д.
  • Планируемые расходы на отопление (и расчеты, стоит ли на этапе строительства вкладывать средства в дополнительные меры и материалы, чтобы потом экономить определенную сумму).

вариант отделки и утепления газобетонных стенвариант отделки и утепления газобетонных стен

Определяясь с тем, какой толщины должна быть газобетонная стена, лучше всего выполнять теплотехнические расчеты по существующим правилам, что делают специалисты.

Если же оплачивать работу квалифицированного мастера не хочется или нет возможности, можно попробовать высчитать все самостоятельно.

Существующие нормы в строительстве из газобетона:
  • Минимальная толщина любых ограждающих конструкций для домов, дач сезонного проживания – 20 сантиметров для самонесущих конструкций из блока марки D400. Но специалисты советуют останавливаться, все-таки, на минимальных 30 сантиметрах.
  • При наличии подвала, цокольного этажа – из-за высоких нагрузок лучше брать D500-D600 с прочностью класса В3.5-В5, стены делать толщиной 40 сантиметров.
  • Минимальная толщина внутренних перегородок из блока марки D500 должна составлять 10-15 сантиметров, межквартирных – 30 сантиметров.
  • Несущие стены из газоблоков автоклавного твердения должны быть толщиной минимум 37.5 сантиметров, самонесущих – от 30 сантиметров.
  • Объекты в теплом климате, одноэтажные – толщина стен может быть 25 сантиметров.

параметры газобетонных блоковпараметры газобетонных блоков

Толщина перегородочных стен

Толщина стены из газобетона внутри помещения (перегородки) может быть меньше, чем толщина несущей, так как нагрузки тут меньшие. В расчетах учитывают несущую возможность материала и высоту перегородки. Так, если высота стены не превышает 3 метров, то достаточно будет толщины в 10 сантиметров. Если же высота доходит до 5 метров, лучше использовать блоки толщиной в 20 сантиметров.

При определении показателя лучше выполнять точные расчеты, но если нет, можно воспользоваться стандартными значениями. Перегородки несущего типа строят из блоков марок D500/D600 толщиной 7.2-20 сантиметров. Обычные перегородки можно возводить из блоков марок D350/D400 для улучшения тепло/звукоизоляционных характеристик.

При длине перегородки 8 метров и больше, высоте от 4 метров желательно обустройство армирующего пояса для повышения прочности и надежности всей конструкции.

сравнение материалов при выборе толщины стенсравнение материалов при выборе толщины стен

Толщина стен для разных регионов

Рассчитывать, какой толщины должны быть внутренние и несущие стены, лучше специалисту, который знает все нормативы и требования, сможет учесть особенности и нюансы. Обычно при выборе толщины ориентируются на требуемые показатели теплосбережения и прочности. Основные расчеты касаются несущих стен, внутренние ненесущие перегородки можно делать тоньше.

Общие советы от мастеров такие: для средних регионов (по Москве и ближайшим городам) достаточно стандартных 40 сантиметров толщины, в теплых регионах берут за основу 30 сантиметров, в холодных – от 50 сантиметров. Но это достаточно усредненные показатели, ориентироваться желательно на максимально точные расчеты.

Принято брать за основу такие данные: для средней полосы России сопротивление стен теплопередаче, согласно СНиП, должно быть равным 3.2 Вт/м*С. Для регионов холоднее показатель выше, соответственно, теплее – ниже. Нужный уровень теплозащиты (указанный показатель в 3.2) дают такие варианты: 30 сантиметров толщины стены из блоков D300, 40 сантиметров из D400, 50 сантиметров из D500.

теплозащита для разных регионовтеплозащита для разных регионов

На общий показатель тепловой эффективности здания влияют толщина стен, утепление (не только стен, но и перекрытий, кровли, пола, армопоясов, окон, перемычек). Через недостаточно толстые стены здание теряет около 30-40% тепла. Для домов с постоянным проживанием оптимальным считают выбор блоков D400/D500 и толщину стен до 40-50 сантиметров. Дачный дом можно строить из блоков марки D400 с толщиной стен 25-30 сантиметров.

Если планируется утеплять стены, то они могут быть тоньше. Тут важно получить в итоге должный показатель теплозащиты, основывающийся на значениях газобетона и выбранного утеплителя (в его качестве могут выступать пенопласт, минеральная вата и т.д.). Таким образом, повышаются затраты на утеплитель, но понижаются на газобетон.

Чем выше значение теплозащиты материала, тем лучше. Показатели указаны в таблице:

Таблица (коэффициент теплопроводности газобетона)Таблица (коэффициент теплопроводности газобетона)

Это таблица с коэффициентами теплопроводности газобетона разных марок (тут работает правило чем ниже, тем лучше):

сопротивление теплопередачесопротивление теплопередаче

Для понимания алгоритма выполнения расчетов можно рассмотреть такой пример. При желании построить дом в Москве и окрестностях тепловое сопротивление должно быть R=3.28. Применяется автоклавный газобетон D500 толщиной 30 сантиметров, используется утеплитель. Как найти искомый параметр:
  • Толщина стены из газобетона (0.3 метра) делится на коэффициент теплопроводности марки D500 (0.14) – тепловая сопротивляемость голой стены составляет R=0.3/0.14=2.14 м2*С/Вт.
  • От нужного значения нужно отнять полученный показатель: 3.28-2.14=1.14. Это тепловая сопротивляемость утеплителя.
  • Минеральная вата, к примеру, дает коэффициент теплопроводности 0.04. Если умножить 0.04 на 1.14, получается искомая толщина утеплителя: 0.04х1.14=0.0456=45 миллиметров=4.5 сантиметра. То есть, толщина утеплителя при стенах 30 сантиметров должна составлять около 5 сантиметров.

Зная стандартные значения, можно легко выполнить расчеты для любых марок газобетонных блоков и видов утеплителя.

Требования ГОСТов

Все строительные работы с использованием пористого легкого бетона должны выполняться в четком соответствии со специальными требованиями.

Главные рекомендации по ГОСТам и СНиПам:
  • Максимальная высота стены определяется только расчетным путем.
  • Высота и этажность зданий строго ограничены: из автоклавного газобетона допускается возводить здания до 5 этажей и не более 20 метров в высоту. Если постройки девятиэтажные, то самонесущие стены не должны быть выше 30 метров. Пеноблоки используются для строительства здания из трех этажей при условии максимальной высоты в 10 метров.
  • Важно соблюдать показатели прочности с учетом этажей: блоки класса В3.5 используют для 5-этажных объектов, для 2-3-этажных домов подойдут блоки классов В2 и В2.5 соответственно.
  • Для самонесущих стен используют блоки прочности класса В2-2.5.

выбор толщины стен из газобетонавыбор толщины стен из газобетона

Отзывы строителей

Задумываясь о том, какой толщины строить стены, желательно обратить внимание и на отзывы тех, кто уже работал с материалом и может делать определенные выводы.

Несколько полезных рекомендаций для создания прочного теплого дома:
  • Лучше всего использовать для кладки блоков специальный клей, который наносят на поверхность материала тонким слоем. Важно соблюдать оптимальную толщину слоя шва, так как в противном случае он может пропускать холод и понизить теплоизоляционные характеристики дома.
  • В холодных регионах дополнительно к выбору оптимальной толщины стены нужно позаботиться о теплоизоляции (с обеих сторон желательно).
  • При выполнении расчетов прочности берут во внимание дополнительную массу, которую создают теплоизоляционные материалы.

виды внешней отделки газобетонавиды внешней отделки газобетона

Дополнительные факторы для поиска оптимальной толщины стен:
  • Сезонность – для дачных домов будет достаточно толщины стен в 20 сантиметров, которые успешно выдержат массу кровельного перекрытия, защитят от осенней и весенней прохлады. Если жить планируется круглый год, то толщина должна составлять минимум 40 сантиметров.
  • Все несущие стены делают на 10-15 сантиметров больше толщины внутренних стен.
  • Наращивая высоту дома, выбирают блоки с более высокой прочностью. Для одноэтажного объекта достаточно стены от 25 сантиметров из конструкционно-изоляционных блоков, для двух и более этажей выбирают конструкционные блоки и толщину стен в 30-40 сантиметров (велика вероятность необходимости в теплоизоляции).
  • Сколько длится холодное время года, какова среднесуточная температура – все это требует учета при выборе толщины стен и теплоизоляции. Значение всегда выше для сибирских регионов.
  • Уменьшение толщины блоков осуществляется пропорционально увеличению слоя теплоизоляции или выбору более эффективного материала.

Заключение

Толщина газобетона – чрезвычайно важный параметр, определять который нужно по правилам и с учетом максимально широкого круга факторов. Самые главные из них – коэффициент теплопроводности материалов, климатические особенности региона, наличие/отсутствие слоя теплоизоляции и его характеристики, особенности конструкции и проекта здания. Лучше доверить расчеты специалистам либо ориентироваться на принятые стандарты.

Рекомендуемая толщина стенок для 3D-печати | Fictiv

Перейти к основному содержанию
>
>
>

Главная навигация

  • Что такое Fictiv?
  • Руководство по аппаратному обеспечению
  • Подписывайся
  • Получить цитату

Главная навигация

  • Что такое Fictiv?
  • Руководство по аппаратному обеспечению
  • Подписывайся
  • Получить цитату

Поиск

R & D
  • Руководство по акселераторским программам
  • уроков из Nebia на R & D
  • Как практиковать творчество: инструменты для начала
  • Справочник Fictiv по стратегическим аппаратным продуктам R & D
  • Решение проблем для исследований и разработок
План
  • Как создать документ с требованиями к продукту
  • Как построить спецификацию
  • Как правильно выбрать и найти материалы
  • Как построить MVP
  • Как написать ERD
  • уроков от Handground по дизайну краудсорсинга
  • уроков Lockitron по простому дизайну продукции
  • на проектирование для опыта, а не разрушения
  • Как сообщить цвет, материал и отделка
  • Ускоренный курс по сертификации бытовой электроники
  • максимизировать влияние ваших прототипов
  • Дизайн для (Бережливого производства)
  • Руководство по патентам на аппаратные продукты
  • Применение человеко-ориентированного дизайна
дизайн

Механизмы и особенности

  • Как спроектировать оснастку с защелкой
  • Как проектировать живые петли
  • Советы по снятию напряжений
  • Руководство по ребрам и клиньям для 3D-печатных деталей
  • Методы резьбовой блокировки
  • Как спроектировать сборку для 3D-печати
  • Входы и выходы термоформования

DFM и DFA

  • Разработка условий производства
  • Конструкция для разборки в электронике
  • Филе: когда использовать ‘Em, когда терять‘ Em
  • Полезные ограничения дизайна против чрезмерных ограничений

3D моделирование

  • 3D Типы файлов
  • Список программ САПР
  • Как вырезать 3D-модели
  • Условия проектирования САПР
  • Как экспортировать файлы САПР для 3D-печати
  • 3 шага от цифрового к физическому
  • Как исправить типичные проблемы моделирования поверхности

Механические компоненты

  • Примеры конструкций легких труб
  • Дизайн корпуса 101
  • Руководство по отличному дизайну кнопок
.

Дизайн корпуса 101 | Fictiv

Перейти к основному содержанию
>
>
>

Главная навигация

  • Что такое Fictiv?
  • Руководство по аппаратному обеспечению
  • Подписывайся
  • Получить цитату

Главная навигация

  • Что такое Fictiv?
  • Руководство по аппаратному обеспечению
  • Подписывайся
  • Получить цитату

Поиск

R & D
  • Руководство по акселераторским программам
  • уроков из Nebia на R & D
  • Как практиковать творчество: инструменты для начала
  • Справочник Fictiv по стратегическим аппаратным продуктам R & D
  • Решение проблем для исследований и разработок
План
  • Как создать документ с требованиями к продукту
  • Как построить спецификацию
  • Как правильно выбрать и найти материалы
  • Как построить MVP
  • Как написать ERD
  • уроков от Handground по дизайну краудсорсинга
  • уроков Lockitron по простому дизайну продукции
  • на проектирование для опыта, а не разрушения
  • Как сообщить цвет, материал и отделка
  • Ускоренный курс по сертификации бытовой электроники
  • максимизировать влияние ваших прототипов
  • Дизайн для (Бережливого производства)
  • Руководство по патентам на аппаратные продукты
  • Применение человеко-ориентированного дизайна
дизайн

Механизмы и особенности

  • Как спроектировать оснастку с защелкой
  • Как проектировать живые петли
  • Советы по снятию напряжений
  • Руководство по ребрам и клиньям для 3D-печатных деталей
  • Методы резьбовой блокировки
  • Как спроектировать сборку для 3D-печати
  • Входы и выходы термоформования

DFM и DFA

  • Разработка условий производства
  • Конструкция для разборки в электронике
  • Филе: когда использовать ‘Em, когда терять‘ Em
  • Полезные ограничения дизайна против чрезмерных ограничений

3D моделирование

  • 3D Типы файлов
  • Список программ САПР
  • Как вырезать 3D-модели
  • Условия проектирования САПР
  • Как экспортировать файлы САПР для 3D-печати
  • 3 шага от цифрового к физическому
  • Как исправить типичные проблемы моделирования поверхности

Механические компоненты

  • Примеры конструкций легких труб
  • Дизайн корпуса 101
  • Руководство по отличному дизайну кнопок
  • Руководство по проектированию радиаторов
  • Спрингс
  • , часть 1. Типы и применение
  • Спрингс
  • , часть 2: вопросы снабжения
  • Использование пресс-фитингов в ваших сборках
  • Зазор подходит для компонентов

Анализ

  • Анализ режимов отказов и эффектов
  • Как провести анализ толерантности
  • Сила против Жесткости против Твердости
  • Как улучшить жесткость при кручении
  • Использование инженерного анализа для проектирования
  • Концентрации стресса
  • Допуски на посадку и геометрия
,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *