Теплотехнический расчет наружной стены онлайн калькулятор: Теплотехнический расчет онлайн — калькулятор точки росы в стенах, рассчитать теплопотери дома

SmartCalc. Справка по работе с калькулятором

Выбор типа слояВызывает диалог выбора типа слоя (однородный, неоднородный, каркас, перекрестный каркас, кладка) и задания параметров слоя. В настоящий момент в конструкции допустимо не более одного слоя с типом «Каркас» и одного с типом «Перекрестный каркас». Количество слоев прочих типов не лимитируется.
Переместить внутрьПеремещает слой в сторону внутренней стороны конструкции.
Переместить наружуПеремещает слой в сторону наружной стороны конструкции.
Включение\выключение слояПозволяет «выключить» (игнорировать при расчетах) слой, не удаляя его. Обратное действие включает слой.
Изменить характеристикиВызывает диалог изменения характеристик материалов слоя. Изменение действует до перехода в текущей вкладке браузера на новую страницу или закрытие вкладки или самого браузера.
Удалить слойУдаляет слой из конструкции.

Вставить слой

Вставить слойВызывает диалог выбора материала, который будет добавлен, и вставляет новый слой в конструкцию.

Загрузить график

Загрузить график
Инициирует загрузку файла с графиком.
МатериалыЗамена материалаПри нажатии на наименование материала в таблице «Конструкция» вызывается диалог выбора материала и, при необходимости, производится замена материала на выбранный

Теплотехнический калькулятор | Saint Gobain

Покрытие Стена Перекрытие

Выберите тип конструкции

Плоская кровля (железобетон)

Плоская кровля (профлист)

Скатная кровля

Штукатурный фасад

Навесной вентилируемый фасад

Над холодным подвалом, сообщающимся с наружным воздухом

Над неотапливаемым подвалом со световыми проёмами в стенах

Над неотапливаемым подвалом без световых проёмах в стенах, расположенное выше уровня земли

Над неотапливаемым подвалом без световых проёмах в стенах, расположенное ниже уровня земли

Над холодными подпольями без ограждающих стенок

Над холодными подпольями c ограждающими стенками

Шаг №2 — Климат

Расчетная температура наружного воздуха (text):

(обеспеченностью 0,92, СП 131.13330.2012 т.3.1)

Расчетная средняя температура отопительного периода (tht):

(со среднесуточной t ≤ 8 °C, СП 131.13330.2012 т.3.1)

Продолжительность отопительного периода (zht):

(со среднесуточной t ≤ 8 °C, СП 131.13330.2012 т.3.1)

Зона влажности:

нормальная

Шаг №1 — Тип конструкции Шаг №3 — Тип помещения

  Температура пребывания (tint):

(по ГОСТ 30494-2011)

Относительная влажность воздуха, не более (ф):

(по ГОСТ 30494-2011, СП 131.13330.2012 т.3.1)

Коэффициент однородности конструкции (r):

(по ГОСТ Р 54851-2011)

Наличие в конструкции рёбер с соотношением высоты
ребра к шагу h/a ≥ 0.3

ДаНет

Коэффициент a:

(СП 50.13330.2012, т.3)

Коэффициент b:

(СП 50.13330.2012, т.3)

Коэффициент теплоотдачи внутренней поверхности (αint):

(по СП 50.13330.2012, т.4)

Нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции:

(по СП 50.13330.2012, т.5)

Коэффициент теплоотдачи наружной поверхности (αext):

(по СП 50.13330.2012, т.6)

Влажностный режим помещения:

(СП 50.13330.2012 т.1)

Условия эксплуатации ограждающих конструкций:

(СП 50.13330.2012 т.2)

Шаг №2 — Климат Шаг №4 — Структура

Недавно вы изменили тип конструкции. Хотите ли вы загрузить типовой пример для него?

Да Нет

Добавить слой

Шаг №3 — Тип помещения Шаг №5 — Результаты расчёта

{{if funcLabel}} ${funcLabel.toUpperCase()} {{/if}}




Вернуться к началу Подробный отчёт Сохранить в PDF


${isolator.label}
{{if $data.calc.SigmaUT По результатам расчёта, необходимости в утеплителе нет.

{{else}}

δут = ${calc[«SigmaUT»]} мм

{{/if}}

Конструкция удовлетворяет требованию по тепловой защите.


{{if $data.calc[«Tint_calc»] >= $data.calc[«Tint_est»]}}

Конструкция удовлетворяет санитарно-гигиеническому требованию.

{{else}}

Конструкция не удовлетворяет санитарно-гигиеническому требованию.

{{/if}}

${calc.hydro.verdict}.

{{else}}

Расчёт не удалось произвести.

{{/if}}

Расчет стен – теплозащита, утепление, температура и точка росы

Эта публикация не совсем про тепловидение в строительстве, скорее, совсем не про тепловидение. Сегодня я хочу рассказать о расчете теплового и влажностного режима наружных ограждающих конструкций. Задача такая часто возникает при тепловизионном обследовании зданий, оценке проектного уровня теплозащиты, разработке мероприятий по утеплению конструкций.

Тепловизор показывает нам только температуры поверхностей. Что происходит внутри, как распределяется температура по толщине конструкции неразрушающим методом не определить. Кроме температуры важным показателем является положение плоскости возможной конденсации влаги в конструкции, иными словами, положение точки росы. Будет конструкция сухой или с конденсатом зависит от положения точки росы. Это зависит от множества факторов, среди которых толщина и материалы всех слоев, температура и влажность в помещении, температура и влажность снаружи.

В своде правил СП 23-101-2004 «Проектирование тепловой защиты зданий» глава 9 «Методика проектирования тепловой защиты зданий» посвящена тепловому расчету и определению проектного значения сопротивления теплопередаче конструкции, глава 13 «Расчет сопротивления паропроницанию ограждающих конструкций» посвящена влажностному расчету. Исходные данные для расчета приведены в приложении Д «Расчетные теплотехнические показатели строительных материалов и изделий». Данные для расчета также можно взять из актуализированной версии СП 50.13330.2012. Внимание! Во многих программах использованы климатические данные СНиП 23-01-99, который заменен на СП 131.13330.2012.

[button color=»#ffffff» background=»#333333″ size=»medium» src=»http://yadi.sk/d/B5e8q-g52wQ1r»]СП 23-101-2004[/button] [button color=»#ffffff» background=»#333333″ size=»medium» src=»http://yadi.sk/d/OZa8t8KCBQteY»]СП 50.13330.2012[/button]

Существует ряд программ, которые позволяют автоматизировать расчет теплового и влажностного режимов ограждающих конструкций. Ниже я даю ссылки на бесплатные инструменты расчета.

ТЕПЛОРАСЧЕТ ссылка: http://теплорасчет.рф, или немецкий: http://www.u-wert.net

[divider scroll_text=»Наверх ↑»]
ATLAS SALTA ссылка: http://www.atlasrus.spb.ru

[divider scroll_text=»Наверх ↑»]

Теплотехнический калькулятор ссылка: http://www.smartcalc.ru/thermocalc

[divider scroll_text=»Наверх ↑»]

Огромная просьба, пожелания и вопросы о работе программ отправлять на сайты указанных программ. Там есть поддержка, форум, вам ответят. Внимание! Teplonadzor.ru никакого отношения к программам не имеет, ответственности за использование программ и их результатов не несет.

Теплотехнический расчет (пример, программа, калькулятор онлайн).

В современных условиях человек все чаще задумывается о рациональном использовании ресурсов. Электричество, вода, материалы. К экономии всего этого в мире пришли уже достаточно давно и всем понятно как это сделать. Но основную сумму в счетах на оплату составляет отопление, и не каждому понятно, как снизить расход по этому пункту.

Что такое теплотехнический расчет?

Теплотехнический расчет выполняют для того, чтобы подобрать толщину и материал ограждающих конструкций и привести здание в соответствие нормам тепловой защиты. Основным нормативным документом, регламентирующим способность конструкции сопротивляться теплопередаче, является СНиП 23-02-2003 «Тепловая защита зданий».

Основным показателем ограждающей поверхности с точки зрения теплозащиты стало приведенное сопротивление теплопередаче. Это величина, учитывающая теплозащитные характеристики всех слоев конструкции, учитывая мостики холода.

Подробный и грамотный теплотехнический расчет — достаточно трудоемок. При возведении частных домов, собственники стараются учесть прочностные характеристики материалов, часто забывая о сохранении тепла. Это может привести к довольно плачевным последствиям.

Зачем выполняется расчет?

Перед началом строительства заказчик может выбрать, будет он учитывать теплотехнические характеристики или обеспечит только прочность и устойчивость конструкций.

Расходы на утепление совершенно точно увеличат смету на возведение здания, но снизят затраты на дальнейшую эксплуатацию. Индивидуальные дома строят на десятки лет, возможно, они будут служить и следующим поколениям. За это время затраты на эффективный утеплитель окупятся несколько раз.

Что получает владелец при правильном выполнении расчетов:

  • Экономия на отоплении помещений. Тепловые потери здания снижаются, соответственно, уменьшится количество секций радиатора при классической системе отопления и мощность системы теплых полов. В зависимости от способа нагрева, затраты владельца на электричество, газ или горячую воду становятся меньше;
  • Экономия на ремонте. При правильном утеплении в помещении создается комфортный микроклимат, на стенах не образуется конденсат, и не появляются опасные для человека микроорганизмы. Наличие на поверхности грибка или плесени требует проведения ремонта, причем простой косметический не принесет никаких результатов и проблема возникнет вновь;
  • Безопасность для жильцов. Здесь, также как и в предыдущем пункте, речь идет о сырости, плесени и грибке, которые могут вызывать различные болезни у постоянно пребывающих в помещении людей;
  • Бережное отношение к окружающей среде. На планете дефицит ресурсов, поэтому уменьшение потребления электроэнергии или голубого топлива благоприятно влияет на экологическую обстановку.

Нормативные документы для выполнения расчета

Приведенное сопротивление и его соответствие нормируемому значению – главная цель расчета. Но для его выполнения потребуется узнать теплопроводности материалов стены, кровли или перекрытия. Теплопроводность – величина, характеризующая способность изделия проводить через себя тепло. Чем она ниже, тем лучше.

Во время проведения расчета теплотехники опираются на следующие документы:

  • СП 50.13330.2012 «Тепловая защита зданий». Документ переиздан на основе СНиП 23-02-2003. Основной норматив для расчета [1];
  • СП 131.13330.2012 «Строительная климатология». Новое издание СНиП 23-01-99*. Данный документ позволяет определить климатические условия населенного пункта, в котором расположен объект [2];
  • СП 23-101-2004 «Проектирование тепловой защиты зданий» более подробно, чем первый документ в списке, раскрывает тему [3];
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года) «Здания жилые и общественные» [4];
  • Пособие для студентов строительных ВУЗов Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].

* — дальше в тексте я буду ссылаться на нормативные документы и чтобы полностью не прописывать их название я укажу только номер, например [1].

Теплотехнический расчет не сложен. Его может выполнить человек без специального образования по шаблону. Главное очень внимательно подойти к вопросу.

Пример расчета трехслойной стены без воздушной прослойки

Давайте подробно рассмотрим пример теплотехнического расчета. Для начала необходимо определиться с исходными данными. Материалы для строительства стен Вы, как правило, выбираете сами. Мы же будем рассчитывать толщину утепляющего слоя исходя из материалов стены.

Исходные данные

Данные индивидуальные для каждого объекта строительства и зависят от места расположения объекта.

1. Климат и микроклимат
  1. Район строительства: г. Вологда.
  2. Назначение объекта: жилое.
  3. Относительная влажность воздуха для помещения с нормальным влажностным режимом составляет 55% ([1] п.4.3. табл.1).
  4. Температура внутри жилых помещений tint задается нормативными документами ([4] табл.1) и равна 20 градусов Цельсия».

text — расчетная температура воздуха снаружи. Она устанавливается по температуре самых холодных пяти дней в году. Значение можно найти в [2], таблице 1, столбец 5. Для заданной местности значение составляет -32ᵒС.

zht = 231 сутки – количество дней периода, когда необходимо дополнительное отопление помещения, то есть среднесуточная температура снаружи составляет меньше 8ᵒС. Значение ищут в той же таблице, что и предыдущее, но в столбце 11.

tht = -4,1ᵒС – средняя температура воздуха снаружи во время периода отопления. Значение указано в столбце 12.

2. Материалы стены

В расчет следует принимать все слои (даже слой штукатурки, если он есть). Это позволит наиболее точно рассчитать конструкцию.

В данном варианте рассмотрим стену, состоящую из следующих материалов:

  1. слой штукатурки, 2 сантиметра;
  2. внутренняя верста из кирпича керамического рядового полнотелого толщиной 38 сантиметров;
  3. слой минераловатного утеплителя Roсkwool, толщина которого подбирается расчетом;
  4. наружная верста из лицевого керамического кирпича, толщиной 12 сантиметров.
3. Теплопроводность принятых материалов

Все свойства материалов должны быть представлены в паспорте от производителя. Многие компании представляют полную информацию о продукции на своих сайтах. Характеристики выбранных материалов для удобства сводятся в таблицу.

№ п/пМатериалТолщина слоя, δ, ммТеплопроводность, λ, Вт/(м*ᵒС)Плотность, ρ, кг/м3
1Сложный штукатурный раствор200,871700
2Кладка из кирпича рядового керамического полнотелого3800,481600
3Минераловатные плиты 

 

Roсkwool

Неизвестно0,03890
4Кладка из кирпича лицевого керамического полнотелого1200,481600

Расчет толщины утеплителя для стены

1. Условие энергосбережения

Расчет значения градусо-суток отопительного периода (ГСОП) производится по формуле:

Dd = (tint — tht) zht.

Все буквенные обозначения, представленные в формуле, расшифрованы в исходных данных.

Dd = (20-(-4,1)) *231=5567,1 ᵒС*сут.

Нормативное сопротивление теплопередаче находим по формуле:

Rreq=a*Dd+b.

Коэффициенты а и b принимаются по таблице 4, столбец 3 [4].

Для исходных данных а=0,00045, b=1,9.

Rreq = 0,00045*5567,1+1,9=3,348 м2*ᵒС/Вт.

2. Расчет нормы тепловой защиты исходя из условий санитарии

Данный показатель не рассчитывается для жилых зданий и приводится в качестве примера. Расчет проводят при избытке явного тепла, превышающем 23 Вт/м3, или эксплуатации здания весной и осенью. Также вычисления необходимы при расчетной температуре менее 12ᵒС внутри помещения. Используют формулу 3 [1]:

Коэффициент n принимается по таблице 6 СП «Тепловая защита зданий», αint по таблице 7, Δtn по пятой таблице.

Rreq = 1*(20+31)4*8,7 = 1,47 м2*ᵒС/Вт.

Из двух полученных в первом и втором пункте значений выбирается наибольшее, и дальнейший расчет ведется по нему.ут= 0,038*2,127 = 0,081 м.

Найденная величина является минимальной. Слой утеплителя принимают не меньше этого значения. В данном расчете принимаем окончательно толщину минераловатного утеплителя 10 сантиметров, для того, чтобы не пришлось резать купленный материал.

Для расчетов тепловых потерь здания, которые выполняются для проектирования отопительных систем, необходимо найти фактическое значение сопротивления теплопередаче с найденной толщиной утеплителя.

Rо = Rint+Rext+∑Ri = 1/8,7 + 1/23 + 0,023 + 0,79 + 0,1/0,038 + 0,25 = 3,85 м2*ᵒС/Вт > 3,348 м2*ᵒС/Вт.

Условие выполнено.

Влияние воздушного зазора на теплозащитные характеристики

При устройстве стены, защищенной плитным утеплителем возможно устройство вентилируемой прослойки. Она позволяет отводить конденсат от материала и предотвращать его намокание. Минимальная толщина зазора 1 сантиметр. Это пространство не замкнуто и имеет непосредственное сообщение с наружным воздухом.

При наличии воздушно-вентилируемой прослойки в расчете учитываются только те слои, которые находятся до нее со стороны теплого воздуха. Например, пирог стены состоит из штукатурки, внутренней кладки, утеплителя, воздушной прослойки и наружной кладки. В расчет принимаются только штукатурка, внутренняя кладка и утеплитель. Наружный слой кладки идет после вентзазора, поэтому не учитывается. В данном случае наружная кладка выполняет лишь эстетическую функцию и защищает утеплитель от внешних воздействий.

Важно: при рассмотрении конструкций, где воздушное пространство замкнуто, оно учитывается в расчете. Например, в случае оконных заполнений. Воздух между стеклами играет роль эффективного утеплителя.

Программа «Теремок»

Для выполнения расчета с помощью персонального компьютера специалисты часто используют программу для теплотехнического расчета «Теремок». Она существует в онлайн-варианте и как приложение для оперативных систем.

Программа производит вычисления на основе всех необходимых нормативных документов. Работа с приложением предельно проста. Оно позволяет выполнять работу в двух режимах:

  • расчет необходимого слоя утеплителя;
  • проверка уже продуманной конструкции.

В базе данных имеются все необходимые характеристики для населенных пунктов нашей страны, достаточно лишь выбрать нужный. Также необходимо выбрать тип конструкции: наружная стена, мансардная кровля, перекрытие над холодным подвалом или чердачное.

При нажатии кнопки продолжения работы появляется новое окно, позволяющее «собрать» конструкцию. Многие материалы имеются в памяти программы. Они подразделены на три группы для удобства поиска: конструкционные, теплоизоляционные и теплоизоляционно-конструкционные. Нужно задать лишь толщину слоя, теплопроводность программа укажет сама.

При отсутствии необходимых материалов их можно добавить самостоятельно, зная теплопроводность.

Перед тем как производить вычисления, необходимо выбрать тип расчета над табличкой с конструкцией стены. В зависимости от этого программа выдаст либо толщину утеплителя, либо сообщит о соответствии ограждающей конструкции нормам. После завершения вычислений, можно сформировать отчет в текстовом формате.

«Теремок» очень удобен для пользования и с ним способен разобраться даже человек без технического образования. Специалистам же он значительно сокращает время на вычисления и оформление отчета в электронном виде.

Главным достоинством программы является тот факт, что она способна вычислить толщину утепления не только наружной стены, но и любой конструкции. Каждый из расчетов имеет свои особенности, и непрофессионалу довольно сложно разобраться во всех. Для строительства частного дома достаточно освоить данное приложение, и не придется вникать во все сложности. Расчет и проверка всех ограждающих поверхностей займет не более 10 минут.

Теплотехнический расчет онлайн (обзор калькулятора)

Теплотехнический расчет можно сделать в Интернете онлайн. Неплохим, как на мое усмотрение являться сервис: rascheta.net. Давайте вкратце рассмотрим, как с ним работать.

Перейдя на сайт онлайн калькулятора, первым делом нужно выбрать нормативы по которым будет производится расчет. Я выбираю свод правил от 2012 года, так как это более новый документ.

Дальше нужно указать регион в котором будет строятся объект. Если нет Вашего города выбирайте ближайший большой город. После этого указываем тип зданий и помещений. Скорей всего Вы будете рассчитывать жилое здание, но можно выбрать общественные, административные, производственные и другие. И последнее, что нужно выбрать — вид ограждающей конструкции (стены, перекрытия, покрытия).

Расчетную среднюю температуру, относительную влажность и коэффициент теплотехнической однородности оставляем такими же, если не знаете как их изменять.

В опциях расчета устанавливаем все две галочки, кроме первой.

В таблице указываем пирог стены начиная снаружи — выбираем материал и его толщину. На этом собственно весь расчет и закончен. Под таблицей будет результат расчета. Если какое-то из условий не выполняется меняем толщину материала или же сам материал, пока данные не будут соответствовать нормативным документам.

Если Вы желаете посмотреть алгоритм расчета, то нажимаем на кнопку «Отчет» внизу страницы сайта.

Скачайте строительный калькулятор Porotherm

Удобство мобильного приложения «Калькулятор Porotherm» в том, что вы можете самостоятельно сконструировать стену, подбирая материалы слой за слоем: сначала керамические блоки в качестве стенового материала, затем утеплитель в случае, если теплотехнических характеристик недостаточно для региона строительства и облицовочный кирпич или штукатурку в качестве отделочного материала.

 

«Калькулятор Porotherm» поможет определиться с тем, какой «пирог» стены будет наиболее оптимальным для вашего региона строительства. В самом начале работы с приложением система определит регион строительства и автоматически покажет требуемый показатель сопротивления теплопередаче.

 

Это очень удобная функция, т.к. вы сразу получите информацию о том, какие значения сопротивления теплопередаче внешней стены дома рекомендованы для вашего региона. Останется лишь выбрать блок Porotherm с соответствующими показателями, что позволит достигнуть наиболее эффективного расходования тепла дома.

Кроме того, в «Калькулятор Porotherm» встроена возможность расчёта необходимого количества керамических блоков исходя из параметров стен. Просто задайте габариты стены, а также проемов и получите данные о количестве блоков, требующихся для ее строительства. Важно отметить, что данные показатели актуальны только для начального расчета. Для формирования конечного заказа блоков Porotherm рекомендуем вам обратиться к официальным дилерам, которые представлены на нашем сайте.

 

С помощью приложения «Калькулятор Porotherm» можно: 

  • получить наглядное изображение «пирога» стены со всеми необходимыми слоями;
  • получить расчёт теплотехнических характеристик стен с учётом реальных показателей материалов;
  • добавить, переместить, удалить и изменить слои;
  • рассчитать необходимое количество блоков с учетом количества поддонов;
  • отправить результаты расчётов по электронной почте;
  • ознакомиться со всем каталогом керамических блоков Porotherm.


Новое бесплатное приложение «Калькулятор Porotherm» доступно в AppStore и GooglePlay.

 

Расчет теплопотерь здания. Онлайн расчет теплопотерь помещения

Материал стен:Не выбраноСиликатный кирпич, 1,5 кирпичаСиликатный кирпич, 2 кирпичаСиликатный кирпич, 2,5 кирпичаСиликатный кирпич, 3 кирпичаКирпич глиняный рядовый, 1,5 кирпичаКирпич глиняный рядовый, 2 кирпичаКирпич глиняный рядовый, 2,5 кирпичаКирпич глиняный рядовый, 3 кирпичаКерамический пустотный, 1,5 кирпичаКерамический пустотный, 2 кирпичаКерамический пустотный, 2,5 кирпичаКерамический пустотный, 3 кирпичаГазопенобетон, 400ммГазопенобетон, газосиликат 1000кг/м. куб, 600ммГазопенобетон, газосиликат 1000кг/м. куб, 800ммПенобетон D400, 400ммПенобетон D400, 600ммПенобетон D400, 800ммПенобетон D500, 400ммПенобетон D500, 600ммПенобетон D500, 800ммОцилиндрованное бревно (ель, сосна), 160 ммОцилиндрованное бревно (ель, сосна), 180 ммОцилиндрованное бревно (ель, сосна), 200 ммОцилиндрованное бревно (ель, сосна), 220 ммОцилиндрованное бревно (ель, сосна), 240 ммОцилиндрованное бревно (ель, сосна), 260 ммОцилиндрованное бревно (ель, сосна), 280 ммОцилиндрованное бревно (ель, сосна), 300 ммОцилиндрованное бревно (ель, сосна), 320 ммОцилиндрованное бревно (ель, сосна), 340 ммОцилиндрованное бревно (ель, сосна), 360 ммОцилиндрованное бревно (ель, сосна), 380 ммОцилиндрованное бревно (ель, сосна), 400 ммОцилиндрованное бревно (дуб), 160 ммОцилиндрованное бревно (дуб), 180 ммОцилиндрованное бревно (дуб), 200 ммОцилиндрованное бревно (дуб), 220 ммОцилиндрованное бревно (дуб), 240 ммОцилиндрованное бревно (дуб), 260 ммОцилиндрованное бревно (дуб), 280 ммОцилиндрованное бревно (дуб), 300 ммОцилиндрованное бревно (дуб), 320 ммОцилиндрованное бревно (дуб), 340 ммОцилиндрованное бревно (дуб), 360 ммОцилиндрованное бревно (дуб), 380 ммОцилиндрованное бревно (дуб), 400 ммБрус, толщина 200 ммБрус, толщина 100 ммТермоблок, 25 смСупертермо 38СТСупертермо 38ТСупертермо 51Супертермо 38Супертермо 25Поризованный керамический блок Porotherm 8Поризованный керамический блок Porotherm 38Поризованный керамический блок Porotherm 44Поризованный керамический блок Porotherm 51Воротынский камень поризованный 2,1НФПоризованный керамический блок Braer 10,7 NF M-100Поризованный керамический блок Braer 12,4 NF М-100Поризованный керамический блок Braer 14,3 NFСИП панели толщиной 124мм (толщина ППС 100мм)СИП панели толщиной 174мм (толщина ППС 150мм)СИП панели толщиной 224мм (толщина ППС 200мм)

Расчет утеплителя стен — калькулятор для теплоизоляции стены

Если стены в доме выполняются небольшой толщины, то появляется необходимость в их утеплении, потому что с наступлением холодов в помещениях будет не очень комфортно, а также в комнатах появится излишняя сырость.

Точный расчет утеплителя стен, калькулятор

Обеспечение теплосбережения позволяет существенно экономить на электрической энергии и затратах на отопление дома. При этом следует правильно рассчитать материалы, которые должны использоваться в теплоизоляции, а также их количество.

Только эффективные утеплители способны справиться с обеспечением оптимального температурного режима в помещениях и значительно снизить потери тепла.

Утеплители могут быть установлены:

  • С наружной стороны дома,
  • Внутри стены,
  • Во внутренней части.

Дополнительно используется отделка, чтобы под ней спрятать установленный утеплитель. Теплоизоляционные материалы создают тепловую защиту перегородок и стен, поэтому потребитель снижает потери электроэнергии, и для строительства нужно применять меньше строительных материалов.

Если воспользоваться теплоизоляционными материалами в необходимых объемах, строительство получится менее затратным и трудоемким.

Но предварительно нужно провести расчет утеплителя стен, калькулятор поможет, и тогда будут определены объемы теплоизоляционных материалов для каждого конкретного случая и для определенных эксплуатационных условий.

Снижается уровень нагрузки на стены и на фундамент, поэтому при формировании основания потребуется меньшая глубина и меньшее количество бетона.

Как применяется расчет утеплителя стен, калькулятор

Главным показателем теплоизоляционных материалов и строительных конструкций является сопротивление тепловой передачи, и оно обозначается R0. И если возникает необходимость вычислять толщину теплоизоляционного материала, нужного для утепления наружных стен, то используется:

  • αут=(R0тр/r-0,16-δ/λ)·λут
  • символы в данном выражении обозначают следующее:
  • αут — ширину утеплителя, в метрах
  • R0тр — сопротивление теплопередаче наружных стен, м2· °С/Вт, данное значение можно найти в таблице,
  • δ — ширина несущей части стены, в метрах,
  • λ — коэффициент теплопроводности несущей части стены, Вт/(м · °С), также определяется по специальной таблице,
  • λут — коэффициент теплопроводности материала, который служит теплоизолятором, Вт/(м · °С), табличное значение,
  • r — коэффициент теплотехнической однородности, обладает определённым значением, зависящим от способа отделки или кладки.

Если используется строительная конструкция в несколько слоев, то значение δ/λ должно быть заменено на итоговую сумму каждого слоя.

Теплотехнические расчеты, направленные на получение оптимального результата, имеют большое значение, и рекомендуется их проводить перед началом строительства сооружений.

Но еще есть возможность для обеспечения теплоизоляции после того, как возведен дом, и тогда придется проводить дополнительные отделочные работы.

Для чего нужен расчет теплоизоляции стены, калькулятор

Следует воспользоваться калькулятором онлайн, который быстро подведет итоги заложенных данных, чтобы вы имели возможность приобрести теплоизоляционные материалы с определенными качествами.

В процессе проведения расчета обязательно учитываются климатические особенности региона, в котором будет производиться строительство объекта.

Кроме того, каждая стена направлена на определенную сторону света и одна из них может прогреваться больше, а другая меньше, и этот фактор также должен обязательно учитываться при расчете.

Нужно производить расчет теплоизоляции стены, калькулятор здесь изрядно поможет, чтобы провести подробный и обстоятельный анализ возможностей и свойств различных теплоизоляционных материалов. Также вам будет проще узнать параметры по теплопроводности различных строительных материалов, из которых делаются:

  • Потолки,
  • Пол,
  • Стены,
  • Перегородки,
  • Перекрытия.

Вы точно вычислите толщину пластиковых расширителей, которые используются при монтажных работах на лоджиях и балконах. Когда боковые стены граничат с комнатой, которая отапливается, есть вариант с использованием утепления наружных углов. Причем угол утепляется специальным утеплителем, который должен быть шире площади промерзания наружной стены.

Также следует добавить еще 5 сантиметров к этому значению, чтобы добиться оптимального теплоизоляционного слоя, иначе будут наблюдаться потери тепла.

Уравнение и калькулятор потерь тепла через стену

| Инженеры Edge

Связанные ресурсы: теплопередача

Уравнение и калькулятор потерь тепла через стену

Теплообменная техника
Термодинамика
Инженерная физика

Расчет потерь тепла через стену и калькулятор

ВСЕ калькуляторы требуют членства Premium

Предварительный просмотр

: Калькулятор тепловых потерь через стену

или

Где:

Q = передача устойчивого состояния тепла (Вт)
T 1 = Температура (° C)
T 2 = Температура (° C)
k = теплопроводность (Вт / м · ° C)
ΔT стенка = изменение температуры (° C)
R стенка = термическое сопротивление перехода (° C / Вт)

Пример:

Рассмотрим высоту 3 м, ширину 5 м и 0.Стенка толщиной 3 м с теплопроводностью k = 0,9 Вт / м · ° C. В определенный день температура внутренней и внешней поверхностей стены составляет 16 ° C и 2 ° C соответственно. Скорость потери тепла через стену в этот день.

Две поверхности стены поддерживаются при заданной температуре. Скорость потери тепла через стену подлежит определению.

Допущения

1 Теплопередача через стену стабильна, поскольку температура поверхности остается постоянной на заданных значениях.
2 Теплопередача является одномерной, так как любые значительные градиенты температуры будут существовать в направлении от помещения к улице.
3 Теплопроводность постоянна.

Альтернатива стабильной скорости теплопередачи через стену за счет использования концепции термического сопротивления из

Где:

Замена

© Copyright 2000-2021, ООО «Инжиниринг Эдж» www.engineeringsedge.com
Все права защищены
Отказ от ответственности | Обратная связь | Реклама | Контакты

Дата / Время:

Расчет температуры наружной поверхности стены для заданного теплового потока

Температура внешней поверхности стены для заданного теплового потока Формула

external_surface_temperature = температура внутренней поверхности — ((скорость теплового потока * длина) / (теплопроводность * площадь))
К = Ti — ((Q * L) / (k * A))

Что такое скорость теплового потока?

Скорость теплового потока — это количество тепла, которое передается в единицу времени некоторым материалом, обычно измеряется в ваттах.Тепло — это поток тепловой энергии, вызванный тепловым неравновесием,

Как рассчитать температуру внешней поверхности стены для заданного расхода тепла?

Температура внешней поверхности стены для данного расчета расхода тепла использует external_surface_temperature = температура внутренней поверхности — ((скорость теплового потока * длина) / (теплопроводность * площадь)) для расчета температуры внешней поверхности, температура внешней поверхности Стенка для данной формулы расхода тепла определяется как достигнутая температура внешней поверхности стены, когда тепло течет с заданной скоростью через площадь стены заданной длины.температура внешней поверхности и обозначается символом от до .

Как рассчитать температуру внешней поверхности стены для заданного теплового потока с помощью этого онлайн-калькулятора? Чтобы использовать этот онлайн-калькулятор температуры внешней поверхности стены для заданного расхода тепла, введите температуру внутренней поверхности (Ti) , скорость теплового потока (Q) , длину (L) , теплопроводность (k ) и Area (A) и нажмите кнопку расчета.Вот как можно объяснить температуру внешней поверхности стены для данного расчета расхода тепла с заданными входными значениями -> 0,994 = 1 — ((1 * 3) / (10 * 50)) .

Калькулятор температуры наружной поверхности сферической стены

Температура внешней поверхности сферической стенки Формула

Внешняя_поверхность_температура = температура внутренней поверхности — ((скорость теплового потока / (4 * пи * теплопроводность)) * (1 / радиус1-1 / радиус2))
К = Ti — ((Q / (4 * pi * k)) * (1 / r1-1 / r2))

Что такое температура?

Температура, мера жара или холода, выраженная в терминах любой из нескольких произвольных шкал и указывающая направление, в котором будет спонтанно течь тепловая энергия — i.е., от более горячего тела (одно с более высокой температурой) к более холодному телу (одно с более низкой температурой)

Как рассчитать температуру внешней поверхности сферической стены?

Для вычисления температуры внешней поверхности в калькуляторе температуры внешней поверхности сферической стены используется значение external_surface_temperature = температура внутренней поверхности — ((скорость теплового потока / (4 * pi * теплопроводность)) * (1 / radius1-1 / radius2)) , Формула температуры внешней поверхности сферической стенки определяется как температура на внешней поверхности полой сферы, когда известны скорость теплового потока, температура внутренней поверхности, радиусы и теплопроводность.температура внешней поверхности и обозначается символом от до .

Как рассчитать температуру внешней поверхности сферической стены с помощью этого онлайн-калькулятора? Чтобы использовать этот онлайн-калькулятор для температуры внешней поверхности сферической стенки, введите температуру внутренней поверхности (Ti) , скорость теплового потока (Q) , теплопроводность (k) , радиус1 (r1) и радиус2 . (r2) и нажмите кнопку расчета. Вот как можно объяснить расчет температуры наружной поверхности сферической стенки с заданными входными значениями -> 1 = 1 — ((1 / (4 * pi * 10)) * (1 / 1-1 / 1)) .

Conductive Heat Transfer

Проводимость как теплопередача имеет место при наличии температурного градиента в твердой или неподвижной текучей среде.

При столкновении соседних молекул энергия проводимости передается от более энергичных молекул к менее энергичным. Тепло течет в направлении понижения температуры, поскольку более высокие температуры связаны с более высокой молекулярной энергией.

Кондуктивная теплопередача может быть выражена с помощью «закона Фурье »

q = (к / с) A dT

= UA dT (1)

где

q = теплопередача (Вт, Дж / с, БТЕ / час)

k = Теплопроводность материала (Вт / м · К или Вт / м o C, БТЕ / (час o F ft 2 ) / фут)

s = толщина материала (м, фут)

A = площадь теплопередачи (м 2 , фут 2 )

U = к / с

= Коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 час o F)

dT = t 1 — t 2

= температурный градиент — разница — по материалу ( o C, o F) 90 024

Пример — кондуктивная теплопередача

Плоская стена изготовлена ​​из твердого железа с теплопроводностью 70 Вт / м o C. Толщина стены 50 мм , длина и ширина поверхности 1 м на 1 м. Температура составляет 150 o C с одной стороны поверхности и 80 o C с другой.

Можно рассчитать кондуктивную теплопередачу через стену

q = [(70 Вт / м o C) / (0,05 м) ] [(1 м) (1 м)] [ (150 o C) — (80 o C)]

= 98000 (Вт)

= 98 (кВт)

Калькулятор теплопроводности.

Этот калькулятор можно использовать для расчета теплопроводности теплопередачи через стену. Калькулятор является универсальным и может использоваться как для метрических, так и для британских единиц измерения, если они используются последовательно.

k — теплопроводность (Вт / (мК), БТЕ / (час o F ft 2 / фут))

A — площадь ) 2 , фут 2 )

t 1 — температура 1 ( o C, o F)

t 2 — температура 2 ( o C, o F)

s — толщина материала (м, фут)

Кондуктивная теплопередача через плоскую поверхность или стену со слоями из серии

Тепло, проводимое через стену со слоями в тепловой контакт можно рассчитать как

q = dT A / ((s 1 / k 1 ) + (s 2 / k 2 ) +… + (s n / k n )) (2)

где

dT = t 1 — t 2

= разница температур между внутренней и внешней стеной ( o C, o F)

Обратите внимание, что тепловое сопротивление из-за поверхностной конвекции и излучения не учитывается в этом уравнении .Конвекция и излучение в целом имеют большое влияние на общие коэффициенты теплопередачи.

Пример — Проводящая теплопередача через стенку печи

Стенка печи 1 м 2 состоит из внутреннего слоя нержавеющей стали толщиной 1,2 см, , покрытого снаружи изоляционным слоем изоляционной плиты 5 см . Температура внутренней поверхности стали составляет 800 K , а температура внешней поверхности изоляционной плиты составляет 350 K .Теплопроводность нержавеющей стали составляет 19 Вт / (м · К) , а теплопроводность изоляционной плиты составляет 0,7 Вт / (м · К) .

Кондуктивный перенос тепла через многослойную стену можно рассчитать как

q = [(800 K) — (350 K)] (1 м 2 ) / ([(0,012 м) / (19 Вт / (м · К) )] + [(0,05 м) / (0,7 Вт / (м · К))] )

= 6245 (Ш)

= 6.25 кВт

Единицы измерения теплопроводности

  • БТЕ / (ч фут 2 o фут / фут)
  • БТЕ / (ч фут 2 o фут / дюйм)
  • БТЕ / (с фут 2 o фут / фут)
  • Британские тепловые единицы дюйм) / (фут² ч ° F)
  • МВт / (м 2 К / м)
  • кВт / (м 2 К / м)
  • Вт / (м 2 К / м)
  • Вт / (м 2 К / см)
  • Вт / ( см 2 o C / см)
  • Вт / (дюйм 2 o F / дюйм)
  • кДж / (hm 2 К / м)
  • Дж / (см 2 o C / м)
  • ккал / (hm 2 o C / м)
  • кал / (с см 2 o C / см)
  • 1 Вт / (м · К) = 1 Вт / (м o C) = 0.85984 ккал / (hm o C) = 0,5779 Btu / (ft h o F) = 0,048 Btu / (дюйм h o F) = 6,935 (BTu дюймов) / (фут² час ° F)

Общий коэффициент теплопередачи

Теплопередача через поверхность, например стену, может быть рассчитана как

q = UA dT (1)

, где

q = теплопередача (Вт (Дж / с), БТЕ / ч)

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

A = площадь стены (м 2 , футы 2 )

dT = (t 1 — t 2 )

= разница температур по стене ( o C, o F)

Общий коэффициент теплопередачи для многослойной стены, трубы или тепла e xchanger — с потоком жидкости на каждой стороне стены — можно рассчитать как

1 / UA = 1 / час ci A i + Σ (s n / k n A n ) + 1 / ч co A o (2)

где

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

k n = теплопроводность материала в слое n (Вт / (м · К), БТЕ / ( hr ft ° F) )

h ci, o = внутренняя или внешняя стенка отдельная жидкость конвекция коэффициент теплопередачи (Вт / (м 2 K) , БТЕ / (фут 2 ч o 90 183 F) )

s n = толщина слоя n (м, фут)

Плоская стена с равной площадью во всех слоях — можно упростить до

1 / U = 1 / ч ci + Σ (s n / k n ) + 1 / h co (3)

Теплопроводность — k — для некоторых типичных материалы (не то, чтобы проводимость — это свойство, которое может изменяться в зависимости от температуры)

  • Полипропилен PP: 0.1 — 0,22 Вт / (м · К)
  • Нержавеющая сталь: 16 — 24 Вт / (м · К)
  • Алюминий: 205 — 250 Вт / (м · К)
Преобразовать между Метрические и британские единицы
  • 1 Вт / (м · К) = 0,5779 БТЕ / (фут · ч o F)
  • 1 Вт / (м 2 K) = 0,85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Коэффициент конвективной теплопередачи — h — зависит от

  • тип жидкости — газ или жидкость
  • свойства потока, такие как скорость
  • другие свойства, зависящие от потока и температуры

Коэффициент конвективной теплопередачи для некоторых распространенных жидкостей:

  • Воздух — от 10 до 100 Вт / м 2 K
  • Вода — 500 до 10 000 Вт / м 2 K

Многослойные стены — Калькулятор теплопередачи

Этот калькулятор можно использовать для расчета общего коэффициента теплопередачи и теплопередачи через многослойную стену.Калькулятор является универсальным и может использоваться для метрических или британских единиц при условии, что единицы используются последовательно.

A — площадь (м 2 , фут 2 )

t 1 — температура 1 ( o C, o F)

t 2 — температура 2 ( o C, o F)

h ci — коэффициент конвективной теплоотдачи внутри стенки (Вт / (м 2 K), Btu / ( ft 2 h o F) )

s 1 — толщина 1 (м, фут) k 1 — теплопроводность 1 (Вт / (м K) , БТЕ / (час фут ° F) )

с 2 — толщина 2 (м, фут) k 2 — теплопроводность 2 (Вт / (м · К), БТЕ / (час фут ° F) )

с 3 — толщина 3 (м, фут) k 3 — теплопроводность 3 (Вт / (м · К), БТЕ / (ч · фут · ° F) )

ч co — коэффициент конвективной теплопередачи снаружи стены ( Вт / (м 2 K), Btu / (фут 2 h o F) )

Тепловое сопротивление теплопередачи

Сопротивление теплопередачи банка быть выражено как

R = 1 / U (4)

где

R = сопротивление теплопередаче (м 2 K / W, ft 2 h ° F / BTU)

Стена разделена на секции термического сопротивления, где

  • теплопередача между жидкостью и стеной — это одно сопротивление
  • сама стена является одним сопротивлением
  • передача между стеной и t Вторая жидкость — это тепловое сопротивление.

Поверхностные покрытия или слои «обожженного» продукта добавляют дополнительное тепловое сопротивление стенкам, снижая общий коэффициент теплопередачи.

Некоторые типичные сопротивления теплопередаче
  • статический слой воздуха, 40 мм (1,57 дюйма) : R = 0,18 м 2 K / W
  • внутреннее сопротивление теплопередаче, горизонтальный ток: R = 0,13 м 2 K / W
  • внешнее сопротивление теплопередаче, горизонтальный ток: R = 0,04 м 2 K / W
  • внутреннее сопротивление теплопередаче, тепловой ток снизу вверх: R = 0,10 м 2 K / W
  • внешнее сопротивление теплопередаче, тепловой ток сверху вниз: R = 0.17 м 2 K / W

Пример — теплопередача в теплообменнике воздух-воздух

Пластинчатый теплообменник воздух-воздух площадью 2 м 2 и толщиной стенки 0,1 мм может быть изготовлен из полипропилен PP, алюминий или нержавеющая сталь.

Коэффициент конвекции теплопередачи для воздуха составляет 50 Вт / м 2 K . Внутренняя температура в теплообменнике 100 o C , а наружная температура 20 o C .

Общий коэффициент теплопередачи U на единицу площади можно рассчитать, изменив (3) на

U = 1 / (1 / h ci + s / k + 1 / h co ) (3b)

Общий коэффициент теплопередачи для теплообменника из полипропилена

  • с теплопроводностью 0,1 Вт / мК составляет

U PP = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0.1 мм ) (10 -3 м / мм) / ( 0,1 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 24,4 Вт / м 2 K

Теплопередача

q = ( 24,4 Вт / м 2 K ) ( 2 м 2 ) ((100 o C ) — (2 0 o C ))

= 3904 W

= 3.9 кВт

  • нержавеющая сталь с теплопроводностью 16 Вт / м · К :

U SS = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0,1 мм ) (10 -3 м / мм) / ( 16 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) ((100 o C ) — (2 0 o C ))

= 4000 Вт

= 4 кВт

  • алюминий с теплопроводностью 205 Вт / мK :

U Al = 1 / (1 / ( 50 Вт / м 2 K 90 100) + ( 0.1 мм ) (10 -3 м / мм) / (205 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) ((100 o C ) — (2 0 o C ))

= 4000 Вт

= 4 кВт

  • 1 Вт / (м 2 К) = 0.85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Типичный общий коэффициент теплопередачи

  • Газ свободной конвекции — газ свободной конвекции: U = 1-2 Вт / м 2 K (стандартное окно, воздух из помещения через стекло)
  • Газ со свободной конвекцией — принудительная жидкая (проточная) вода: U = 5-15 Вт / м 2 K (типовые радиаторы центрального отопления)
  • Свободная конвекция газа — конденсирующийся пар Вода: U = 5-20 Вт / м 2 K (типичные паровые радиаторы)
  • Принудительная конвекция (проточная) Газ — Свободная конвекция Газ: U = 3-10 Вт / м 2 K (пароперегреватели)
  • Принудительная конвекция (проточный) Газ — Принудительная конвекция Газ: U = 10-30 Вт / м 2 K (газы теплообменника)
  • Принудительная конвекция (проточный) Газ — Принудительная жидкость (проточная) вода: U = 10-50 Вт / м 2 9 0183 K (газовые охладители)
  • Принудительная конвекция (проточный) Газ — конденсирующийся пар Вода: U = 10-50 Вт / м 2 K (воздухонагреватели)
  • Безжидкостная конвекция — принудительная конвекция Газ: U = 10-50 Вт / м 2 K (газовый котел)
  • Свободная конвекция жидкости — Свободная конвекция Жидкость: U = 25-500 Вт / м 2 K (масляная баня для отопления)
  • Без жидкости Конвекция — принудительный ток жидкости (вода): U = 50 — 100 Вт / м 2 K (нагревательный змеевик в воде в резервуаре, вода без рулевого управления), 500-2000 Вт / м 2 K (нагревательный змеевик в резервуарной воде , вода с рулевым управлением)
  • Конвекция без жидкости — Конденсируемый пар воды: U = 300 — 1000 Вт / м 2 K (паровые рубашки вокруг сосудов с мешалками, вода), 150 — 500 Вт / м 2 K (другие жидкости)
  • Принудительная жидкость (текущая) вода — газ свободной конвекции: U = 10-40 Вт / м 2 K (горючий ст. камера + излучение)
  • Принудительная жидкость (текущая) вода — Свободная конвекционная жидкость: U = 500-1500 Вт / м 2 K (охлаждающий змеевик — перемешиваемый)
  • Принудительная жидкость (текущая) вода — Принудительная жидкость (проточная вода): U = 900 — 2500 Вт / м 2 K (теплообменник вода / вода)
  • Принудительная жидкая (проточная) вода — Конденсирующий пар водяной: U = 1000-4000 Вт / м 2 K (конденсаторы водяного пара)
  • Кипящая жидкая вода — свободный конвекционный газ: U = 10-40 Вт / м 2 K (паровой котел + излучение)
  • Кипящая жидкая вода — принудительное течение жидкости (вода) : U = 300 — 1000 Вт / м 2 K (испарение холодильников или охладителей рассола)
  • Кипящая жидкая вода — Конденсирующий пар воды: U = 1500-6000 Вт / м 2 K (испарители пар / вода)

Калькулятор тепловых потерь | Калькулятор БТЕ

Вы можете использовать этот калькулятор тепловых потерь, чтобы оценить мощность обогревателя, необходимую для поддержания комфортной температуры в вашей комнате.Из текста вы узнаете, как рассчитать теплопотери и что такое калькулятор отопления BTU.

Зачем нужны системы отопления?

Все материалы проводят тепло. Вы можете согреть свое место до комфортной температуры, но пока температура на улице ниже, в вашем доме будет холоднее. Поток тепла из более теплого места в более холодное практически невозможно остановить, независимо от того, насколько качественные изоляционные материалы вы найдете. Чтобы компенсировать потерю, нам необходимо подавать энергию с постоянной скоростью.Эта мощность представляет собой мощность нагревателя, которую этот калькулятор поможет вам вычислить.

Что влияет на теплопотери?

Потери тепла — это эффект теплопередачи (в ваттах) изнутри наружу. На теплопередачу влияют три фактора:

  1. Площадь поверхности, через которую проходит тепло
  2. материал
  3. разница температур

Первый пункт прост: чем больше поверхность, тем больше тепла может передаваться одновременно.Второй момент касается характеристик материалов. Материалы, используемые в конструкциях, должны соответствовать определенным стандартам. Помимо прочего, это означает, что они должны обладать особыми свойствами в отношении теплопередачи. Общей характеристикой является коэффициент теплопередачи, также называемый U-значением. Он определяет передачу тепла через один квадратный метр материала, деленную на разницу температур. Например, кирпичная стена размером 11 дюймов может иметь U порядка 1 Вт / (м · К), тогда как стандартное окно может иметь значение U в пять раз больше.Последний фактор — разница температур. Тепло передается только между областями с разной температурой, поэтому, если температура одинакова, потока тепла нет. Обычно теплопередача пропорциональна разнице температур.

Как рассчитать теплопотери?

Чтобы вычислить теплопотери, нам нужно просуммировать теплопотери по всем поверхностям комнаты и учесть различные характеристики материалов, используемых в конструкции. Общие потери тепла складываются из потерь через стены, пол и потолок.Мы вычисляем потери через одну поверхность по формуле:

Heat_loss = Площадь * U-значение ,

где

  • Площадь — площадь поверхности,
  • U-значение — U-значение материала.

Потери тепла через стены можно оценить следующим образом. Во-первых, следует указать тип утеплителя. В нашем калькуляторе предусмотрено 3 варианта:

  • без дополнительной изоляции: сплошная кирпичная стена толщиной 9 дюймов, коэффициент теплопроводности = 2,2 Вт / (м² · К)
  • посредственная изоляция: пустотелая стенка толщиной 11 дюймов, коэффициент U = 1.0 Вт / (м² К)
  • очень хорошо изолирован: полая стена толщиной 11 дюймов с дополнительной изоляцией, коэффициент теплопередачи = 0,6 Вт / (м² · К)

При желании в расширенном режиме вы можете установить значение U вручную.

Нам также нужно знать общую площадь стен. Однако следует учитывать только внешние стены. Наконец, в расширенном режиме вы можете выбрать количество окон и внешних дверей. Через них теряется большое количество тепла. Мы установили коэффициент теплопроводности окон 2,5 Вт / (м² K) и внешних дверей 2,4 Вт / (м² K) .

В нашем калькуляторе мы учитываем теплопотери через пол, только если это первый этаж. Значение U составляет 1 Вт / (м² · К) . Точно так же мы учитываем потери тепла через потолок, только если комната находится на верхнем этаже. Коэффициент теплопроводности потолка 0,7 Вт / (м² · K) .

Калькулятор теплопотерь

Чтобы воспользоваться калькулятором теплопотерь и определить мощность обогревателя, необходимо указать размеры вашей комнаты, указать, на каком этаже находится этот этаж и какой утеплитель у стен.Если вы не уверены, какой тип изоляции выбрать, выберите изоляцию худшего качества. Безопаснее быть пессимистом. Наконец, вы также должны указать, сколько у вас внешних стен. В расширенном режиме вы также можете указать количество окон и дверей. Имея эту информацию, мы можем вычислить тепловые потери (в ваттах, разделенных на разницу температур). Зная теплопотери, мы можем оценить мощность обогревателя. Последняя часть необходимой информации — это разница температур внутри (внутренняя температура) и снаружи (температура окружающей среды).Внутренняя температура зависит от вашего комфорта. Температура окружающей среды должна быть минимальной температурой в вашем регионе.

Вычислитель отопления в БТЕ

В некоторых местах по всему миру для указания мощности системы отопления чаще используется BTU (британская тепловая единица) в час вместо ватт. Если вам интересно, сколько BTU мне нужно, вы можете легко изменить с ватт на BTU в час в нашем калькуляторе.

HTflux — Программное обеспечение для моделирования

В следующем тексте я постараюсь предоставить наиболее важную информацию о расчете тепловой массы для строительных приложений.Вторая часть — это краткое руководство по пониманию и использованию моего бесплатного Excel-калькулятора (ссылка внизу этой страницы).

Резюме для пользователей, не желающих читать весь текст…

Короче говоря, наиболее важным применением этого инструмента будет оптимизация (= максимизация) тепловой массы на внутренних поверхностях зданий. Это поможет снизить суточные перепады температуры внутри здания. Увеличивая внутреннюю массу, ваша стена, пол или потолок должны поглощать большую часть солнечного излучения в течение дня и выделять накопленное тепло через естественную вентиляцию в течение ночи.

Для этого вам нужно будет максимизировать результирующую цифру « внутренняя поверхностная теплоемкость » в инструменте. Как вы увидите, это свойство зависит в основном от внутреннего поверхностного слоя — до нескольких сантиметров или даже миллиметров ниже поверхности. Поэтому для достижения высокой теплоемкости вам необходимо выбрать материал, обладающий высокой теплопроводностью и плотностью этого самого верхнего внутреннего слоя.

Я считаю другие результаты расчетов (временные сдвиги, периодический коэффициент пропускания …) второстепенными.Однако для полного понимания темы или для специальных приложений я все же рекомендую прочитать весь текст ниже…

Введение

Следующие расчеты основаны на методах расчета, описанных в стандарте ISO 13786. Без явного упоминания этого в стандарте используются хорошо известные методы расчета, которые используются в электротехнике для описания поведения компонентов в цепях переменного тока. Расчеты производятся с использованием матриц комплексных чисел.

Для аналитического решения этих уравнений предполагается, что граничные условия (температуры или тепловые потоки), а также результирующие переменные (температуры и тепловые потоки) имеют синусоидальную форму с периодом 24 часа. Даже если это звучит как серьезное ограничение, на самом деле это подходящее и полезное предположение. Синусоидальная форма является подходящей, поскольку фактические среднесуточные колебания температуры в значительной степени соответствуют синусоидальным волнам или имеют, по крайней мере, доминирующую синусоидальную составляющую (см. Теорему Фурье).Ограничение периодической продолжительностью 24 часа также является разумным, поскольку только в течение этих 24 часов можно действительно ожидать циклического изменения температуры.

Внутренняя теплопроводность

Результат расчета тепловой проводимости описывает способность поверхности поглощать и отдавать тепло (энергию) при периодическом синусоидальном колебании температуры с периодом 24 часа. Значение описывает амплитуду теплового потока (= максимальное значение), вызванное колебанием температуры в 1 K (° C).Предполагается, что температура на противоположной стороне стены поддерживается постоянной. Из-за линейности основных уравнений вы можете просто умножить значение на любые другие амплитуды температуры, чтобы получить соответствующие тепловые потоки, например если вы хотите оценить максимальный тепловой поток в / из вашей стены, вызванный колебаниями внутренней температуры на 6 ° C, а внутренняя теплопроводность вашей стены составляет 5 Вт / (м²K), то максимальный тепловой поток будет составлять 6 K * 5 Вт / (м²K) = 30 Вт / м². Следовательно, «реакцией» этой стены на синусоидальные периодические колебания температуры 6 ° C будет синусоидальный тепловой поток, поглощающий максимум 30 Вт на квадратный метр в течение дня и выделяющий те же 30 Вт / м² ночью.

Способность стены поглощать энергию в течение дня имеет решающее значение для предотвращения перегрева в летнее время или для снижения затрат на охлаждение. Внутреннюю теплопроводность можно использовать для оценки этой способности, однако внутренняя поверхностная теплоемкость , которая почти пропорциональна этому значению, на самом деле больше подходит для этой работы (см. Ниже).

Time-shift — внутренняя теплопроводность

Тепловой поток, вызванный колебаниями температуры, сдвинут во времени, что означает, что он не имеет своих максимумов и минимумов одновременно.Тепловой поток обычно приводит к колебаниям температуры окружающей среды (тогда как фактическая температура поверхности стены будет отставать). Таким образом, если ваше выходное значение для временного сдвига составляет «2:00» (как в приведенном выше примере), максимальный тепловой поток в / из стены произойдет на 2 часа раньше, чем максимум / минимум температуры.
Этот временной сдвиг является лишь «побочным эффектом» тепловой буферизации, и на него невозможно повлиять / спроектировать без изменения теплоемкости стены. Фактически это является следствием отстающей / отстающей температуры поверхности стены, поскольку разница между температурой поверхности и температурой окружающей среды имеет значение для результирующего теплового потока.

Внешняя теплопроводность

В соответствии с внутренней теплопроводностью (см. Выше), тогда внешняя теплопроводность описывает способность аккумулировать тепло при внешних колебаниях температуры. Опять же, предполагается, что температура на противоположной стороне поддерживается постоянной.

Что касается значения этого значения, обратитесь к внешней тепловой мощности ниже.

Time-shift — внешнее тепловое сопротивление

Опять же, соответствующее внутреннему сдвигу во времени, это результирующее значение скажет вам, сколько времени максимумы / минимумы теплового потока будут опережать максимумы / минимумы температуры.

Периодический коэффициент теплопередачи

Выходное значение периодического коэффициента теплопередачи описывает тепловой поток, вызванный колебаниями температуры на противоположной стороне компонента, при условии, что температура окружающей среды на той же стороне стены поддерживается постоянной. Хотя кажется, что периодический коэффициент теплопередачи вместе с его фазовым сдвигом является любимой темой некоторых ученых-строителей и специалистов по маркетингу изоляционных материалов, эффектом периодической теплопередачи можно пренебречь для большинства стандартных строительных приложений.В соответствии с современными стандартами изоляции (низкие значения коэффициента теплопередачи), изменения теплового потока, которые фактически будут вызваны колебаниями температуры на противоположной стороне строительного элемента, будут незначительными. Чтобы проиллюстрировать это, мы можем использовать этот инструмент для расчета влияния на периодический коэффициент теплопередачи легкой изоляции по сравнению с тяжелой изоляцией. Мы можем показать это на примере простой стены (или крыши), состоящей исключительно из 20 см железобетона и 15 см внешней изоляции. Предполагается сильное изменение внешней температуры на +/- 15 ° C (= диапазон 30 ° C).Исходя из этих предположений, получаем следующие результаты:

Легкая изоляция (25 кг / м³): перепады температуры внутренней поверхности: +/- 0,10 ° C, тепловой поток: +/- 0,77 Вт / м², фазовый сдвиг: 7,6 часа

Плотная изоляция (250 кг / м³): перепады температуры внутренней поверхности: +/- 0,04 ° C, тепловой поток: +/- 0,34 Вт / м², фазовый сдвиг: 14,6 часа

Это означает, что эффект очень хорошо виден с относительной точки зрения. Однако с абсолютной точки зрения разница вряд ли значима, поскольку итоговые суммарные тепловые потоки незначительны по сравнению с другими источниками тепла (например,г. незатененные или открытые окна).

Временной сдвиг периодического коэффициента теплопередачи

Значение описывает задержку, которую будет иметь тепловая волна, вызванная колебаниями температуры противоположной стороны стены. Чтобы соответствовать другим значениям временного сдвига, отрицательный знак означает, что тепловой поток отстает от колебаний температуры на другой стороне стены. Часто указывается, что необходимо нацелить временной сдвиг на 12 часов, поскольку это означает, что максимум тепловых волн будет приходить на другую сторону стены, когда температуры самые низкие (или наоборот).В отношении компонентов здания, соответствующих современным строительным стандартам, это правило можно считать устаревшим, поскольку фактические колебания температуры поверхности, вызванные колебаниями температуры на противоположной стороне компонента здания, обычно находятся в диапазоне десятых или даже нескольких сотых градусов по Цельсию. Поэтому соответствующие тепловые потоки обычно незначительны.

Внутренняя площадь теплоемкости

Значение внутренней теплоемкости описывает способность строительного элемента аккумулировать тепло в течение суточного цикла.Значение указывает количество тепла, которое может быть сохранено на одном квадратном метре в течение одного дня при колебании температуры в 1 градус, поэтому его единица измерения — кДж / м²K. Поскольку лежащие в основе уравнения линейны, можно умножить это значение на любую другую амплитуду температуры, чтобы вычислить соответствующее количество тепла, которое может быть сохранено.

Площадь теплоемкости рассчитывается путем интегрирования тепловых потоков, описываемых теплопроводностью за целый день. В отличие от способа определения единичной теплопроводности, внутренняя поверхностная теплоемкость учитывает колебания температуры с обеих сторон компонента здания.Следовательно, используя комплексные числа, его можно вычислить на основе внутренней проводимости и периодического пропускания. В зависимости от фактического временного фазового сдвига периодического коэффициента пропускания он может либо увеличивать, либо уменьшать пропускную способность по сравнению с ситуацией с постоянными внешними температурами. Однако, как упоминалось выше, для высоких стандартов изоляции влияние периодического пропускания будет незначительным. По этой причине внутренняя поверхностная теплоемкость обычно в значительной степени пропорциональна внутренней теплопроводности.

Очень важно иметь достаточно большую внутреннюю теплоемкость, чтобы избежать риска перегрева летом и / или снизить связанные с этим затраты на охлаждение. Общая теплоемкость внутренних помещений здания должна быть способна поглощать тепло в дневное время летнего дня, которое затем можно отводить в ночное время с помощью естественной вентиляции при более низких температурах наружного воздуха. Чем больше внутренняя теплоемкость, тем меньше будут колебания внутренней температуры. Очевидно, что, во-первых, дневные потоки тепла в здание следует ограничивать за счет оптимального затенения и удерживания окон и дверей закрытыми.

Чтобы определить полную теплоемкость помещения, вам просто нужно сложить удельную теплоемкость всех конструкций, умноженную на их фактические поверхности (потолок, пол, стена-1, стена-2,…). Используя инструмент, вы обнаружите, что поверхностная теплоемкость в основном зависит от материала самого внутреннего слоя. Этот материал должен быть достаточно теплопроводным и обладать высокой теплоемкостью (в основном определяемой его объемной плотностью и проводимостью).

Это означает: бетонный потолок будет значительно лучше подвесного потолка, каменный пол будет лучше, чем паркет (или даже ковролин), толстая гипсоволокнистая плита будет лучше тонкой гипсокартонной плиты и т. Д. .

Внешняя площадь теплоемкости

Соответствуя внутренней поверхностной теплоемкости, он описывает способность строительного компонента аккумулировать тепло в суточном температурном цикле на внешней поверхности. Опять же, тепловой поток, возникающий из-за колебаний температуры на противоположной (внутренней) стороне здания, также учитывается (но обычно имеет второстепенное значение).

С практической точки зрения, внешняя поверхностная теплоемкость может быть интересна, если вы заинтересованы в уменьшении колебаний температуры вашего фасада.Это может быть вопросом комфорта, но есть и еще один важный аспект: очень маленькая внешняя теплоемкость современных фасадов из полистирола является большим недостатком. Это результат сочетания легких изоляционных материалов с очень тонким слоем штукатурки. Недостаток теплоемкости приводит к высоким температурам поверхности в дневное время и — что, возможно, даже более проблематично — к низким температурам поверхности в ночное время. Вследствие чрезвычайно низкой теплоемкости сравнительно низкий эффект радиационного охлаждения, связанный с ясным ночным небом, может снизить температуру фасада даже ниже температуры окружающего воздуха.Следовательно, уровни относительной влажности на поверхностях повышаются и довольно часто достигается точка росы. Таким образом, температура фасада немного ниже температуры окружающей среды может способствовать или значительно стимулировать рост водорослей или грибков на фасаде. В настоящее время эта проблема решается путем добавления проблемных химических ингибиторов роста к рендерам или цветам, которые представляют угрозу для окружающей среды.

Общие

Инструмент Excel разделен на четыре листа с различными функциями:

  • Calculation-Tool
    Это основной лист, на котором выполняется расчет.Введите здесь слои материала и значения поверхностного сопротивления, чтобы получить результаты (также на этом листе).
  • Интерактивная диаграмма
    На этой странице интерактивная диаграмма показывает изменения температуры и теплового потока во времени. Вы можете установить колебания температуры окружающей среды для одной или обеих сторон компонента здания и просмотреть результирующие тепловые потоки и температуры на обеих поверхностях компонента.
  • Материалы
    На этом листе я представил типичные данные для 200 широко используемых материалов.Вы можете копировать и вставлять значения в таблицу расчетов.
  • Пример проверки
    На последнем листе вычислен пример проверки, предусмотренный стандартом ISO 13786, чтобы подтвердить достоверность алгоритма.

Поверхностное сопротивление R

si и R se

Помимо слоев материала, вам нужно будет ввести правильные значения поверхностного сопротивления для ваших расчетов. Они описывают передачу тепла из окружающей среды на поверхности строительного компонента или из них.Они представляют собой упрощенную модель, поскольку реальный теплообмен происходит за счет комбинации трех различных физических процессов (излучения, конвекции, теплопроводности). Более подробную информацию о теории и рекомендуемых значениях можно найти на специальной странице.

Обратите внимание, что для этих расчетов мощности рекомендуется использовать значение 0,13 м²K / Вт для всех случаев, когда тепловые потоки в основном вызваны колебаниями внутренней температуры и нетто-среднее значение отсутствует или очень мало. тепловой поток в течение суток.Это означает, что, когда вы обычно используете 0,10 или 0,17 м²K / Вт для восходящего или нисходящего теплового потока при расчетах коэффициента теплопередачи для потолков или полов, может быть более подходящим использовать 0,13 м²K / Вт для любого случая для расчета тепла. -мощности. Когда основной тепловой поток, вызванный 24-часовыми колебаниями температуры, больше, чем средний чистый отток или приток, и, следовательно, общий тепловой поток меняет свое направление (знак) два раза в день, будет более подходящим использовать это значение.

Внутренние стены, потолки, полы

Конечно, вы также можете использовать этот инструмент для расчета теплоемкости внутренних компонентов здания.В этом случае просто используйте одно и то же значение поверхностного сопротивления (обычно 0,13 м²K / Вт) для каждой стороны компонента. Метки «внутренняя» и «внешняя» будут тогда служить только для обозначения конкретной стороны стены.

Этажи с контактом с землей

Вы также можете использовать этот инструмент для расчета внутренней поверхностной теплоемкости полов (или стен) с контактом с землей. Для этой цели я рекомендую добавить слой почвы толщиной 2 м (например, использовать глину / ил из списка материалов) на внешней стороне строительного элемента.В этом случае, конечно, будут интересны только значения внутреннего результата. (Для диаграммы вы должны использовать среднемесячную или среднегодовую температуру почвы на этой глубине).

Диаграмма

Диаграмма поможет вам понять эффект буферизации вашего компонента здания, а также происходящие сдвиги фаз с обеих сторон. Вы можете предположить, что температура колеблется только с одной стороны, чтобы лучше понять последствия, или вы можете предположить, что колебания температуры на обеих поверхностях отражают более реалистичную ситуацию.Суточные колебания температуры можно определить, указав среднюю температуру, амплитуду температуры, а также определенное время для максимальной температуры.

Конечно, возникающие колебания температуры также будут зависеть от результирующих тепловых потоков, проходящих через ваш компонент, но в основном они зависят от солнечной энергии и вентиляции. Следовательно, для точного определения фактических значений потребуется полное моделирование здания. Чтобы понять процесс и оценить потенциальный диапазон температур поверхности и тепловых потоков, будет достаточно использовать реалистичные предположения для внутренних и внешних температур.

Список материалов

Инструмент также включает в себя список параметров материала для прибл. 200 распространенных материалов. Вы можете использовать копирование и вставку для переноса соответствующих материалов в виде слоев на расчетный лист. Для точных расчетов следует использовать точные значения, которые обычно можно найти в паспорте конкретного продукта. Если вы используете наше программное обеспечение HTflux, вы можете использовать дополнительные материалы онлайн-базы данных материалов.

Ссылка для скачивания на бесплатный инструмент расчета

Для более подробного анализа, моделирования, базы данных свойств материалов и т. Д.пожалуйста, используйте наше программное обеспечение HTflux.

www.htflux.com, Даниэль Рюдиссер, © 2018

Этот инструмент Excel разработан для бесплатного использования и распространения. Инструменты прошли валидацию, однако мы не несем ответственности за результаты расчетов или связанные с ними убытки или ущерб.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *