Теплопроводность пеноплекса 50 мм: Теплопроводность пеноплекса 50 мм в сравнении таблица

Теплопроводность пеноплекса 50 мм в сравнении таблица

Главная » Статьи » Теплопроводность пеноплекса 50 мм в сравнении таблица

Утеплитель пеноплекс 50 мм технические характеристики и особенности

Пеноплекс – это экструдированный пенополистирол. Его изготавливают на высокотехнологичном оборудовании с 1998 года. Технические характеристики пеноплекса, делают его приемлемым для использования в строительстве.

Параметры, технические характеристики и способ применения – результат существующего технологического процесса изготовления. Жесткость структуры листа, служит основанием для напольного настила.

Свойства

Как все виды материалов, имеет достоинства и недостатки.

Положительные качества

Прочность

  • Благодаря монолитной ячеистой структуре, пласт не крошится.
  • Большая степень сопротивления на сжатие.

Эксплуатационная характеристика

  • Коэффициент теплопроводности ниже, чем у пенопласта.
  • Не гниет от сырости, не заводятся насекомые – перечисленные факторы продлят срок использования до 50 лет.
  • Морозоустойчив.
  • Выдерживает температуры, создаваемые в сауне или бане.

Устойчив к поглощению влаги

  • Материал обретает гидрофобность – сопротивление проникновению воды.
  • В результате образованной закрытой ячейки, становится устойчивым к паропроницаемости.
  • Применение не требует дополнительной гидроизоляции.

Пожаробезопасность

  • В состав компонентов, при изготовлении, вводят антипирены, делающие его негорючим. При огне, материал тлеет, не поддерживая процесс.

Плотность

  • Показатель влияет на характеристики прочности и вес. Его повышают искусственным путем, повторяя процесс нагревания, при соблюдении технологической последовательности. Цена на продукт увеличивается, при дополнительных затратах на изготовление.

Экологичность

  • При нагревании и повышенной влажности помещения, пеноплекс 50 не выделяет токсичных веществ.
  • Не наносит вред атмосфере.
  • Закрытые ячейки воздуха в структуре, характерны для типов материалов, не поддерживающих часть химических реакций. Он эффективен для утепления фундамента и отмостка здания.
Отрицательные качества
  • От органических растворителей, входящих в состав клея, теряется плотность, и изменяется целостность структуры.
  • Низкий коэффициент паропроницаемости отрицательно сказывается на конденсате основания. Необходимо оставлять зазор при утеплении стен изнутри.
  • Высокая цена на материал. Чем выше плотность, тем он дороже.

Сравнение теплопроводности пеноплекса с другими видами утеплителей (в мм)

  • Пеноплекс – 20.
  • Пенопласт – 30.
  • Минеральная вата – 38.
  • Дерево – 200.
  • Пенобетон – 270.
  • Кирпич – 370.

Технология изготовления

Используется оборудование – экструдер. Его название, произвольное от наименования головки с фильерами, расположенной на выходе сплава из агрегата – экструзионная.

Основной компонент технологического процесса – гранулы полистирола. Он поделен на несколько этапов:

Первый

  • Гранулы погружают в емкость оборудования.
  • Герметически закрывают.
  • Нагревают до увеличения в объеме каждой, до формы шара, за счет образования пустоты внутри.
  • Добавляют вспенивающий реагент.
  • Устанавливают режим давления.
  • Технологическими условиями создается азотная среда, способствующая химическому взаимодействию компонентов, с обильным выделением кислорода.
  • Масса под давлением выпускается через экструзионную головку, преобразуюсь в монолитную структуру с закрытыми ячейками воздуха, каждая диаметром 0,1 мм.
  • Чем больше повторов вспенивания, тем меньше вес плиты, и выше ее плотность. Масса не выпускается из агрегата, для осуществления дальнейших действий, соответствующих технологии.

Второй

Изготовления плиты – нахождение в камере выдержки в течение суток. Из агрегата выкачивается весь воздух вакуумным насосом, и материал оставляется внутри.

Он стабилизируется, уравновешивается давление внутри гранул, наполненных воздухом.

Третий

Происходит формирование блоков в матрице закрытого типа. Внутрь емкости пар подается под давлением. Теряется остаточная влага. Завершается этап вылеживание сутки, при каждом новом цикле нагрева, повышающего плотность структуры.

В меру просушенный блок, раскраивают на конвейере. Нарушение технологии, приводит к неровностям кромки. Режущий инструмент – раскаленная струна тугоплавкой стали. На производстве используется оборудование с электронной программой, контролирующей уровень нагрева металла.

 Технические характеристики

Составы, отрицательно влияющие на материал

  • Масляная краска.
  • Деготь.
  • Эпоксидная смола.
  • Сложный полиэфир.
  • Дизельное топливо, бензин и керосин.
  • Этил ацетатный растворитель и диэтиловый спирт.
  • Формалин и формальдегид.
  • Углеродсодержащие ароматические виды кислот, толуол и бензол.

Составы, не оказывающие вредного воздействия

  • Органическая и неорганическая кислота.
  • Солевой раствор.
  • Краска на основе спирта.
  • Щелочь.
  • Эмульсии и краски на водной основе.
  • Аммиак, пропан или бутан.
  • Парафин растительные масла и животные жиры.
  • Фреон.

Применение

  • Пеноплекс 50 мм используется в технологии навесной фасад.
  • Он эффективен при утеплении основания пола сауны и бани.
  • Входит в комплект сендвич кровельного покрытия скатных крыш.
  • Укладку на стены внутри помещения делают низкоплотным видом, используя каркас, или технологию мокрой штукатурки.
  • При формировании фундамента, служит опалубкой. Устойчивость к сжатию и плотность, обеспечивают требуемую стандартом надежность конструкции.
  • Укладывают под отмостку, защищают стены от промерзания в зимнее время года.
  • Фасад фундамента отделывается по технологии мокрой штукатурки с применением утеплителя.
  • Предназначен для выкладки под дорожное полотно – технология предотвращения вспучивания грунта при низких температурах.
  • В условиях вечной мерзлоты, предупреждает усадку почвы от таяния верхнего слоя, под выложенным полотном асфальта или бетонных плит. В данном и предыдущем виде работ, используется высокопрочный утеплитель пеноплекс 50.
  • Укладывают внутри лоджии на пол или стену со стороны окна, смежной с улицей. На него наносят кафель или обои.
  • Плиты, обеспеченные по боковым граням шипами и пазами, укладываются сверху каркаса кровли. Герметичность соединения, гидрофобность и входящий антипирен, защитят дерево от влаги.

Виды

Кровля

Боковые грани Г-образные, обеспечены шипами и пазами. Серия выпускается с низкой теплопроводностью. Она изолирует шум со стороны улицы, и звук от смежного помещения. Характерна плите высокая прочность. Для утепления кровли не требуется высокой плотности, ввиду отсутствия нагрузки. Способ соединения – герметичность стыковки без мостиков входа холоду, гарантирующая надежную защиту проникновению влаги внутрь.

Фундамент

Серия обладает высокой плотностью, устойчивой к нагрузкам. Отсутствие в составе плиты антипирена, не позволяет их использовать для других видов работ. Применение материала в виде опалубки, экономит средства на заливку фундамента.

Спросом пользуется данный вид при возведенье дома с теплыми полами по грунту. Он практичен для песчаных местностей. Строительство дома ведут на плитах повышенной плотности.

Выкладка под дорожное полотно

Работы по утеплению, защищают покрытие от вспучивания в зимнее время. Соблюдение технологии проводимых работ, позволяет продлить эксплуатационные характеристики трассы. Используют плиты высокоплотные.

Комфорт

Экологически чистый продукт, не выделяющий токсичных паров, широко используется в гражданском строительстве.

Скатная серия

Для данного вида работ, используют низкоплотный утеплитель с пазами и шипами по контуру. Двухсторонняя защита каркаса кровли, избавит от поступления паров со стороны помещения, и образования конденсата на лагах. Внешний контур служит гидроизоляцией от атмосферной агрессии.

Основа

Серия рекомендована для стен внутри и снаружи, с последующей отделкой штукатуркой или обоями. Материал эффективен для утепления потолка и пола. Жесткая поверхность не требует дополнительного выравнивания при укладке плиток или паркета. Его рекомендуют использовать при монтаже теплых полов.

Фасад

Выбирая фактурный вид, получают готовую основу для покраски. Рекомендуют нанести два слоя грунтовки, для надежности адгезии, перед началом работ. Крепятся плиты штукатурно-клеевым составом. Это экономит время на выравнивание кладки из кирпича, пеноблоков и шлакобетона. Входящий в состав антипирен, защитить основание от возгорания, появления грибка плесени.

Плиты нашли широкое применение в технологии навесных фасадов под отделку. Работы ведутся на каркас. Данный вариант обеспечит естественный конденсат стенам.

Серия уклон

Используется для плоских крыш, требующих создания стока для воды искусственным путем. Сделать контуруклон помогает форма листа. С одной из сторон, она выше.

Серия стена

Близка по качеству и форме к фасадной. Допускается использование меньшей плотности, ввиду отсутствия нагрузки.

Ценовые показатели, с привязкой к видам, по 8 штук в упаковке за 2017 год (в рублях)

  • Фундамент – 1400.
  • Основа – 1665.
  • Фасад – 1350.
  • Стена – 1350.
  • Кровля – 1420.
  • Комфорт 1200.

Заключение

Стойкий к гниению и химическим реакциям материал, параметрам качества и доступная цена, повышают спрос. Пеноплекс не требует реставрации, при капитальном ремонте. По техническим характеристикам, он находится в первых рядах среди видов утеплителей, имеющих широкий спектр применения.

Для фасадов, основания пола, дороги и других работ, принимающих на себя большую нагрузку, требуется повышенная плотность материала. Исходя из стоимости, выбираю дешевый тип. Низкоплотный утеплитель пеноплекс пользуется повышенным спросом.

Сколько кирпича заменяет Пеноплекс?

Ужесточение требований по тепло- и энергосохранению строительных конструкций предписывает как минимум двукратное увеличение толщины стен и перекрытий. Для кирпичных и бетонных стен этот показатель составляет, соответственно, 90 и 110 мм. Проблема решается применением совершенной фасадной и фундаментной теплоизоляции. Так сколько же кирпича заменяет Пеноплекс, и почему именно этот материал считается оптимальным для утепления практически любых строительных конструкций?

Действующий на сегодняшний день в нашей компании Пеноплекс прайс предлагает несколько видов утеплителей из экструдированного пенополистирола, коэффициент теплопроводности которых Вас приятно удивит.

Материал сложно подделать, поэтому риск приобретения некачественного фальсификата сводится к нулю.

Какие свойства Пеноплекса определяют высокий уровень потребительского спроса?

При выборе материала учитывается его уникально низкая теплопроводность, небольшой вес, несложный монтаж и продолжительный срок эксплуатации.

  • Экструдированная пенополистирольная теплоизоляция нового поколения отличается от пенопласта совершенной однородной структурой, стойкостью к нагрузкам на сжатие и другим неблагоприятным внешним воздействиям.
  • При всех своих достоинствах минеральная вата имеет жесткие ограничения по весу. Поэтому для утепления устройств, не имеющих достаточного запаса прочности, задействуются легкие материалы на пенополистирольной основе.

Недостатки Пеноплекс Фасад, купить который в нашей компании Вы можете в любое время года – нулевая паропроницаемость и достаточно низкая термостойкость, частично или полностью компенсируются применением в фасадных системах со щелевой вентиляцией и обустройством термостойких защитно-декоративных покрытий.

Что касается утепления подземных, в том числе и фундаментных конструкций, то в этом варианте влаго- и морозостойкий пенополистирол достойной альтернативы не имеет.

Прочность фундаментной облицовки достаточна для защиты гидроизоляции от повреждений сезонными подвижками пучинистых грунтов.  Ассортимент пенополистирольных утеплителей включает в себя панели разных типоразмеров: толщиной от 30 до 100 мм. В большинстве центральных регионов повышенным спросом пользуются панели толщиной 50-60 мм. Купить Пеноплекс 50 мм в Москве с существенными скидками можно на акционных и сезонных распродажах строительных материалов.

Сколько кирпичной кладки заменяет Пеноплекс?

Для тех, кто планирует заказать Пеноплекс, соотношение к кирпичу теплоизоляционного материала играет далеко не последнюю роль. Мы расскажем Вам о самой популярной толщине теплоизоляционных плит и их соответствию толщине кирпичной кладки.

  • Пеноплекс 20 мм заменяет кирпичную стену толщиной 370 мм – это почти 40 см, то есть в 20 раз больше толщины самого утеплителя. Если Вы хотели приобрести надежную теплоизоляцию, но Вас останавливало лишь незнание того, сколько заменяет кирпича толщина Пеноплекса 2 см, сегодня Вы узнали дополнительный плюс в копилке этого материала!
  • Сколько заменяет кирпичной кладки Пеноплекс 30 мм? Исходя из данных по соответствию 2 см утеплителя стене из кирпича, получается, что Пеноплекс 30 мм заменяет целых 555 мм кирпичной кладки по энергоэффективности. Вот Вам и ответ, сколько кирпича заменяет Пеноплекс 30 мм толщиной!
  • Какую толщину кирпича заменяет Пеноплекс 50 мм? Вас ждет приятный сюрприз! Технические характеристики Пеноплекс 50 мм в сравнении с кирпичом покорят не только домовладельца, но и опытного застройщика. Кирпичная кладка толщиной в 925 мм может сравниться с Пеноплексом 50 мм – вот сколько заменяет кирпичей этот утеплитель!

Теперь, когда Вы узнали, какую толщину стены заменяет Пеноплекс, нет повода откладывать покупку теплоизоляционного материала в долгий ящик – звоните нам заказывайте утеплитель по выгодной цене уже сегодня!

Пенополистирольные утеплители в домах дачного и коттеджного типа

Многие застройщики используют материал для наружного утепления фасадов и потолочных конструкций дачных домов, которые переоборудуются под круглогодичное проживание. Основной круг применения пенополистирольной теплоизоляции – это отделка фундаментов, отмосток, утепление цементных стяжек под напольную плитку.

В отличие от минеральной ваты, пенополистирол не нуждается в обустройстве пленочной или мастичной гидроизоляции, поэтому может монтироваться непосредственно на ровную поверхность грунта.

  • Оптимальная толщина пенополистирольного утеплителя, уложенного между лагами пола, не требует изменения его высоты. Заделка монтажных зазоров и сопряжений влагостойким шпаклевочным составом позволяет эксплуатировать свойства утеплителя с максимально высокой эффективностью.
  • Фундаментная теплоизоляция существенно уменьшает температурные перепады, а отсутствие в подвале сырости положительно сказывается на комфорте микроклимата в доме, снижении расходов на оплату отопления в зимний период.
  • Пенополистирольные разъемные кожухи блокируют утечку тепла из труб отопления и горячего водоснабжения, исключают промерзание водопроводных и канализационных коммуникаций, расположенных на небольшой глубине.

Более чем умеренная стоимость пенополистирольных материалов дополняется возможностью монтажа своими руками, что позволяет уменьшить стоимость теплоизоляционных работ на 35-40%.

Покупайте прямо сейчас в нашей компании качественный утеплитель Пеноплекс по выгодной цене!

Запись опубликована в рубрике Общая информация. Добавьте в закладки постоянную ссылку. (0 оценок, среднее: 0,00 из 5)Для того чтобы оценить запись, вы должны быть зарегистрированным пользователем сайта.

Теплопроводность пеноплекса и другие важные характеристики

Что представляет собой утеплитель пеноплекс, какая у него теплопроводность и какими вообще свойствами он обладает? Мне часто приходится работать с этим материалом, поэтому я готов ответить на поставленные вопросы. Кроме того, приведу вам технические характеристики данного утеплителя, и расскажу в каких случаях имеет смысл его применять.

На фото пеноплекс – универсальный и эффективный полимерный утеплитель от отечественного производителя

Что представляет собой пеноплекс

Характеристики

Сравним характеристики пеноплекса и пенополистирола:

ПараметрыПеноплексПенополистирол
Коэффициент теплопроводности, Вт/м·ºК0,030,036-0,050
Водопоглощение за сутки, % от объема0,22
Плотность, кг/м328-4515-35
Прочность на сжатие, Мпа (10% деформации)0,25-0,50,05-0,2

По теплопроводности и прочности экструзионный пенополистирол выигрышно смотрится не только по сравнению с пенопластом, но и многими другими материалами, такими как минеральная вата.

Сравнение теплопроводности экструзионного пенопласта с другими материалами

Как вы видите, технические характеристики пеноплекса более высокие.

Общие сведения

Прежде всего давайте разберемся что такое пеноплекс. Итак, это материал представляет собой экструдированный (экструзионный) пенополистирол.

Надо сказать, что в нашей стране принято называть пеноплексом любой экструдированный пенополистирол. В действительности же «Пеноплэкс» – это название компании, выпускающей данный вид утеплителя в России и других странах СНГ. Поэтому далее пойдет речь об экструдированном пенополистироле именно от этой компании.

Напомню, что экструзионный пенополистирол представляет собой полимерный утеплитель, который был придуман в середине прошлого века. По сути, это тот же пенополистирол (пенопласт), но изготавливаемый по особой технологии, в результате чего приобретает особые качества. В частности, можно выделить следующие его отличия от пенопласта:

Структура. Если пенопласт имеет зернистую структуру, то пеноплекс – это более однородный ячеистый материал;

  • Плотность. Экструзионный пенополистирол более плотный, чем пенопласт;
  • Прочность. В результате более высокой плотности и однородной структуры данный утеплитель обладает и более высокой прочностью.

Экструдированный пенополистирол имеет однородную структуру и гладкую поверхность

Внешне пеноплекс легко отличить от пенопласта. Последний имеет белый цвет, в то время как пеноплекс оранжевый. Кроме того, экструзионный пенополистирол обладает гладкой поверхностью.

Достоинства и недостатки

Домашние мастера зачастую интересуются – что лучше пеноплекс или пенополистирол? Чтобы ответить на этот вопрос, далее я приведу положительные и отрицательные качества пеноплекса, и сравню их со свойствами обычного пенополистирола.

Достоинства:

  • Эффективность. Несмотря на то, что рассматриваемый утеплитель имеет более высокую плотность, чем пенопласт, его теплопроводность ниже, т. е. он лучше держит тепло;

Благодаря высокой прочности экструзионный пенопласт можно укладывать под стяжку

  • Прочность. Данный материал способен выдерживать большие нагрузки, что расширяет область его применения;
  • Влагоустойчивость. Утеплитель практически не впитывает влагу, в сравнении с другими материалами, например, пенополистирола;

Пеноплекс практически не впитывает влагу

  • Пожаробезопасность. Относится к слабогорючим материалам. Исключение составляют марки, которые предназначены для утепления фундаментов или полов под стяжку. Горючесть пенопласта же практически всегда очень высокая, так как производители в целях экономии не добавляют в него антипирены;
  • Долговечность. Срок службы превышает 50 лет. Как показывает практика, пенополистирол приходит в негодность раньше;
  • Экологичность. При нормальной температуре оба материала не выделяют вредных веществ;
  • Химическая устойчивость. Оба материала устойчивы к большинству химических веществ. Исключение составляют органические растворители, такие как Уайт-спирит.

Пеноплекс может прослужить более 50 лет даже в неблагоприятных условиях эксплуатации

Недостатки. На первый взгляд сравнение материалов говорит о том, что пеноплекс лучше пенополистирола. Однако, как и любой другой утеплитель, он имеет свои минусы:

  • Высокая стоимость. Плиты пеноплекса стоят в несколько раз дороже пенополистирола;
  • Низкая адгезия. На данном материале плохо держатся штукатурно-клеевые смеси. Правда, Пеноплэкс выпускает специальные фасадные плиты, которые имеют шероховатую поверхность, что улучшает их сцепляемость со строительными смесями;
  • Низкая паропроницаемость. Это недостаток свойственен обоим материалам.

Учитывая эти минусы – каждый сам должен решать, что лучше использовать – пенопласт или экструзионный пенополистирол. К примеру, для утепления фундамента или цоколя лучше использовать экструдированный пенопласт.

Пенопласт обладает лучшей адгезией, чем пеноплекс

Если же нужно отделать стены фасада, то невозможно однозначно сказать, что лучше – пенопласт или пеноплекс. Учитывая низкую стоимость пенопласта и его хорошую адгезию, можно отдать предпочтение ему.

Виды и область применения

Итак, мы выяснили что теплее – пеноплекс или пенопласт, а также ознакомились с другими характеристиками утеплителя. Но для каких целей его применяют?

Компания Пеноплэкс выпускает несколько марок экструзионного пенополистирола, у которых разная область применения. Поэтому далее рассмотрим все серии и узнаем в чем разница между ними.

Пеноплэкс Фундамент может выдерживать большие механические нагрузки

Итак, в настоящее время в продаже можно встретить следующие плиты Пеноплэкс:

  • Фундамент. Как не сложно догадаться из названия, эта серия предназначена для утепления фундамента, отмосток, цоколей. Также плиты можно укладывать под стяжку. Главная характеристика этих плит, помимо теплопроводности – это высокая прочность. Так как пожаробезопасность значения не имеет, в составе отсутствует антипирен. Поэтому не рекомендуется использовать их в конструкциях, не имеющих защитного слоя;
  • Кровля. Эта марка предназначена специально для плоских крыш. Они обладают небольшим весом и при этом высокой прочностью. Главная особенность данной марки заключается в том, что каждая плита имеет кромку Г-образной формы. Благодаря этому при их укладке не образуются щели;

Утеплитель серии «Комфорт» можно использовать для утепления балконов

  • Комфорт. Эта марка предназначена для утепления жилья изнутри. Также плиты подходят для утепления балконов и лоджий. Помимо высокой теплопроводности их особенность заключается в высокой экологичности – в составе утеплителя нет никаких вредных химических веществ;

Плиты серии «Скатная кровля» предназначены для утепления крыш

  • Скатная кровля. Плиты этой серии предназначены для утепления скатных крыш. Они имеют невысокую плотность, но при этом влагоустойчивые и жесткие. Имеющиеся на кромках шипы и пазы исключают образование мостиков холода при состыковке плит, а также упрощают монтаж своими руками. Кроме того, они могут служить дополнительной защитой от влаги.
  • Фасад. Особенность этих плит заключается в наличии рифленой поверхности. Благодаря этому их можно использовать для утепления стен по технологии «мокрый фасад». Надо сказать, что утеплитель пеноплекс данной серии подходит не только для наружного, но и для внутреннего использования;

Несмотря на наличие фактуры, перед нанесением штукатурно-клеевой смеси поверхность утеплителя желательно обработать адгезионной грунтовкой.

Пеноплекс «Фасад» можно использовать для наружного утепления стен «мокрым» способом

  • Стена. Плиты этой серии обладают несколько меньшей плотностью, чем «Фасад». Производитель рекомендует использовать их в качестве наполнителя каркасных стен. В то же время данный утеплитель может рассматриваться как замена плитам серии «Фасад», т.е. его можно использовать для мокрых и навесных фасадов;

Пеноплекс стена можно использовать для утепления каркасных стен

  • Основа. Данная серия наиболее универсальная, так как плиты можно использовать для утепления стен, полов, крыш и даже фундамента. Плиты сочетают в себе отличные теплоизоляционные свойства и способность выдерживать большие механические нагрузки.

Плиты серии «основа» можно укладывать под плитный фундамент

Надо сказать, что помимо перечисленных выше серий, которые можно отнести к бытовым, существуют еще промышленные, такие как Пеноплэкс 45. Они применяются при строительстве дорог, взлетных полос аэродромов и т.д. В строительных магазинах такие марки вы не найдете.

Несмотря на влагоустойчивость пеноплекса, инструкция по его монтажу в каркасных деревянных конструкциях (стенах, кровлях и перекрытиях) требует использования пароизоляции и гидроизоляции. В противном случае влага будет скапливаться в деревянных элементах конструкции, что приведет к их гниению и другим негативным последствиям.

Стоимость

Цены в таблице актуальны весной 2017 года:

МодельЦена в рублях
Фундамент (50 мм толщина, 8 шт. в упаковке)1400
Кровля (80 мм, 5 шт. )1420
Фасад, (50 мм, 8 шт.)1350
Комфорт, (40 мм, 10 шт.)1200
Стена, (50 мм, 8 шт.)1350
Основа, (50 мм, 8 шт.)1655

Вот, собственно, и все, что я хотел рассказать вам о пеноплексе.

Вывод

Мы выяснили, что представляет собой пеноплекс, какими свойствами он обладает, и в каких случаях его можно использовать. Просмотрите также видео в этой статье. Со всеми вопросами относительно этого утеплителя вы можете обратиться ко мне в комментариях.

Сравнение теплоизоляции стеновых материалов

Сравнить теплоизоляцию стеновых материалов можно исходя из нескольких основополагающих характеристик.

Основные характеристики теплоизоляционных материалов

Теплопроводность. Чем ниже теплопроводность, тем меньше требуется утеплительный слой, а значит, и ваши расходы на утепление сократятся.

Влагопроницаемость. Меньшая влагопроницаемость снижает негативное воздействие влаги на утеплитель при последующей эксплуатации.

Пожаробезопасность. Материал не должен поддерживать горение и выделять ядовитые пары, а иметь свойство к самозатуханию.

Экономичность. Утеплитель должен быть доступным по стоимости для широкого слоя потребителей.

Долговечность. Чем больше срок использования утеплителя, тем он дешевле обходится потребителю при эксплуатации и не требует частой замены или ремонта.

Экологичность. Материал для теплоизоляции должен быть экологически чистым, безопасным для здоровья человека и окружающей природы. Эта характеристика важна для жилых помещений.

Толщина материала. Чем тоньше утеплитель, тем меньше будет «съедаться» жилое пространство помещения.

Вес материала. Меньший вес утеплителя даст меньшее утяжеление утепляемой конструкции после монтажа.

Звукоизоляция. Чем выше звукоизоляция, тем лучше защита жилых помещений от шума со стороны улицы.

Простота монтажа. Момент достаточно важен для любителей делать ремонт в доме своими руками.

Сравнение характеристик популярных утеплителей

Пенопласт (пенополистирол)

Этот утеплитель самый популярный, благодаря легкости монтажу и небольшой стоимости.

Пенопласт изготавливается при помощи вспенивания полистирола, имеет очень низкую теплопроводность, устойчив к влажности, легко режется ножом и удобен во время монтажа. Благодаря низкой стоимости имеет большую востребованность для утепления различных помещений. Однако материал достаточно хрупкий, а также поддерживает горение, выделяя токсичные вещества в атмосферу. Пенопласт предпочтительнее использовать в нежилых помещениях.

Пеноплэкс (экструдированный пенополистирол)

Утеплитель не подвергается гниению и воздействию влаги, очень прочный и удобный в использовании – легко режется ножом. Низкое водопоглощение обеспечивает незначительные изменения теплопроводности материала в условиях высокой влажности, плиты имеют высокую сопротивляемость сжатию, не подвергаются разложению. Благодаря этому экструдированный пенополистирол можно использовать для утепления ленточного фундамента и отмостки. Пеноплекс пожаробезопасен, долговечен и прост в применении.

Базальтовая вата

Материал производится из базальтовых горных пород при расплавлении и раздуве с добавлением компонентов для получения волокнистой структуры материала с водоотталкивающими свойствами. При эксплуатации базальтовая вата не уплотняется, а значит, ее свойства не изменяются со временем. Материал пожаробезопасен и экологичен, имеет хорошие показатели звукоизоляции и теплоизоляции. Используется для внутреннего и наружного утепления. Во влажных помещениях требует дополнительной пароизоляции.

Минеральная вата

Минвата производится из природных материалов – горных пород, шлака, доломита с помощью специальной технологии. Минеральная имеет низкую теплопроводность, пожаробезопасна и абсолютно безопасна. Одним из недостатков утеплителя является низкая влагостойкость, что требует обустройства дополнительной влаго- пароизоляции при его использовании. Материал не рекомендуется использовать для утепления подвалов домов и фундаментов, а также во влажных помещениях — парилках, банях, предбанниках.

Утеплитель состоит из нескольких слоев вспененного полиэтилена, имеющих различную толщину и пористую структуру. Материал часто имеет слой фольги для отражающего эффекта, выпускается в рулонах и в листах. Утеплитель имеет толщину в несколько миллиметров (в 10 раз тоньше обычных утеплителей), но отражает до 97% тепловой энергии, очень легкий, тонкий и удобный в работе материал. Используются для теплоизоляции и гидроизоляции помещений. Имеет длительный срок эксплуатации, не выделяет вредных веществ.

Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

Чувствительность к влаге

Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.

Также не рекомендуется применять водопоглощающую изоляцию при отделке ванных комнат, санузлов, кухонь и других помещений с высоким уровнем влажности.

Плотность и теплоемкость

Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.

Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.

Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

Коэффициент сопротивления

Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.

Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр — если речь идет об изоляции — должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

Теплопроводность основных видов утеплителей

Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:

Преимущества и недостатки различной теплоизоляции

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата.

Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

Теплопроводность пенопласта от 50 мм до 150 мм

Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.

Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.

Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.

В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.

Высокий уровень энергосбережения пенопласт обеспечивает за счет низкой теплопроводности. Например, если построить стену из кирпича толщиной 201 см или воспользоваться древесным материалом толщиной 45 см, то для пенопласта толщина составит всего на всего 12 см для определенной величины энергосбережения.

Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.

Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.

Размеры листов

Изготовление пенополистирольных плит, осуществляется по нормам ГОСТ. При производстве пенопласта регулируется как состав, так и размеры листов. Стандартная длина листа колеблется от 100 см до 200 см. Ширина должна быть равна 100 см, а толщина от 2 см до 5 см. Теплопроводность пенопласта 50 мм – относительно высока, благодаря небольшой толщине и характеристикам материала, он является наиболее ходовым из всех.

А что же покупать?

На рынке строительных материалов представлен огромный выбор пенополистирольных плит. Высокая теплопроводность плит утеплителей зависит от их вида. Например: лист пенопласта ПСБ-С 15 обладает до 15 кг/м3 плотностью и 2 см толщиной. Для листа от 2-х до 50 см плотность составляет не более 35 кг/м3. При сравнении пенопласта с другими подобными материалами можно легко проследить зависимость теплопроводности пенополистирольных плит от его толщины.

Так, например: теплопроводность пенопласта 50 мм, больше в два раза, чем у минеральной ваты такого же объема, в таком случае теплопроводность пенопласта, толщина 150 мм, вообще в 6 раз превысит эти показатели. Базальтовая вата, тоже очень сильно проигрывает пенопласту.

Для того чтобы применить один из способов изоляции, необходимо верно выбрать габариты материала. По следующему алгоритму можно выполнить расчет:

  • Необходимо уточнить общее тепло-сопротивление. Эта величина зависит от региона, в котором необходимо выполнить расчет, а именно от его климата.
  • Для вычисления тепло-сопротивления стены можно воспользоваться формулой R=p/k, где ее толщина равна значению р, а k-коэффициент теплопроводности пенопласта.
  • Из постоянных показателей можно сделать вывод, какое сопротивление должно быть у изоляции.
  • Нужную величину можно вычислить по формуле р=R*k, найти значение R можно исходя из предыдущего шага и коэффициента теплопроводности.

Марки пенопласта

Если Вас заинтересовал вопрос, какой лучше всего марки приобрести пенопласт, и какая у него теплопроводность, то мы ответим вам на него. Ниже приведены самые популярные марки продукции, а также отображены величины плотности и коэффициент теплопроводности пенопласта.

  • ПCБ-C15. С теплопроводностью 0,042 Вт/мK, а плотность равна 11-15 кг/м3
  • ПCБ-C25. С теплопроводностью 0,039 Вт/мK, а плотность равна 15-25 кг/м3
  • ПCБ-С35. С теплопроводностью 0,037 Вт/мK, а плотность равна 25-35кг/м3

Завершает наш список пенопласт ПCБ-C5, теплопроводность которого составляет 0,04 Вт/мК, а плотность равна 35-50 кг/м3. Проведя анализ плотности и теплопроводности можно с уверенностью сказать, что плотность существенно не влияет на основное качество пенопласта, тепло-сбережение.

Penoplex (Пеноплекс) Комфорт 50 мм

АКЦИЯ

ПЕНОПЛЭКС КОМФОРТ

Для снижения сметной стоимости малоэтажного строительства, с целью утепления жилых домов часто применяются универсальные теплоизоляционные материалы — к примеру, ПЕНОПЛЭКС КОМФОРТ, который выпускает российская компания Пеноплэкс. Приобретая такой материал в больших количествах, вы можете получить хорошую скидку. А подходит он для теплоизоляции многих конструкций дома: цоколя, наружных стен, подвалов, кровельных систем.

Основные особенности

Данный утеплитель обладает всеми достоинствами, которые присущи пенополистеролу — у него крайне низкий коэффициент теплопроводности, высокая гидрофобность, отличная способность изолировать шум. Он не гниет и не является благоприятной средой для расселения насекомых, плесени и грибков. Производитель заявляет, что срок его службы может достигать семидесяти лет. Вы можете купить ПЕНОПЛЭКС КОМФОРТ толщиной 20-100 мм, что позволит защитить дом от морозов даже в северных регионах России. Плотность данного утеплителя — 25-35 кг/куб.м, прочность — 0,2 МПа. Он выпускается в виде плит размером 600х1200 мм, которые имеют по периметру кромку в виде ступеньки. Она служит дополнительной гарантией того, что в вашем доме будет хорошо сохраняться тепло — ведь на стыках плит не будут образовываться «мостики холода». Данный утеплитель имеет лишь одну слабую сторону — его применение для внутреннего утепления жилых помещений крайне нежелательно, так как он относится к классу сильногорючих (Г4).

НаименованиеМетод испытанийРазмерностьПоказатель плит
Плотность плитГОСТ 17177-94кг/м³25,0–35,0
Прочность на сжатие при 10% линейной деформации, не менееГОСТ 17177-94МПа (кгс/см2; т/м2)0,20 (2,0; 20)
Предел прочности при статическом изгибе, не менееГОСТ 17177-94МПа0,25
Водопоглощение за 24 часа, не болееГОСТ 17177-94% по объему0,4
Водопоглощение за 28 суток % по объему0,5
Категория стойкости к огнюФ3-123группаГ4
Коэффициент теплопроводности при (25±5) °СГОСТ 7076-94Вт/(м×°К)0,030
Расчетный коэффициент теплопроводности при условиях эксплуатации «А»СП 23-101-2004Вт/(м×°К)0,031
Расчетный коэффициент теплопроводности при условиях эксплуатации «Б»СП 23-101-2004Вт/(м×°К)0,032
Звукоизоляция перегородки (ГКЛ-ПЕНОПЛЭКС® 50 мм-ГКЛ), RwГОСТ 27296-87дБ41
Индекс улучшения изоляции структурного шума в конструкции полаГОСТ 16297-80дБ23
Стандартные размерыШиринамм600
Длинамм1200
Толщинамм20; 30; 40; 50; 60; 80; 100
Температурный диапазон эксплуатацииТУ°С-50 . .. +75

 Цена ПЕНОПЛЭКС КОМФОРТ в нашей компании является одной из самых низких в Москве и Подмосковье. Мы можем организовать его доставку на место строительства. Впрочем, если вам по каким-то причинам не подошел этот утеплитель для стен, мы предложим вам теплоизоляционные материалы других производителей — по оптовой цене и с доставкой. 

К этому товару еще никто не оставлял отзыв. Ваш отзыв может быть первым.

Теплопроводность пенопласта, сравнение с Пеноплексом, цена листов разных марок

Эффективность – первое, что мы ищем, выбирая утеплитель. Разнообразные материалы изначально оцениваются именно по этому критерию, и только потом в дело вступают другие характеристики, особенность монтажа и стоимость. Сегодня мы рассмотрим теплопроводность пенопласта как самого доступного по цене и потому востребованного, а также сравним его с иными видами изоляции.

Оглавление:

  1. Что такое теплопроводность?
  2. Характеристики пенопласта разных марок
  3. Сравнение с другими материалами и расценки

Определение

Теплопроводность – величина, обозначающая количество тепла (энергии), проходящего за час сквозь 1 м любого тела при определенной разнице температур с одной и другой его стороны. Она измеряется и рассчитывается для нескольких исходных условий эксплуатации:

  • При 25±5 °С – это стандартный показатель, закрепленный в ГОСТах и СНиП.
  • «А» – так обозначается сухой и нормальный режим влажности в помещениях.
  • «Б» – в эту категорию относят все прочие условия.

Собственно теплопроводность гранул пенопласта, спрессованных в легкую плиту, не так важна сама по себе, как в связке с толщиной утеплителя. Ведь основная цель – добиться оптимального уровня сопротивления всех слоев стены в соответствии с требованиями для конкретного региона. Для получения первоначальных цифр достаточно будет воспользоваться самой простой формулой: R = p÷k.

  • Сопротивление теплопередаче R можно найти в специальных таблицах СНиП 23-02-2003, к примеру, для Москвы принимают 3,16 м·°С/Вт. И если основная стена по своим характеристикам недотягивает до этого значения, разницу должен перекрыть именно утеплитель (минвата или тот же пенопласт).
  • Показатель р – обозначает искомую толщину изолирующего слоя, выраженную в метрах.
  • Коэффициент k – как раз и дает представление о проводимости тел, на которую мы ориентируемся при выборе.

Теплопроводность самого материала проверяют с помощью нагрева одной стороны листа и измерения количества энергии, переданной методом кондукции на противоположную поверхность в единицу времени.

Показатели для разных марок пенополистирола

Из приведенной упрощенной формулы можно заключить, что чем тоньше лист утеплителя, тем меньшей эффективностью он обладает. Но кроме обычных геометрических параметров на конечный результат оказывает влияние и плотность пенопласта, хоть и незначительно – всего в пределах 1-5 тысячных долей. Для сравнения возьмем две близкие по марке плиты:

  • ПСБ-С 25 проводит 0,039 Вт/м·°С.
  • ПСБ-С 35 при большей плотности – 0,037 Вт/м·°С.

А вот с изменением толщины разница становится куда более заметной. К примеру, у самых тонких листов в 40 мм при плотности 25 кг/м3 показатель теплопроводности может составлять 0,136 Вт/м·°С, а 100 мм того же пенополистирола пропускают всего 0,035 Вт/м·°С.

Зависимость нелинейная, что связано с особенностью кондуктивной передачи. Но поскольку коэффициент высчитывается в единицу времени, а плотность материала остается неизменной, разница температур с внешней поверхностью при «продвижении» энергии сквозь плиту становится все меньше. И если толщина пенополистирола оказывается значительной, тепло просто не успевает передаться обратной стороне, что, в общем-то, и требуется от хорошей изоляции.

Сравнение с другими материалами

Средняя теплопроводность ПСБ лежит в пределах 0,037-0,043 Вт/м·°С, на него и будем ориентироваться. Здесь пенопласт в сравнении с минватой из базальтовых волокон, кажется, выигрывает незначительно – у нее примерно те же показатели. Правда, при вдвое большей толщине (95-100 мм против 50 мм у полистирола). Также принято сопоставлять проводимость утеплителей с различными стройматериалами, необходимыми для возведения стен. Хотя это и не слишком корректно, но весьма наглядно:

1. Красный керамический кирпич имеет коэффициент теплопередачи 0,7 Вт/м·°С (в 16-19 раз больше, чем у пенопласта). Проще говоря, чтобы заменить 50 мм утеплителя понадобится кладка толщиной около 80-85 см. Силикатного и вовсе нужно не меньше метра.

2. Массив дерева в сравнении с кирпичом в этом плане получше – здесь всего 0,12 Вт/м·°С, то есть втрое выше, чем у пенополистирола. В зависимости от качества леса и способа возведения стен, эквивалентом ПСБ толщиной 5 см может стать сруб шириной до 23 см.

Куда логичнее сравнивать стиролы не с минватой, кирпичом или деревом, а рассматривать более близкие материалы – пенопласт и Пеноплекс. Оба они относятся к вспененным полистиролам и даже изготавливаются из одних и тех же гранул. Вот только разница в технологии их «склеивания» дает неожиданные результаты. Причина в том, что шарики стирола для производства Пеноплекса с введением порообразователей одновременно обрабатываются давлением и высокой температурой. В итоге пластичная масса приобретает большую однородность и прочность, а пузырьки воздуха равномерно распределяются в теле плиты. Пенопласт же просто обдается паром в форме, как поп-корн, поэтому связи между вспученными гранулами оказываются слабее.

Как следствие, теплопроводность Пеноплекса – экструдированного «родственника» ПСБ – тоже заметно улучшается. Она соответствует показателям 0,028-0,034 Вт/м·°С, то есть 30 мм хватит, чтобы заменить 40 мм пенопласта. Однако сложность производства увеличивает и стоимость ЭППС, так что на экономию рассчитывать не стоит. Кстати, здесь есть один любопытный нюанс: обычно экструдированный пенополистирол немного теряет в эффективности при увеличении плотности. Но при введении в состав Пеноплекса графита эта зависимость практически исчезает.

Впрочем, если вопрос высокой прочности на повестке дня не стоит, и вам нужен просто хороший утеплитель, проще и дешевле действительно купить пенопласт. В сравнении с такими материалами, как минвата, дерево и керамический кирпич, он безусловно хорош. Главное – не использовать его на пожароопасных объектах и всегда стараться выполнять теплоизоляцию снаружи зданий.

Цены на листы пенопласта 1000х1000 мм (рубли):

Толщина листа, ммПСБ-С 15ПСБ-С 25ПСБ-С 35ПСБ-С 50
20376182124
305595123185
4073122164247
5091152205308
70127213264431
80145243328493
100181304409616

Теплопроводность пенопластовых плит 50 мм и применение в строительстве

Основной характеристикой, благодаря которой пенополистирол получил широкое признание в качестве материала для утепления №1, является сверхнизкая теплопроводность пенопласта. Относительно небольшая прочность материала с лихвой компенсируется такими преимуществами, как стойкость к воздействию большинства агрессивных соединений, небольшой вес, нетоксичность и безопасность при работе. Хорошие теплоизолирующие свойства пенопласта дают возможность обустроить утепление дома по относительно небольшой цене, при этом долговечность такого утепления рассчитана на срок не менее 25 лет службы.

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙С о , то становится понятным, что это величина удельная, то есть определенная для следующих условий:

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

Величина теплопроводности пенопласта, как и любого другого материала, зависит от трех основных составляющих:

уровня влажности среды, в которой используется утеплитель.

Как видно из схемы, при низких температурах воздуха градиент по толщине стенки линейно меняется от отрицательных значений на наружной поверхности облицовки до +20 о С внутри помещения. Необходимо так подобрать теплопроводность и толщину материала, чтобы точка росы или, другими словами, температура, при которой начинают конденсироваться пары воды, находилась внутри массива пенопласта.

Влияние плотности и влажности окружающей среды

Несмотря на все заверения производителей, пенопласт способен поглощать и проводить водяные пары, для сравнения, величина паропроницаемости для пенопластового листа всего лишь на 20% ниже проницаемости древесины. Естественно, наличие водяных паров в толще пенопласта существенным образом влияет на его теплопроводность. Найти зависимость в справочниках практически невозможно, поэтому при расчетах делают эмпирическую поправку на теплопроводность, исходя из толщины теплоизоляции.

Пенопласт способен поглощать в поверхностных слоях до 3% воды. Глубина поглощения составляет 2 мм, поэтому при определении теплопроводности материала эти миллиметры выбрасывают из эффективной толщины теплоизоляции. Поэтому лист пенопласта толщиной в 10 мм будет в сравнении с листом в 50 мм иметь теплопроводность не в 5 раз больше, а в 7 крат. При значительной толщине пенопласта, более 80 мм, теплосопротивление увеличивается значительно быстрее, чем его толщина.

Вторым фактором, влияющим на теплопроводность, является плотность материала. При одинаковой толщине материал разных марок может иметь плотность в два раза больше. Принято считать, что 98% структуры утеплителя составляет высушенный воздух. С увеличением вдвое количества полистирола в плите, естественно, теплопроводность также увеличивается, примерно на 3%.

Но дело даже не в количестве полистирола, меняется размер шариков и ячеек, из которых состоит пенопласт, образуются локальные участки с очень высокой теплопроводностью, или мостики холода. Особенно это касается трещин и стыков, любых зон деформации и установки креплений. Поэтому при установке зонтичных дюбелей количество креплений рекомендуют ограничивать 3 точками.

Влияние химического состава на теплопроводность

Мало кто обращает внимание на особые свойства пенопласта. Сегодня наиболее серьезной проблемой пенопласта считается его способность к воспламенению и выделению токсичных продуктов сгорания. СНиП и ГОСТ требуют, чтобы пенопласт, используемый для утепления жилых зданий, имел время самозатухания не более 4 с. Для этого используются соли ряда цветных металлов, таких как хром, никель, железо, включение в состав веществ, выделяющих углекислый газ при нагревании.

В результате на практике пенопласт с индексом « С » — самозатухающий имеет теплопроводность значительно выше, чем обычные марки пенополистирола. Практика использования пенополистирола для утепления в Евросоюзе показала, что более выгодным и дешевым является нанесение на внешнюю поверхность немодифицированного пенопласта специального покрытия из газообразующих агентов. Такое решение позволяет сохранить теплосберегающие свойства и экологичность материала, одновременно значительно повысить пожаробезопасность.

Заключение

Теплопроводность пенопласта практически не меняется с течением времени, как, например, у минеральной ваты или газосиликатных блоков. Единственной проблемой является деградация пенополистирола под действием солнечных лучей и рассеянного ультрафиолета. При длительном облучении материал становится рыхлым, покрывается трещинами и легко наполняется конденсатом, поэтому для сохранения первоначального значения теплопроводности необходимо закрывать утеплитель облицовкой.

Теплопроводность пенопласта — точные цифры

Пенопласт имеет следующие преимущества перед другими утеплительными материалами: экологичность, лёгкость, гигроскопичность, невысокая стоимость. Однако, главное достоинство — низкая теплопроводность пенопласта, которая делает его одним из наиболее распространенных теплоизолирующих материалов.

Общее описание

Пенопласт представляет собой плиты различной толщины, состоящие из вспененного материала – полимера. Теплопроводность пенопласта обеспечивается воздухом, из которого он состоит на 95-98%, т.е. газа, который не пропускает тепло.

Так как пенопласт в своей основе состоит из воздуха, то он имеет крайне низкую плотность, и, соответственно, малый удельный вес. Также пенопласт обладает очень хорошей звукоизоляцией (тонкие перегородки ячеек, заполненные воздухом – очень плохой проводник звуков).

В зависимости от исходного сырья (полимера) и процессов изготовления, можно производить пенопласт разной плотности, устойчивости к воздействию механических факторов, устойчивости к иным видам воздействия. В связи с вышеперечисленным, обусловливается выбор определенного вида пенопласта и его применение.

Характеристики теплопроводности пенопласта

Для того чтобы рассмотреть такую характеристику, как теплопроводность пенопласта, разберемся для начала, что из себя представляет в принципе теплопроводность материалов. Теплопроводностью называют количественную характеристику способности тела проводить тепло.

Это количество тепловой энергии (Ватт), которое любой материал способен провести через себя (метр), при определенной температуре (С) за определенное время. Обозначается — λ и выражается Вт/м•С.

Определим оптимальные размеры данного утеплителя исходя из его теплопроводных характеристик. На рынке стройматериалов большое множество различных утеплителей. Пенопласт, как мы уже знаем, обладает теплопроводностью очень низкой, но эта величина зависит от марки материала.

Например, пенопласт марки ПСБ-С 50 имеет плотность 50 кг/м3. Таким образом, его теплопроводность составляет 0,041 Вт/м•С (данные указаны при 20-30 С). Для пенопласта марки ПСБ-С 25 значение будет 0,041 Вт/м•С, а марки ПСБ-С 35 – 0,038 Вт/м•С. Приведенные величины коэффициентов теплопроводности указаны для пенопласта одинаковой толщины.

Наиболее заметна теплопроводность пенопласта при сопоставлении значений с другими теплоизоляционными материалами. К примеру, лист пенопласта 30-40 мм аналогичен объёму минваты в несколько раз большей, а толщина листа 150 мм заменяет 185 мм пенополистирола. Конечно, есть материалы, у которых коэффициент ниже. К таким относится и пеноплекс. 30 мм пеноплекса смогут заменить 40 мм пенопласта, при аналогичных условиях.

Какие листы выбрать?

Чтобы добиться наиболее эффективной теплоизоляции стены, необходимо правильно рассчитать толщину используемого утеплителя. Для примера рассчитаем, какой толщины нужен утеплитель для стены толщиной в один кирпич.

Сначала необходимо узнать общее теплосопротивление. Это постоянное значение, зависящее от климатических условий в определенной области страны. На юге России она составляет 2,8 кВт/м2, для полосы умеренного климата — 4,2 кВт/м2. Затем найдем теплосопротивление кирпичной кладки: R = p/k, где p – толщина стены, а k – коэффициент, указывающий, насколько сильно стена проводит тепло.

Имея начальные данные, мы можем узнать, какое теплосопротивление утеплителя необходимо использовать, применив формулу p=R*k. где R — общее теплосопротивление, а k — значение теплопроводности утеплителя.

Возьмем для примера пенопласт марки ПСБ-С 35, имеющий плотность 35 кг/м3 для стены, толщиной в один кирпич (0,25 м) в регионе средней полосы России. Общее теплосопротивление имеет значение 4,2 кВт/м2.

Для начала необходимо узнать теплосопротивление нашей стены (R1). Коэффициент для силикатного пустотного кирпича составляет 0,76 Вт/м•С (k1), толщина – 0,25 м (p1). Находим теплосопротивление:

R1 = p1 / k1 = 0,25 / 0,76 = 0,32 (кВт/м2).

Теперь находим теплосопротивление для утеплителя (R2):

R2 = R – R1 = 4.2 – 0,32 = 3,88 (кВт/м2)

Значение теплосопротивления пенопласта ПСБ-С 35 (k2) равен 0,038 Вт/м•С. Находим требуемую толщину пенопласта (p2):

p2 = R2*k2 = 3.88*0.038 = 0.15 м.

Вывод: при заданных условиях нам необходим пенопласт ПСБ-С 35 15 см.

Аналогичным способом можно сделать расчеты для любого материала, используемого в качестве утеплителя. Коэффициенты теплопроводности разных строительных материалов можно найти в специальной литературе или в сети Интернет.

Теплопроводность пенопласта от 50 мм до 150 мм — считаем теплоизоляцию

Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.

Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.

Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.

В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.

Высокий уровень энергосбережения пенопласт обеспечивает за счет низкой теплопроводности. Например, если построить стену из кирпича толщиной 201 см или воспользоваться древесным материалом толщиной 45 см, то для пенопласта толщина составит всего на всего 12 см для определенной величины энергосбережения.

Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.

Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.

Размеры листов

Изготовление пенополистирольных плит, осуществляется по нормам ГОСТ. При производстве пенопласта регулируется как состав, так и размеры листов. Стандартная длина листа колеблется от 100 см до 200 см. Ширина должна быть равна 100 см, а толщина от 2 см до 5 см. Теплопроводность пенопласта 50 мм – относительно высока, благодаря небольшой толщине и характеристикам материала, он является наиболее ходовым из всех.

А что же покупать?

На рынке строительных материалов представлен огромный выбор пенополистирольных плит. Высокая теплопроводность плит утеплителей зависит от их вида. Например: лист пенопласта ПСБ-С 15 обладает до 15 кг/м3 плотностью и 2 см толщиной. Для листа от 2-х до 50 см плотность составляет не более 35 кг/м3. При сравнении пенопласта с другими подобными материалами можно легко проследить зависимость теплопроводности пенополистирольных плит от его толщины.

Так, например: теплопроводность пенопласта 50 мм, больше в два раза, чем у минеральной ваты такого же объема, в таком случае теплопроводность пенопласта, толщина 150 мм, вообще в 6 раз превысит эти показатели. Базальтовая вата, тоже очень сильно проигрывает пенопласту.

Для того чтобы применить один из способов изоляции, необходимо верно выбрать габариты материала. По следующему алгоритму можно выполнить расчет:

  • Необходимо уточнить общее тепло-сопротивление. Эта величина зависит от региона, в котором необходимо выполнить расчет, а именно от его климата.
  • Для вычисления тепло-сопротивления стены можно воспользоваться формулой R=p/k, где ее толщина равна значению р, а k-коэффициент теплопроводности пенопласта.
  • Из постоянных показателей можно сделать вывод, какое сопротивление должно быть у изоляции.
  • Нужную величину можно вычислить по формуле р=R*k, найти значение R можно исходя из предыдущего шага и коэффициента теплопроводности.

Марки пенопласта

Если Вас заинтересовал вопрос, какой лучше всего марки приобрести пенопласт, и какая у него теплопроводность, то мы ответим вам на него. Ниже приведены самые популярные марки продукции, а также отображены величины плотности и коэффициент теплопроводности пенопласта.

  • ПCБ-C15. С теплопроводностью 0,042 Вт/мK, а плотность равна 11-15 кг/м3
  • ПCБ-C25. С теплопроводностью 0,039 Вт/мK, а плотность равна 15-25 кг/м3
  • ПCБ-С35. С теплопроводностью 0,037 Вт/мK, а плотность равна 25-35кг/м3

Завершает наш список пенопласт ПCБ-C5, теплопроводность которого составляет 0,04 Вт/мК, а плотность равна 35-50 кг/м3. Проведя анализ плотности и теплопроводности можно с уверенностью сказать, что плотность существенно не влияет на основное качество пенопласта, тепло-сбережение.

Еще по этой теме на нашем сайте:

    Экструдированный или экструзионный пенополистирол — технические характеристики утеплителя
      Экструдированный пенополистирол, являясь высокотехнологичным материалом, по праву может называться уникальным. Потому он и получил такое широкое распространение в строительстве, производстве сантехники и еще ряде областей.

    Пеноплекс или пенопласт — что лучше для утепления стен дома снаружи

      Известный всем пенопласт, когда-то конкурировавший исключительно со стекловатой, сегодня сам имеет массу производных материалов, которые, кстати, частенько уступают место другим современным видам утеплителя. К слову.

    Коэффициент теплопроводности строительных материалов — таблица и цифры

      Первый вопрос, который возникает, у того, кто решил построить собственный дом, – какой использовать для этого материал. От этого зависит выбор фундамента, в свою очередь.

    Теплопроводность утеплителей в таблице — сравнение утеплителей по теплопроводности

      Мы живем далеко не в самой жаркой стране на Земле, а значит, свои жилища вынуждены обогревать, по крайней мере, большую часть года. Этим и объясняется.

Добавить комментарий

Отменить ответ

Вы можете подписаться на новые публикации по электронной почте.

Теплопроводность пенопластовых плит 50 мм и применение в строительстве

При строительстве жилых домов применяются разнообразные теплоизоляционные материалы. При частном строительстве многие считают наиболее практичным применение пенопласта. Утепление строений пенопластом получает довольно широкое распространение, поскольку данный материал обладает хорошими теплоизолирующими качествами.

Пенопласт это материал для утепления, который обладает хорошими звуко- и теплоизоляционными характеристиками.

Что собой представляет пенопласт

Пенопласт можно охарактеризовать как нетоксичный, экологичный материал. Его хорошие теплоизоляционные и звукоизоляционные качества получаются благодаря особенной структуре: пористой, составленной из не сообщающихся между собой ячеек, с небольшой плотностью и паронепроницаемостью.

Пенопласт имеет низкую теплопроводность и длительный срок эксплуатации.

Благодаря данным качествам его можно применять в самых разных сферах, включая дорожные и строительные работы. Пенопласт, или пенополистирол, при строительстве в качестве теплоизоляционного материала применяют вот уже более сорока лет.

Цены на данный материал вполне демократичные, купить его можно во всех строительных магазинах. Для утепления жилого дома выбирают листовой пенопласт. Он обладает хорошей устойчивостью к воздействию агрессивных химических веществ, может спокойно переносить механические нагрузки. Используют его не только для малоэтажных построек, но и при монтаже внутренней теплоизоляции в строительстве с крупными масштабами, в реконструкции зданий, где он является почти незаменимым, поскольку из-за небольшого веса несущественно меняет нагрузку на фундамент и несущие конструкции построек.

Вернуться к оглавлению

Размеры выпускаемых производством пенополистирольных плит

Пенопластовые листы выпускают согласно нормам ГОСТ. Регулируется не только состав пенопласта, но и размеры плит. Длина стандартного пенопластового листа может составлять 100 см, 12 см или 200 см. Ширина листа 100 см, толщина может быть 2-5 см.

Наибольшей популярностью пользуется пенопласт толщиной в 50 мм. Показатели теплопроводности пенопласта очень часто сравнивают с характеристиками прочих утепляющих материалов. Пенопластовая плита толщиной в 50 мм, согласно СНиП России, по теплоизоляции эквивалентна кирпичной кладке в 85 см толщиной. Следовательно, использование пенопластовых утеплителей позволяет сэкономить при строительстве немалые средства.

Вернуться к оглавлению

Как провести теплоизоляцию стен с использованием пенопласта

Использовать пенопласт толщиной в 50 мм можно как в наружном, так и во внутреннем утеплении стен. Пенополистирол снаружи крепят при помощи специальных крепежных приспособлений, в некоторых случаях листы просто приклеиваются на мастику, клеящий состав или раствор цемента. Очень хороший эффект достигается с использованием пенопласта при монтаже внутреннего утепления. Одновременно обеспечивается и шумоизоляция, и теплозащита. Пенопластовой прослойке надо обеспечить защиту от возгораний, открытого пламени это можно сделать, к примеру, с использованием листов гипсокартона.

Плиты пенопласта с толщиной в 50 мм, используемые для утепления пола, способствуют также снижению передачи ударных шумов.

Схема теплоизоляции стен пенопластом.

Пенопласт устраивается на материал с изолирующими свойствами, швы герметизируются, после чего сверху устраивают ДСП или делают песчано-цементную стяжку.

При сравнении показателей теплопроводности разных материалов картина получается примерно следующей. Плита из пенопласта толщиной в 50 мм примерно соответствует слою минваты в 100 мм, деревянной стене в 190 мм, кирпичной кладке в 850 мм.

Что касается таких утеплителей, как минвата или стекловата, по цене эти материалы находятся близко к пенопласту и составляют им в некотором роде конкуренцию. Но прочность у таких утеплителей более низкая, несущей способностью они не располагают, а после укладывания их на места могут провисать. Прочие недостатки заключаются в неприятных ощущениях, которые доставляет монтаж, и наличии у минваты впитывающей способности. Из-за таких недостатков коэффициент изоляции заметно снижается.

Чтобы обеспечить хорошую теплоизоляцию кровли, можно воспользоваться одной из нескольких подходящих технологий утепления. Чтобы утеплить кровлю с пенопластовыми плитами толщиной в 50 мм, сперва устраивают пароизоляционный слой для этого понадобится полиэтиленовая пленка или пергамин. После пароизоляции укладывают плиты пенополистирола. Затем выполняют стяжку из смеси цемента и песка толщиной самое меньшее 30 см.

Сравнительная характеристика теплоизоляционных материалов, в том числе пенопласта, по степени их вредности.

В заключение проводят гидроизоляцию. Если в утеплении нуждается наклонная кровля, пенополистирол надо устраивать прямо на стропилах под кровельным материалом. В некоторых случаях его просто размещают между стропилами не закрепляя. Теплоизоляция чердаков или наклонных крыш позволяет превращать подкровельные помещения в жилые. При этом можно сэкономить немалую часть энергии, уходящую на отопление дома.

Теплоизоляционные свойства пенопласта позволяют применять материал и для утепления трубопроводов. До недавнего времени этому не придавалось значения, но теплопотери такого рода могут составлять и 30%, что немало. Теплопроводность пенопласта позволяет применять его в теплоизоляции трубопроводов водоснабжения, вентканалов и телефонных линий, для защиты труб канализации и водопровода в городских магистралях.

Трубопровод, благодаря таким мероприятиям, можно уложить на небольшой глубине. Это сокращает объем грунта, который понадобится вынимать, и серьезно снижает трудозатраты. Материалу возможно придавать любые формы, поэтому его можно использовать так, как необходимо, каковы бы ни были конструктивные требования.

Вернуться к оглавлению

Применение пенопласта в теплоизоляции фундамента

При утеплении подземных частей здания пенопласт нередко используют в качестве хорошего теплоизолятора. Не так много есть строительных материалов, которые способны заменить его он устойчив к воздействию извести, соляных растворов, неподвластен влиянию грунтовых вод.

В регионах, где климатические условия особенно суровы, вопросам теплоизоляции основания обычно уделяется повышенное внимание. Пенопласт иногда применяют как несъемную опалубку непосредственно на объекте при сооружении монолитных фундаментов. При таком подходе уменьшаются и трудозатраты, и расход бетона и арматуры.

Удобно применять пенопласт и для утепления строений бесподвального типа. Для этого на предварительно подготовленную площадку устраивают несколько слоев пенополистирола и заливают раствором бетона. После таких мероприятий строение возводится в обычном порядке. При такой конструкции бетонная стяжка одновременно является и основанием пола, и фундаментом.

Пеноплекс Кровля 1185x585x50 мм (5,54 кв. м)

Пеноплекс Кровля — прочные теплоизоляционные плиты предназначенные для кровельных работ. Толщина — 50 мм. Материал изготовлен из экструдированного пенополистирола и представляет собой жесткие маты оранжевого цвета. Плиты имеют четкую геометрию, сплошную структуру поверхности, обладают низким удельным весом.

Утеплитель Пеноплекс Кровля 1185х585х50 мм надежен и долговечен. Срок его эксплуатации — более 50 лет. При этом на протяжении всего указанного периода, все его первоначальные свойства и теплотехнические показатели остаются неизменными. Поэтому плиты не только отлично изолируют кровлю от внешних и внутренних климатических и температурных воздействий (влажность, морозы, осадки, ветра), но и защищают всю конструкцию в целом.

Купить Пеноплекс Кровля — это значит обеспечить комфортный микроклимат внутри и снаружи помещений на долгие годы, забыв о мелких ремонтных работах по устранению ежегодных повреждений и дефектов, вызванных недостаточной эффективностью теплоизоляционных материалов.

Коэффициент теплопроводности Пеноплекс Кровля 50 мм — 0,034 Втм. Это значительно ниже, чем у пенопласта и мягких минераловатных матов. Жесткий утеплитель из пенополистирола способен наилучшим образом удерживать баланс между теплыми и холодными воздушными потоками. Это свойство материала позволяет сократить расходы на обогрев и кондиционирование внутреннего пространства сооружения, тем самым уменьшить количество потребляемых энергозатрат. Кровельные теплопотери становятся минимальными, позволяя достаточно быстро окупить средства, затраченные на приобретение и монтаж теплоизоляции.

Благодаря легкости плит, монтажные работы не вызывают особых трудностей. Даже на высотных сооружениях их установка происходит быстро и надежно. Плиты укладываются вплотную друг к другу, исключая появление «мостиков холода».

В зимнее время года кровельные системы не подвергаются обморожению и образованию наледи. Это происходит за счет практически нулевого влагопоглощения материала. Внутри твердых плит не скапливается вода, не образуется конденсат, соответственно, не появляется плесень и прочие разрушающие целостность бактерии. При использовании утеплителя Пеноплэкс при возведении кровли не требуется дополнительных расходов на герметизирующие гидроизоляционные материалы, грамотная установка плит делает крышу неуязвимой к любым атмосферным и механическим воздействиям, температурным перепадам. Рабочий интервал температур материала -50…+75 С.

Плиты экологичны. Даже под воздействием высоких температур они не выделяют вредных испарений. Они изготовлены из натуральных компонентов, не вызывающих аллергию и легочные расстройства. Пенополистирол разрешен к применению в детских и здравоохранительных учреждениях.

Прочные плиты подходят для установки на любые виды кровли. Утеплитель надежно защищает мансардные части строений, превращая чердачные отсеки в комфортные помещения, пригодные для проживания. Устойчивость к механическим повреждениям позволяет использовать теплоизоляцию Пеноплекс Кровля даже для оборудования вертолетных площадок на крышах зданий. Модные инверсионные утепленные и уплотненные кровли также пригодны для возведения оранжерей, ресторанов, автостоянок, пешеходных видовых зон и прочих массовых объектов. В последнее время эти объекты получили широкое распространение в Санкт-Петербурге и области.

Стоимость теплоизоляционных плит Пеноплекс Кровля указана на нашем сайте. Цена на оптовые партии будет значительно ниже. Её можно уточнить у наших менеджеров по телефону или через веб-консультанта на сайте.


В упаковке: 8 плит.
Объем упаковки: 0,2776 м3
Закрываемая площадь: 5,5458 м2.
Производитель: Россия

ХРS ТЕХНОПЛЕКС, 1200х600х20 мм (20 плит, 14,4 кв.м) (Экструдированный пенополистирол (XPS))

Экструзионный пенополистирол (XPS) ТЕХНОПЛЕКС применяется для утепления фундамента, отмостки, пола, в том числе по технологии «теплого пола», а также стен, балконов и лоджий.

Утепление фундамента

Теплоизоляция фундамента является основой утепления загородного дома. Защитить основание от теплопотерь поможет экструзионный пенополистирол ТЕХНОПЛЕКС. Этот материал обладает необходимыми теплоизоляционными свойствами, которые не меняются со временем. XPS ТЕХНОПЛЕКС устойчив к влаге, а это значит, что даже находясь на заглубленной части фундамента, наиболее подверженной воздействию атмосферных осадков и грунтовых вод, он не потеряет своих свойств. Высокая прочность XPS ТЕХНОПЛЕКС, при применении на ленточном фундаменте позволяет использовать теплоизоляцию как дополнительную защиту гидроизоляции от механических повреждений в процессе обратной засыпки.

Утепление пола

Утепление бетонного пола очень важно для создания уюта и тепла в доме, особенно если квартира расположена на первом этаже. Деревянные полы также требуют утепления. Например, в частном доме иногда даже хорошо смонтированное покрытие не дает полной гарантии сохранения тепла, а значит сэкономить на отоплении не удастся. Чтобы избежать таких ситуаций и жить в комфорте, разумным решением будет утепление пола при помощи экструзионного пенополистирола XPS ТЕХНОНИКОЛЬ марки ТЕХНОПЛЕКС. Хорошие теплоизолирующие свойства и высокая прочность материала делают его практически незаменимым в конструкциях теплого пола.

Утепление стен

Утепление квартиры изнутри – это хорошая возможность сохранить тепло в помещении. Практика показывает, что благодаря внутренней изоляции можно сэкономить порядка сорока процентов денежных средств на оплату коммунальных услуг и сократить теплопотери на 20-30. К тому же, утепление стен позволяет дополнительно улучшить звукоизоляцию помещений, что особенно актуально в крупных городах и мегаполисах. Оптимальным решением для утепления стен является использование эффективного и долговечного экструзионного пенополистирола марки ТЕХНОПЛЕКС. При производстве данного материала используются наночастицы графита, что улучшает его технические и эксплуатационные характеристики. XPS ТЕХНОПЛЕКС отлично подходит как для утепления стен с отделкой гипсокартоном, так и с финишным слоем из других листовых материалов.

Утепление балкона

Для решения многих бытовых задач в квартире очень часто прибегают к использованию нежилых помещений, таких как балкон. Кто-то хранит там различные вещи, некоторые используют для сушки белья, а кто-то делает из балкона любимое место отдыха или даже небольшую комнату. Утепление помещения в таком случае существенно улучшает качество пространства. Для этих целей идеально подходит XPS ТЕХНОНИКОЛЬ марки ТЕХНОПЛЕКС. Он обладает хорошими теплоизолирующими свойствами, даже при минимальной толщине. Так, 50 мм утеплителя хватит, чтобы надежно защитить балкон и помещения от холода снаружи, в большинстве регионов России. К тому же, эта марка XPS обладает практически нулевым водопоглащением, что гарантирует долговечность материала и сохранение теплоизолирующих свойств на протяжении 40-50 лет.

Оценка начальной теплопроводности жесткого пенополиуритана с пенообразователем 4-го поколения.

14-12-2018 Технический блог

Дэвид Бут
Технический менеджер
(Пена на месте и качество)
Isothane Ltd,
Newhouse Road,
Huncoat Business Park,
Accrington, Lancash.
Великобритания

Абстракция

Пенообразователи четвертого поколения, описываемые как гидрофторолефины (HFO), поступают на рынок в качестве замены существующей группе продуктов на основе гидрофторуглеродов (HFC).

Текущие вспениватели на основе ГФУ постепенно прекращаются из-за их относительно высокого потенциала глобального потепления (GWP). Согласно новым правилам по фторсодержащим газам, ГФУ больше нельзя будет использовать в Европе после 2023 года.

Новые продукты HFO имеют значительно более низкие значения GWP, чем HFC, но сохраняют теплоизоляционные характеристики своих предшественников.

В связи с постепенным отказом от используемых в настоящее время вспенивающих агентов существует потребность в изменении состава существующих систем жесткой пены.

Введение

Isothane Ltd предлагает линейку жестких пенополиуретановых систем на основе вспенивателей 3-го поколения -го поколения или ГФУ. Пенные системы разработаны для применения на месте, где продукты поставляются в виде двух компонентов: смеси смол и изоцианата. Затем два компонента обрабатываются с использованием специально разработанного оборудования для распыления или распределения готового пенопласта.

Тепловые характеристики пенополиуретановых систем определяются в соответствии с методами испытаний в BS EN 14315-1 «Теплоизоляционные изделия для зданий — напыляемые твердые пенополиуретаны (PUR) и полиизоцианураты (PIR) на месте» и BS EN 14318 -1 «Теплоизоляционные изделия для зданий — диспергированные на месте жесткие полиуретановые (PUR) и полиизоциануратные (PIR) пеноматериалы». Методы испытаний требуют использования калиброванного измерителя теплового потока (HFM) для измерения теплопроводности образцов затвердевшей пены.Начальное значение теплопроводности измеряется на образцах от одного до восьми дней после изготовления.

Для текущих продуктов Isothane на основе ГФУ начальное значение теплопроводности измеряется для каждой произведенной партии. Используя эти результаты, можно сравнить начальную теплопроводность новых составов на основе HFO.

Из-за физических характеристик вспенивающего агента HFO должна быть возможность создавать системы, содержащие меньше вспенивающего агента, чем эквивалентный продукт HFC.

Технические характеристики систем пены для распыления

Duratherm (HFC) Duratherm (HFO)
Уровень пенообразователя * 100% Уровень пенообразователя * 95%
Время крема 3-5 секунд Время сливок 3-5 секунд
Время нарастания 20-30 секунд Время нарастания 20-30 секунд
Плотность 26-30 кг / м 3 Плотность 26-32 кг / м 3
Вязкость смолы 270–370 сПс при 25ºC Вязкость смолы 250–350 сПс при 25ºC
Удельный вес смолы 1.13-1.20 Удельный вес смолы 1,13–1,23
* По сравнению со стандартными уровнями рецептуры ГФУ

Экспериментальная

Пять экспериментальных образцов смолы для распыляемой пены были изготовлены с использованием вспенивателя HFO.

Эти образцы смолы затем были обработаны с помощью двухкомпонентной машины для вспенивания Gusmer A-25 с получением листов отвержденного пенопласта размером примерно 1000 мм на 700 мм и толщиной примерно 80 мм.Распыленным листам давали возможность кондиционироваться в течение 24 часов, прежде чем из них были вырезаны образцы размером 600 x 600 x 50 мм. Для каждой партии смолы был изготовлен один образец.

Затем была измерена теплопроводность каждого образца с использованием измерителя теплового потока Fox 600 при средней температуре 10 ° C.

Процедуру повторили с образцами смолы, приготовленными для рецептуры ГФУ.

Образцы на основе HFO.

Номер пробы 1 2 3 4 5
Пенообразователь HFO HFO HFO HFO HFO

Плотность пенопласта (кг / м 3 )

36.5 36,5 36,5 36,5 36,5
Средняя температура (° C) 10 10 10 10 10
Температура верхней пластины (° C) 0 0 0 0 0
Температура нижней плиты (° C) 20 20 20 20 20
Начальная теплопроводность (Вт / мК) 0.0187 0,0192 0,0189 0,0187 0,0190
Тепловое сопротивление при 50 мм (м 2 К / Вт) 2,67 2,60 2,65 2,67 2,63

Образцы на основе ГФУ.

Номер пробы 1 2 3 4 5
Пенообразователь HFC HFC HFC HFC HFC

Плотность пенопласта (кг / м 3 )

36.5 36,5 36,5 36,5 36,5
Средняя температура (° C) 10 10 10 10 10
Температура верхней пластины (° C) 0 0 0 0 0
Температура нижней плиты (° C) 20 20 20 20 20
Начальная теплопроводность (Вт / мК) 0.0201 0,0197 0,0199 0,0198 0,0198
Тепловое сопротивление при 50 мм (м 2 К / Вт) 2,49 2,54 2,51 2,53 2,53

Результаты

Образцы пены, изготовленные с вспенивающим агентом HFO, имели более низкое среднее значение начальной проводимости по сравнению с образцами пены, изготовленными с HFC.Оба состава производили отвержденную пену с аналогичными физическими свойствами в пределах требуемых характеристик.

Выводы

образцов распыляемой пены Duratherm, изготовленных с использованием вспенивающего агента HFO поколения 4 th , дали хорошо отвержденную пену, сравнимую с продуктом, изготовленным с использованием HFC. Пена, полученная с использованием HFO, имела улучшенные начальные значения теплопроводности по сравнению со стандартным продуктом HFC и требовала меньшего количества вспенивающего агента в рецептуре смолы.

Опубликовано в техническом блоге

Поделиться

% PDF-1.7 % 217 0 объект > эндобдж xref 217 89 0000000016 00000 н. 0000002635 00000 н. 0000002856 00000 н. 0000002914 00000 н. 0000002950 00000 н. 0000003521 00000 н. 0000003556 00000 н. 0000003695 00000 н. 0000003834 00000 н. 0000004286 00000 п. 0000004418 00000 н. 0000005000 00000 н. 0000005604 00000 н. 0000005641 00000 п. 0000005668 00000 н. 0000005782 00000 н. 0000005894 00000 н. 0000006143 00000 н. 0000006605 00000 н. 0000006874 00000 н. 0000007466 00000 н. 0000009020 00000 н. 0000009109 00000 п. 0000009551 00000 п. 0000010188 00000 п. 0000010337 00000 п. 0000010749 00000 п. 0000011261 00000 п. 0000011650 00000 п. 0000012323 00000 п. 0000012917 00000 п. 0000013032 00000 п. 0000014372 00000 п. 0000015283 00000 п. 0000016308 00000 п. 0000016620 00000 н. 0000016647 00000 п. 0000016780 00000 п. 0000017768 00000 п. 0000018037 00000 п. 0000018372 00000 п. 0000018674 00000 п. 0000019713 00000 п. 0000020692 00000 п. 0000021507 00000 п. 0000026724 00000 п. 0000026900 00000 п. 0000027162 00000 п. 0000036049 00000 п. 0000036296 00000 п. 0000054068 00000 п. 0000080529 00000 п. 0000084502 00000 п. 0000084588 00000 п. 0000084658 00000 п. 0000084728 00000 п. 0000084826 00000 н. 0000115188 00000 п. 0000147966 00000 н. 0000148411 00000 н. 0000151061 00000 н. 0000159529 00000 н. 0000159792 00000 н. 0000159857 00000 н. 0000159950 00000 н. 0000162645 00000 н. 0000162938 00000 н. 0000163223 00000 н. 0000163250 00000 н. 0000163662 00000 н. 0000181192 00000 н. 0000181448 00000 н. 0000181869 00000 н. 0000182355 00000 н. 0000182844 00000 н. 0000191588 00000 н. 0000191838 00000 н. 0000192212 00000 н. 0000192596 00000 н. 0000215875 00000 н. 0000216150 00000 н. 0000216545 00000 н. 0000216955 00000 н. 0000217357 00000 н. 0000259883 00000 н. 0000259922 00000 н. 0000268062 00000 н. 0000268162 00000 н. 0000002076 00000 н. трейлер ] / Назад 334037 >> startxref 0 %% EOF 305 0 объект > поток hb«b`4f« Ā

листов пенополистирола 2.5 x 1,2 м @ 50 мм

Описание

Листы пенополистирола класса M 5 x 1,2M @ 75 мм

Панели из пенополистирола EPS представляют собой универсальное решение из листового пенополистирола, идеально подходящего для строительства и строительства.

Панели из пенополистирола, широко применяемые в строительстве, являются универсальным и хорошо зарекомендовавшим себя строительным материалом. Легкие, прочные, чистые и простые в обращении панели из пенополистирола обеспечивают изоляцию от температуры и шума и могут использоваться в качестве основы для штукатурных панелей.

Панели из пенополистирола

идеально подходят для использования как в коммерческих, так и в жилых помещениях, включая склады, фабрики, магазины, офисные здания, дома и многоквартирные дома, навесы, патио и гаражи.

Устойчивые к погодным условиям, с отличными теплоизоляционными свойствами и низкой влагопоглощающей способностью, панели из пенополистирола EPS являются идеальным материалом для изоляции холодильных помещений, потолков, перекрытий, стен, а также плоских и перевернутых крыш.

Размеры листов полистирола

Листы пенополистирола

доступны в диапазоне толщины от 10 мм до 600 мм.

Наши стандартные размеры листов следующие:

2,5 млн и 5 млн x 1,2 млн

3M и 6M x 1,2M

Доступны листы нестандартных размеров, которые можно разрезать по вашему индивидуальному заказу, также можно заказать листы различной толщины.

Тепловые свойства

Подходящие для использования в стальных шпильках, деревянных шпильках, бетонных и каменных зданиях, пенополистирольные листы из вспененного полистирола представляют собой эффективное и экономичное решение для изоляции.Часто используемые снаружи каркаса стены поддерживают температуру в полостях, близких к комнатной, что снижает риск образования конденсата на поверхности и в полостях. Также улучшаются преимущества теплоемкости бетонных и кирпичных стен.

Значения теплопроводности для марок полистирола EPS показаны в приведенной ниже ссылке.

SL Класс k = 0,041 Вт / мк *
S Марка к = 0.0397 Вт / мк *
M Марка k = 0,0383 Вт / мк *
H Марка k = 0,0368 Вт / мк *
VH Марка k = 0,0352 Вт / мк *
* значение k при эталонной температуре 25 ° C

R-значение

Номинальные значения R (м²K / Вт) — без учета поверхностного сопротивления

Толщина листа EPS SL Класс SG Класс MGrade H Класс
41 мм 1.00 1,05 1,07 1,11
50 мм 1,25 1,32 1,33 1,39
75 мм 1,90 1,97 2,00 2,08
100 мм 2,50 2,63 2,67 2,78

Поли EPS и влияние влаги

Рекомендуется обеспечить эффективную пароизоляцию в ситуациях, когда вероятно значительное увеличение содержания влаги.Панели из пенополистирола, как правило, устойчивы к проникновению влаги; однако содержание влаги влияет на его тепловые характеристики, как и на все изоляционные материалы.

Существует линейная зависимость между потерей термического сопротивления (значение R) и увеличением содержания влаги по объему. Потеря R-значения составляет примерно 2,5% на 1% содержания влаги при увеличении объема (до 20% м.к. по объему). Панели из полистирола с содержанием влаги 2% по объему будут иметь 95% показателя R в сухом состоянии.

Наша среда

При производстве панелей из пенополистирола EPS не образуются озоноразрушающие газы и не используются хлорфторуглероды (CFC).

На каждый килограмм масла, использованного при производстве изоляции Pol, можно сэкономить до 200 кг топлива для отопления в течение среднего срока службы дома. В свою очередь, это играет положительную роль в сокращении выбросов углекислого газа и последствий глобального потепления.

wettrades.com

Как небольшой современный бизнес, мы можем поставлять качественную продукцию по отличной цене.Хотя мы осуществляем доставку по всей Австралии, наш бизнес предлагает сверхбыстрые и надежные услуги в Мельбурн и особенно в район Бейсайд, поскольку мы находимся в Хигетте. Мы также имеем дело с широким спектром надежных установщиков пенополистирола, поэтому, если вы ищете подходящих специалистов для вашей работы, мы можем незамедлительно связаться с вами.

Этот продукт является частью нашего большого выбора материалов для облицовки, и вы можете найти более подробную информацию о нем на веб-сайте Vicfoam.

Листы пенополистирола EPS

* Доставка этого продукта может повлечь дополнительные расходы из-за большого размера листов полистирола.

черный теплоизоляционный лист из вспененной резины, от 3 до 50 мм, 15 рупий / метр

теплоизоляционный лист из черного вспененного каучука, от 3 до 50 мм, 15 рупий / метр | ID: 20175114588

Спецификация продукта

Толщина от 3 мм до 50 мм
Цвет Черный
Плотность 50-70 кг / м3
Форма Рулон из пеноматериала
Теплопроводность 0.032 Вт / м · К
Ширина от 1 до 1,2 метра

Описание продукта

Согласно потребностям и требованиям наших клиентов, мы вовлечены в обеспечение Листа Теплоизоляции Пенопласта.

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 2016

Юридический статус фирмы Партнерство Фирма

Характер бизнеса Уполномоченный оптовый дилер

Количество сотрудников от 11 до 25 человек

Годовой оборот5-10 крор

Участник IndiaMART с августа 2018

GST33ADFFS0627P1ZU

Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

% PDF-1.7 % 207 0 объект > endobj xref 207 105 0000000044 00000 н. 0000003026 00000 н. 0000003380 00000 н. 0000003409 00000 н. 0000003507 00000 н. 0000003926 00000 н. 0000008779 00000 н. 0000012151 00000 п. 0000014819 00000 п. 0000017249 00000 п. 0000019948 00000 п. 0000022676 00000 п. 0000025250 00000 п. 0000028007 00000 п. 0000028363 00000 п. 0000028479 00000 п. 0000028532 00000 п. 0000028979 00000 п. 0000029100 00000 н. 0000029619 00000 п. 0000029748 00000 п. 0000030287 00000 п. 0000030328 00000 п. 0000056412 00000 п. 0000056551 00000 п. 0000057075 00000 п. 0000057555 00000 п. 0000057927 00000 н. 0000058134 00000 п. 0000058463 00000 п. 0000061795 00000 п. 0000062059 00000 п. 0000062397 00000 п. 0000062512 00000 п. 0000062779 00000 п. 0000064330 00000 н. 0000065360 00000 п. 0000065690 00000 н. 0000065830 00000 п. 0000066100 00000 п. 0000066889 00000 п. 0000067827 00000 н. 0000068259 00000 п. 0000068629 00000 п. 0000069073 00000 п. 0000074873 00000 п. 0000076057 00000 п. 0000076494 00000 п. 0000077141 00000 п. 0000077808 00000 п. 0000085771 00000 п. 0000086250 00000 п. 0000086606 00000 п. 0000086780 00000 п. 0000087089 00000 п. 0000089641 00000 п. 0000089837 00000 п. 00000 00000 п. 00000

00000 п. 00000

00000 п. 00000
00000 п. 0000091024 00000 п. 0000091237 00000 п. 0000091437 00000 п. 0000092098 00000 п. 0000122975 00000 н. 0000139012 00000 н. 0000188154 00000 н. 0000203763 00000 н. 0000203852 00000 н. 0000203941 00000 н. 0000204029 00000 н. 0000204117 00000 н. 0000204204 00000 н. 0000204292 00000 н. 0000204379 00000 н. 0000204466 00000 н. 0000204552 00000 н. 0000204641 00000 н. 0000204840 00000 н. 0000205023 00000 н. 0000205215 00000 н. 0000205451 00000 н. 0000205596 00000 н. 0000205742 00000 н. 0000205888 00000 н. 0000206034 00000 н. 0000206180 00000 н. 0000206326 00000 н. 0000206470 00000 н. 0000206614 00000 н. 0000206758 00000 н. 0000206948 00000 н. 0000207132 00000 н. 0000207278 00000 н. 0000207423 00000 н. 0000207619 00000 н. 0000207680 00000 н. 0000207912 00000 н. 0000208005 00000 н. 0000208117 00000 н. 0000208226 00000 н. 0000208346 00000 н. 0000208465 00000 н. 0000002456 00000 н. трейлер ] / Корень 208 0 R >> startxref 0 %% EOF 311 0 объект > поток xc«g`d`g` * gf @

Зависимость от плотности теплопроводности матов из целлюлозного волокна и матов из древесной стружки: исследование кажущейся теплопроводности крупных пор | Journal of Wood Science

Зависимость плотности в значениях

k

На рисунке 3 показаны отношения между плотностью мата и значениями k для двух типов матов.{2} = \, 0. 5 3 7) $$

(6)

Статистический анализ разницы между двумя уравнениями регрессии показал, что не было значительной разницы между уравнениями. (5) и (6). Это указывает на то, что значение k матов CF не зависит от направления теплового потока в соответствии с максимально возможной точностью измерения в этом эксперименте. Напротив, маты WS показали плохую корреляцию между плотностью и значением k . Обнаружилась статистически значимая корреляция ( P <0.{2} = \, 0. 1 1 8) $$

(7)

Подробное исследование значимости различий между средними значениями k для двух направлений теплового потока было проведено для двух диапазонов плотности мата: нижней половины (60–80 кг / м 3 ) и верхняя половина (80–100 кг / м 3 ). Результаты показали, что не было значительной разницы в плотности нижней половины мата, но была небольшая разница в 2% (вверх <вниз) в верхней половине.{2} = \, 0,0 9 5) $$

(9)

Из уравнения. (8), было обнаружено, что значение k мата CF увеличивается примерно на 5% с каждыми 10 кг / м 3 увеличения плотности мата. Это говорит о том, что количество тепловых мостиков (которые способствуют теплопередаче за счет теплопроводности), образованных волокнами, увеличивается с увеличением плотности мата. Однако более внимательное рассмотрение рис. 3 показывает, что для плотностей более 50 кг / м 3 значение k имеет тенденцию к выравниванию.Дальнейшее изучение этого вопроса потребует большего количества экспериментальных данных с большим диапазоном плотностей мата.

Хотя значимая корреляция ( P <0,01) была также обнаружена для матов WS, коэффициент корреляции был очень низким. Поэтому зависимость плотности матов WS от плотности k намного ниже, чем у матов CF; Фактически, наклон уравнения регрессии примерно в четыре раза больше для матов CF. Это можно объяснить распределением по размеру крупных пор в матах WS, поскольку маты с более низкой плотностью имеют тенденцию иметь более крупные крупные поры, в которых может происходить большая конвективная теплопередача, что приводит к более высоким значениям k .

Разница в значениях

k между матами CF и WS

В этом эксперименте мы исследовали маты CF и WS плотностью 60 кг / м 3 . На рис. 4 сравнивается внешний вид двух видов мата при такой плотности. Значения k , полученные из уравнений регрессии для матов CF и WS с плотностью 60 кг / м 3 , составляют 0,0364 и 0,0456 Вт / (м · К) соответственно. Таким образом, значение k мата WS было в 1,25 раза выше, чем у мата CF.Если предположить, что сами материалы CF и WS имеют одинаковое твердое значение k , и, следовательно, теплопередача посредством твердой проводимости происходит в одинаковой степени при одинаковой плотности мата, указанная выше разница в значениях k предположительно вызвана разница в теплоотдаче через крупные поры.

Рис.4

Внешний вид поверхности мата CF ( слева ) и мата WS ( справа ) с плотностью 60 кг / м 3

Теплопроводность водной пены (Технический отчет)

Дротнинг, У.Д., Ортега, А., и Хавей, П. Э. Теплопроводность водной пены . США: Н. П., 1982. Интернет. DOI: 10,2172 / 5347949.

Дротнинг, В.Д., Ортега, А., и Хавей, П.Е. Теплопроводность водной пены . Соединенные Штаты. https://doi.org/10.2172/5347949

Дротнинг, У.Д., Ортега, А., и Хавей, П. Э.Сидел . «Теплопроводность водной пены». Соединенные Штаты. https://doi.org/10.2172/5347949. https://www.osti.gov/servlets/purl/5347949.

@article {osti_5347949,
title = {Теплопроводность водной пены},
author = {Дротнинг, В. Д. и Ортега, А. и Хавей, П. Э.},
abstractNote = {Теплопроводность играет важную роль в реакции водных пен, используемых в качестве геотермальных буровых растворов.Теплопроводность этих пен измерялась в условиях окружающей среды с использованием метода зонда теплопроводности. Изученные плотности пены составляли от 0,03 до 0,2 г / см / sup 3 /, что соответствовало объемным долям жидкости той же величины. Микроскопия пен показала размер пузырьков в диапазоне от 50 до 300 мкм для азотных пен и от 30 до 150 мкм для гелиевых пен. Формы пузырьков были многогранными при низких плотностях пены и сферическими при более высоких плотностях. Измеренные значения проводимости варьировались от 0.От 05 до 0,12 Вт / м-К для исследуемых пен. Прогнозируемое поведение проводимости пены, вызванное изменением проводимости прерывистой газовой фазы, наблюдали с использованием газообразного азота или гелия в пенах. Анализ данных отклика зонда потребовал интерпретации с использованием полного интегрального решения уравнения теплопроводности, поскольку теплоемкость пены была мала по сравнению с тепловой массой зонда. На измерения теплопроводности пен оказывали влияние экспериментальные эффекты, такие как входная мощность зонда, дренаж пены и ориентация зонда и испытательной ячейки.Для азотных пен наблюдалось падение теплопроводности в зависимости от объемной доли жидкости между прогнозами, основанными на модели параллельного упорядочения и модели Рассела для теплопроводности в гетерогенных материалах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *