Теплопроводность материалов это: Коэффициент теплопроводности теплоизоляционных материалов

Коэффициент теплопроводности теплоизоляционных материалов

Одной из основных характеристик теплоизоляционных материалов является теплопроводность. Почти у всех есть понимание, что чем она меньше, тем лучше. Но что означает этот термин и что он нам дает? Как сравнить два типа изоляции, используя этот параметр? Предлагаем разобраться

Что такое коэффициент теплопроводности?

Согласно определения в своде правил СП 61.13330.2012:

Коэффициент теплопроводности — количество тепла, которое передается за единицу времени на единицу площади поверхности при температурном градиенте (изменении температуры), равном единице. Обозначается символом λ (лямбда), единица измерения Вт/(м·К).

Само свойство теплопроводности определяет способность материалов передавать тепловую энергию от более горячего тела к более холодному.

От чего зависит коэффициент?

При изучении данной характеристики было определено, что существует зависимость коэффициента теплопроводности от температуры и других параметров:

  • параметров состояния — температуры, давления
  • свойств — плотность, влажность, структуры

При изменении данных свойств и параметров меняется и теплопроводность.

Обозначение λ0 определяет коэффициент теплопроводности, который получен при испытаниях при температуре 0 °С. При этом температура является среднеарифметическим значением от: (температура на внешней поверхности изоляционного материала + температура на изолируемой поверхности)/2.

По аналогии λ20 — это коэффициент полученный при проведении замеров при температуре 20 °С.

Как это использовать на практике?

Данная характеристика позволяет определить возможность использования теплоизоляции в определенных условиях. Кроме того, Вы можете сравнивать различные виды теплоизоляционных материалов и выбирать наиболее подходящий.

Коэффициент теплопроводности теплоизоляционных материалов

1. Вспененный полиэтилен. Сравнивая продукцию из вспененного полиэтилена можно определить, что при температуре 10 °С минимальным коэффициентом теплопроводности будет обладать теплоизоляция ALMALEN — 0.032 Вт/мК — 0.034 Вт/мК. Это наименьший показатель в данном классе.

2. Вспененный каучук. В данной группе теплоизоляции можно выделить AF/Armaflex — для неё λ0 ºC ≤ 0,033 Вт/(м·К).

3. Базальтовый утеплитель.

При выборе материалов из базальтовой ваты, стоит обратить внимание на Цилиндры Paroc HVAC Section AluCoat T — λ10 ºC ≤ 0,034 В/(м·К).

Правильно ли сравнивать только по λ?

Прежде всего стоит сравнивать показатели, определенные при одной температуре. Существуют различные стандарты определения коэффициента. Могут отличаться «стандартные тепловые режимы»: согласно ГОСТ 7076-99 показатель определяется при 25 °С, а при использовании европейского стандарта EN 12667:2001, нормой является 10 °С.

Также учитывайте планируемые условия эксплуатации материала: влажность, возможное воздействие пара, наличие критических перепадов температуры и так далее.

|

 

При всем многообразии представленных на рынке материалов ВСЕ теплоизоляционные материалы должны обладать определенными свойствами, позволяющими ограждающим конструкциям успешно выполнять свои функции в течение длительного срока. Эти свойства необходимо учитывать при выборе, какой материал стоит использовать в том или ином случае. Какие же это свойства? Низкая теплопроводность Это основное свойство, которым должен обладать теплоизоляционный материал. Количество теплоты, которое передается за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице, называется теплопроводностью (коэффициентом теплопроводности). Теплопроводность λ измеряют в Вт/(м×К). Методики и условия испытаний теплопроводности материалов в различных странах могут значительно отличаться, поэтому при сравнении теплопроводности различных материалов необходимо указывать при каких условиях, в частности температуре, проводились измерения. На величину теплопроводности пористых материалов, каковыми являются теплоизоляционные материалы, оказывают влияние плотность материала, вид, размеры и расположение пор, химический состав и молекулярная структура твердых составных частей, коэффициент излучения поверхностей, ограничивающих поры, вид и давление газа, заполняющего поры.

Однако преобладающее влияние на величину теплопроводности имеют его температура и влажность. Теплопроводность материалов возрастает с повышением температуры, но гораздо большее влияние в условиях эксплуатации оказывает влажность. Коэффициент теплопроводности основных конструкций должен быть 0,03—0,05 Вт/(м×К). Низкая средняя плотность Средняя плотность — величина, равная отношению массы вещества ко всему занимаемому им объёму. Средняя плотность измеряется в кг/м³. Следует отметить, что средняя плотность теплоизоляционных материалов достаточна низка по сравнению с большинством строительных материалов, так как значительный объём занимают поры. Плотность применяемых в настоящее время в строительстве теплоизоляционных материалов лежит в пределах от 17 до 400 кг/м³, в зависимости от их назначения. Известно, что чем меньше средняя плотность сухого материала, тем лучше его теплоизоляционные свойства при температурных условиях, в которых находятся ограждающие конструкции зданий. Чем меньше средняя плотность материала, тем больше его пористость.
От характера пористости зависят основные свойства материалов, определяющие их пригодность для применения в строительных конструкциях: теплопроводность, сорбционная влажность, водопоглощение, морозостойкость, прочность. Наилучшими теплоизоляционными свойствами обладают материалы с равномерно распределенными мелкими замкнутыми порами. Низкая влажность Влажность — содержание влаги в материале. С повышением влажности теплоизоляционных (и строительных) материалов резко повышается их теплопроводность. В материалах с капиллярно-пористой структурой, помещенных в естественную воздушную среду, всегда содержится некоторое количество влаги. Это происходит вследствие того, что находящиеся во влажном воздухе молекулы водяного пара, попадая в зону действия молекулярных сил сухого материала, образуют на его поверхности тонкую пленку. После достижения равновесного состояния между сорбированной влагой в приграничном слое материала и давлением водяного пара в воздухе, происходит постепенное проникновение влаги по всему объёму материала.
При длительном пребывании образца в воздушной среде с постоянными относительной влажностью воздуха и температурой в материале остается неизменное (равновесное) количество влаги, которую называют сорбционной влагой. Низкое водопоглощение Водопоглощение — способность материала впитывать и удерживать в порах влагу при непосредственном соприкосновении с водой. Водопоглощение теплоизоляционных материалов характеризуется количеством воды, которое поглощает сухой материал при выдерживании в воде, отнесенным к массе сухого материала. Поглощение влаги материалом ведет, прежде всего, к увеличению теплопроводности материала. Объясняется это тем, что вода может занимать в материале часть объёма ячеек и пор, вытесняя из них газ. Так как теплопроводность воды λ = 0,58 Вт/(м×К) примерно в 25 раз больше теплопроводности неподвижного воздуха, то наличие воды в материале вызывает существенное повышение теплопроводности теплоизоляционного материала. При низких температурах вода в порах материала может замёрзнуть, что приведет к ещё большему возрастанию теплопроводности материала, так как теплопроводность льда λ = 2,2 Вт/(м×К) почти в 100 раз больше теплопроводности неподвижного воздуха.
Частично снизить водопоглощение минераловатных и стекловолокнистых теплоизоляционных материалов позволяет их гидрофобизация, например, путем введения кремнийорганических добавок. Материалы должны обладать свойством гидрофобности (плохо увлажняться при соприкосновении с водой). Продукция инофирм, поставляемая на наш рынок, является гидрофобизированной, а отечественная — за небольшим исключением является негидрофобизированной. Морозостойкость Морозостойкость — способность материала в насыщенном состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения. От этого показателя существенно зависит долговечность всей конструкции, однако, данные по морозостойкости не приводятся в ГОСТ или ТУ. Прочность К механическим свойствам теплоизоляционных материалов относят прочность (на сжатие, изгиб, растяжение, сопротивление трещинообразованию). Прочность — способность материалов сопротивляться разрушению под действием внешних сил, вызывающих деформации и внутренние напряжения в материале.
Прочность теплоизоляционных материалов зависит от структуры, прочности его твёрдой составляющей (остова) и пористости. Жесткий материал с мелкими порами более прочен, чем материал с крупными неравномерными порами. Долговечность Сохранение эксплуатационных характеристик при старении – долговечность, является одним из важнейших показателей любого материала, предназначенного для использования в строительстве. На долговечность теплоизоляционного слоя влияют в большей или меньшей степени все вышеперечисленные свойства теплоизоляционных материалов. На долговечность влияют также химическая стойкость теплоизоляционного материала (это, как правило, следует учитывать при выборе материалов для утепления покрытий производственных зданий), способность выдерживать многократные циклы размораживания-замораживания (переход через 0º С) и его биологическая стойкость. НегорючестьТеплоизоляционный материал для применения в покрытиях выбирается с учётом его горючести, способности к дымообразованию и возможности выделения токсичных газов при горении.
Выбор теплоизоляционного материала определяется с учётом требований СНиП на кровли, пожарную безопасность и т. д.

Теплопроводность — Все для МГСУ

    Теплопроводность — вид передачи теплоты между неподвижными частицами твердого, жидкого или газообразными вещества. Таким образом, теплопроводность — это теплообмен между частицами или элементами структуры материальной среды, находящимися в непосредственном соприкосновении друг с другом. При изучении теплопроводности вещество рассматривается как сплошная масса, его молекулярное строение игнорируется. В чистом виде теплопроводность встречается только в твердых телах, так как в жидких и газообразных средах практически невозможно обеспечить неподвижность вещества.
   Большинство строительных материалов являются пористыми телами. В порах находится воздух, имеющий возможность двигаться, то есть переносить теплоту конвекцией. Считается, что конвективной составляющей теплопроводности строительных материалов можно пренебречь ввиду ее малости. Внутри поры между поверхностями ее стенок происходит лучистый теплообмен. Передача теплоты излучением в порах материалов определяется главным образом размером пор, потому что чем больше поры, тем больше разность температуры на ее стенках. При рассмотрении теплопроводности характеристики этого процесса относят к общей массе вещества: скелету и порам совместно.
   Ограждающие конструкции здания, как правило, является плоско-параллельными стенками, теплоперенос в которых осуществляется в одном направлении. Кроме того, обычно при теплотехнических расчетах наружных ограждающих конструкций принимается, что теплопередача происходит при стационарных тепловых условиях, то есть при постоянстве во времени всех характеристик процесса: теплового потока, температуры в каждой точке, теплофизических характеристик строительных материалов. Поэтому важно рассмотреть процесс одномерной стационарной теплопроводности в однородном материале, который описывается уравнением Фурье:

 

, (2. 1)

   где qT — поверхностная плотность теплового потока, проходящего через плоскость, перпендикулярную тепловому потоку, Вт/м

²;
   λ — теплопроводность материала, Вт/м. °С;
   t — температура, изменяющаяся вдоль оси x, °С;
   Отношение , носит название градиента температуры, °С/м, и обозначается grad t. Градиент температуры направлен в сторону возрастания температуры, которое связано с поглощением теплоты и уменьшением теплового потока. Знак минус, стоящий в правой части уравнения (2.1), показывает, что увеличение теплового потока не совпадает с увеличением температуры.
   Теплопроводность λ является одной из основных тепловых характеристик материала. Как следует из уравнения (2.1) теплопроводность материала — это мера проводимости теплоты материалом, численно равная тепловому потоку, проходящему сквозь 1 м² площади, перпендикулярной направлению потока, при градиенте температуры вдоль потока, равном 1 °С/м (рис.1). Чем больше значение λ, тем интенсивнее в таком материале процесс теплопроводности, больше тепловой поток. Поэтому теплоизоляционными материалами принято считать материалы с теплопроводностью менее 0,3 Вт/м. °С. 
Рис.1 Направления теплового потока и градиента температуры.
_______ — изотермы; — —— — линии тока теплоты.

   Изменение теплопроводности строительных материалов с изменением их плотности происходит из-за того, что практически любой строительный материал состоит из скелета — основного строительного вещества и воздуха. К.Ф. Фокин [38] для примера приводит такие данные: теплопроводность абсолютно плотного веществе (без пор) в зависимости от природы имеет теплопроводность от 0,1 Вт/м °С (у пластмассы) до 14 Вт/м °С (у кристаллических веществ при потоке теплоты вдоль кристаллической поверхности), в то время как воздух имеет теплопроводность около 0,026 Вт/м °С. Чем выше плотность материала (меньше пористость), тем больше значение его теплопроводности. Понятно, что легкие теплоизоляционные материалы имеют сравнительно небольшую плотность.
   Различия в пористости и в теплопроводности скелета приводит к различию в теплопроводности материалов, даже при одинаковой их плотности. Например, следующие материалы (табл.1) при одной и той же плотности, ρ0=1800 кг/м3, имеют различные значения теплопроводности [38]:
   Таблица 1.
   Теплопроводность материалов с одинаковой плотностью 1800 кг/м³ [38].

   С уменьшением плотности материала его теплопроводность λ уменьшается, так как снижается влияние кондуктивной составляющей теплопроводности скелета материала, но, однако при этом возрастает влияние радиационной составляющей. Поэтому, уменьшение плотности ниже некоторого значения приводит к росту теплопроводности. То есть существует некоторое значение плотности, при котором теплопроводность имеет минимальное значение. Существуют оценки того, что при 20 °С в порах диаметром 1мм теплопроводность излучением составляет 0,0007 Вт/ (м °С), диаметром 2 мм — 0,0014 Вт/ (м °С) и т.д. Таким образом, теплопроводность излучением становится значимой у теплоизоляционных материалов с малой плотностью и значительными размерами пор.
   Теплопроводность материала увеличивается с повышением температуры, при которой происходит передача теплоты. Увеличение теплопроводности материалов объясняется возрастанием кинетической энергии молекул скелета вещества. Увеличивается также и теплопроводность воздуха в порах материала, и интенсивность передачи в них теплоты излучением. В строительной практике зависимость теплопроводности от температуры большого значения не имеет для пересчета значений теплопроводности материалов, полученных при температуре до 100оС, на значения их при 0оС служит эмпирическая формула О.Е. Власова [3]:
 

, (2.2)

   где λо — теплопроводность материала при 0

°С;
   λt — теплопроводность материала при t °С;
   β — температурный коэффициент изменения теплопроводности, 1/°С, для различных материалов, равный около 0,0025 1/°С;
   t — температура материала, при которой его коэффициент теплопроводности равен λt.
   Для плоской однородной стенки толщиной δ (рис.2) тепловой поток, передаваемый теплопроводностью через однородную стенку, может быть выражен уравнением:

  

, (2. 3)

   где τ1,τ2 — значения температуры на поверхностях стенки,

°С.
   Из выражения (2.3) следует, что распределение температуры по толщине стенки линейное. Величина δ/λ названа термическим сопротивлением материального слоя и обозначена RT, м². °С/Вт:

  

, (2.4)

 

  


Рис.2. Распределение температуры в плоской однородной стенке.

   Следовательно, тепловой поток qТ, Вт/м

², через однородную плоскопараллельную стенку толщиной δ, м, из материала с теплопроводностью λ, Вт/м. °С, можно записать в виде

 

, (2.5)

   Термическое сопротивление слоя — это сопротивление теплопроводности, равное разности температуры на противоположных поверхностях слоя при прохождении через него теплового потока с поверхностной плотностью 1 Вт/м².
Теплообмен теплопроводностью имеет место в материальных слоях ограждающих конструкций здания.



Теплопроводность теплоизоляционных материалов — Справочник химика 21

    Низкая теплопроводность. Теплоизоляционные материалы разделяются на четыре группы по величине [c.189]

    Из приведенных данных видно, что величина Я для различных материалов изменяется в широких пределах это в значительной мере определяет их назначение. Низкая теплопроводность теплоизоляционных материалов объясняется их пористой структурой, в ячейках которой заключен воздух, плохо проводящий тепло. Для большинства металле коэффициенты теплопроводности с возрастанием температуры уменьшаются, тогда как для газов они возрастают. [c.113]


    Эмпирические формулы для вычисления теплопроводности теплоизоляционных материалов в зависимости от температуры [c.344]     Коэффициент Ь для различных теплоизоляционных материалов имеет величину порядка (2,0ч-4,0) 10 1/град, т. е. при изменении температуры на 100°С коэффициент теплопроводности теплоизоляционных материалов изменяется от 20 до 40% [c. 85]

    Измерение коэффициента теплопроводности теплоизоляционных материалов при низких температурах основано на определении массы испарившейся криогенной жидкости (например, жидкого кислорода или азота) в результате подвода тепла к образцу теплоизоляции. Этот способ используется для определения коэффициента теплопроводности. как при атмосферном давлении, так и в условиях вакуума [81—84]. [c.55]

    Коэффициент теплопроводности теплоизоляционных материалов возрастает с увеличением давления в большинстве случаев быстрее [19, 20, 123], чем это следует из уравнения (13). Авторы работы [123] пытаются объяснить это влиянием конвекции. Действительная причина заключается в сложной структуре изоляционных материалов, не дающей возможности описать перенос тепла в них газом при использовании лишь одного характеристического размера — среднего диаметра пор. Коэффициент теплопроводности зернистых теплоизоляционных материалов, зерна которых имеют пористую структуру, может быть вычислен по уравнению (30) с использованием уравнений (33) — (35). Более простую формулу, применимую к любым теплоизоляционным материалам, можно получить на основе следующих соображений. [c.91]

    Из табл. 10-6 следует, что в интервале температур от 30 до 75° С коэффициент теплопроводности теплоизоляционных материалов изменяется незначительно. При [c.440]

    Влиянием конвекции и лучеиспускания в процессе передачи теплоты через теплоизоляционный материал объясняется возрастание коэффициента теплопроводности к с повышением температуры. На это указывают и данные табл. 3.1, по которым можно судить и о том, что в крупных порах теплопроводность воздуха растет при повышении температуры значительно быстрее. Повышение температуры вызывает и рост радиационного теплообмена, поскольку излучение пропорционально четвертой степени абсолютной температуры. Однако, как следует из опытных данных, коэффициент теплопроводности теплоизоляционных материалов находится примерно в линейной зависимости от температуры, т. е. [c. 64]


    Коэффициент Ь для различных материалов имеет величину (2- 4) 10 К , а потому теплопроводность теплоизоляционных материалов соответственно изменяется от 20 до 40% на каждые 100 К повышения или понижения температуры. Для низкотемпературных установок это свойство материалов оказывается весьма положительным. [c.64]     Коэффициент теплопроводности теплоизоляционных материалов сильно зависит от их объемной массы, а также давления и температуры. На рис. 224 приведены кривые значений коэффи- [c.522]

    Коэффициент теплопроводности теплоизоляционных материалов сильно зависит от их объемной массы, а также давления и температуры. На рис. 10.1 приведены кривые, характеризующие коэффициенты теплопроводности некоторых изоляционных материалов . [c.511]

    Теплопроводность теплоизоляционных материалов в большой мере определяется соотношением между количеством воздуха (газа), находящегося внутри пор и имеющего достаточно низкий коэффициент теплопроводности (0,02 ккал) м-час-град), и количеством твердого вещества изоляции, коэффициент теплопроводности которого зависит от материала теплоизоляции.[c.38]

    Материалы для тепловой изоляции имеют пористое строение, благодаря чему обладают малой насыпной плотностью и низкой теплопроводностью. Теплоизоляционные материалы классифицируются (ГОСТ 16381—70) по структуре, форме, виду сырья, объемной массе, сжимаемости, теплопроводности. [c.35]

    По величине теплопроводности теплоизоляционные материалы классифицируют следующим образом  [c.314]

    Величины расчетных коэффициентов теплопроводности теплоизоляционных материалов [c.78]

    Величина коэффициентов теплопроводности газов на порядок меньше теплопроводности жидкостей. Поэтому газы обладают самой низкой теплопроводностью из всех веществ. Низкий коэффициент теплопроводности теплоизоляционных материалов (диатомито вые земли, шлаковая вата, торф, пробка) обусловливается их пористостью. Поэтому тепловой поток в таких материалах является в основном процессом теплопередачи через воздух, заключенный в порах. Твердое вещество таких материалов не позволяет воздуху приходить в состояние движения от разности температур, а тем самым и предотвращает передачу дополнительного количества тепла конвективными токами. Закон Фурье для процессов теплопередачи весьма напоминат закон Ома для электрического тока. В этом можно легко убедиться, если уравнение (1-6) написать в следующей форме  [c.27]

    В 1960 г. И. И. Перелетов [120] разработал комплексный метод измерения температурной зависимости коэффициентов температуропроводности и теплопроводности теплоизоляционных материалов в режиме монотонного нагрева. И. И. Перелетов рассматривал температурное поле монотонно нагреваемого полого цилиндра, занолненного исследуемым веществом. Полый цилиндр играл роль оболочки тепломера и выполнялся из материала с известными теплофизическими свойствами. При решении задачи учитывалась нелинейность разогрева, а теплофизические свойства образца и оболочки принимались постоянными. В процессе нагрева измерялся перепад температуры на образце и на внешнем цилиндре. Метод измерения коэффициента температуропроводности совпадает с методом О. А. Краева, а метод измерения теплоемкости практически не отличался от методов диатермической оболочки Ю. П. Барского. К недостаткам метода следует отнести низкую точность определения теплофизических характеристик оболочки, трудность обеспечения равномерного потока на поверхности наружного цилиндра и сложность расчетных фор- [c.35]


    Представленные в этом разделе данные о теплопроводности некоторых материалов, обычно используемых в низкотемпературной аппаратуре, взяты главным образом из обзорной статьи Пауэлла и Блэнпайда. В разделе помещены также некоторые более поздние данные. Коэффициенты теплопроводности теплоизоляционных материалов можно найти в гл. 5, посвященной изоляции. [c.381]

Теплопроводность и коэффициент теплопроводности. Что это такое

Строительство коттеджа или дачного дома — это сложный и трудоемкий процесс. И для того, чтобы будущее строение простояло не один десяток лет, нужно соблюдать все нормы и стандарты при его возведении. Поэтому каждый этап строительства требует точных расчетов и качественного выполнения необходимых работ.

Одним из самых важных показателей при строительстве и отделке строения является теплопроводность строительных материалов. СНИП (строительные нормы и правила) дает полный спектр информации по данному вопросу. Ее необходимо знать, чтобы будущее здание было комфортным для проживания как в летний, так и в зимний период.

Идеальный теплый дом

От конструктивных особенностей строения и применяемых при его возведении материалов зависит комфорт и экономичность проживания в нем. Комфорт заключается в создании оптимального микроклимата внутри вне зависимости от внешних погодных условий и температуры окружающей среды. Если материалы подобраны правильно, а котельное оборудование и вентиляция установлены согласно нормам, то в таком доме будет комфортная прохладная температура летом и тепло зимой. К тому же если все материалы, используемые при строительстве, обладают хорошими теплоизоляционными свойствами, то расходы на энергоносители при отоплении помещений будут минимальны.

Понятие теплопроводности

Теплопроводность — это передача тепловой энергии между непосредственно соприкасающимися телами или средами. Простыми словами теплопроводность — это способность материала проводить температуру. То есть, попадая в какую-то среду с отличающейся температурой, материал начинает принимать температуру этой среды.

Этот процесс имеет большое значение и в строительстве. Так, в доме с помощью отопительного оборудования поддерживается оптимальная температура (20-25°C). Если температура на улице будет ниже, то когда отключается отопление, все тепло из дома через некоторое время выйдет на улицу, и температура понизится. Летом происходит обратная ситуация. Чтобы сделать температуру в доме ниже уличной, приходится использовать кондиционер.

Коэффициент теплопроводности

Потеря тепла в доме неизбежна. Она происходит постоянно, когда температура снаружи меньше, чем в помещении. А вот ее интенсивность — это переменная величина. Она зависит от множества факторов, главными среди которых являются:

  • Площадь поверхностей, участвующих в теплообмене (крыша, стены, перекрытия, пол).
  • Показатель теплопроводности строительных материалов и отдельных элементов здания (окна, двери).
  • Разница между температурами на улице и внутри дома.
  • И другие.

Для количественной характеристики теплопроводности строительных материалов используют специальный коэффициент. Используя этот показатель, можно довольно просто рассчитать необходимую теплоизоляцию для всех частей дома (стены, крыша, перекрытия, пол). Чем выше коэффициент теплопроводности строительных материалов, тем больше интенсивность потери тепла. Таким образом, для постройки теплого дома лучше применять материалы с более низким показателем этой величины.

Коэффициент теплопроводности строительных материалов, как и любых других веществ (жидких, твердых или газообразных), обозначается греческой буквой λ. Единицей его измерения является Вт/(м*°C). При этом расчет ведется на один квадратный метр стены толщиной в один метр. Разница температур здесь берется 1°. Практически в любом строительном справочнике имеется таблица теплопроводности строительных материалов, в которой можно посмотреть значение этого коэффициента для различных блоков, кирпичей, бетонных смесей, пород дерева и других материалов.

Определение потерь тепла

Потери тепла в любом здании всегда есть, но в зависимости от материала они могут изменять свое значение. В среднем потеря тепла происходит через:

  • Крышу (от 15 % до 25 %).
  • Стены (от 15 % до 35 %).
  • Окна (от 5 % до 15 %).
  • Дверь (от 5 % до 20 %).
  • Пол (от 10 % до 20 %).

Для определения потерь тепла применяют специальный тепловизор, который определяет наиболее проблемные места. Они выделяются на нем красным цветом. Меньшая потеря тепла происходит в желтых зонах, далее — в зеленых. Зоны с наименьшей потерей тепла выделяются синим цветом. А определение теплопроводности строительных материалов должно проводиться в специальных лабораториях, о чем должен свидетельствовать сертификат качества, прилагаемый к продукции.

Пример расчета потерь тепла

Если взять, к примеру, стену из материала с коэффициентом теплопроводности 1, то при разности температур с двух сторон этой стены в 1°, потери тепла составят 1 Вт. Если же толщину стены взять не 1 метр, а 10 см, то потери составят уже 10 Вт. В случае, если разность температур будет 10°, то тепловые потери также составят 10 Вт.

Рассмотрим теперь на конкретном примере расчет потери тепла целого здания. Высоту его возьмем 6 метров (8 с коньком), ширину — 10 метров, а длину — 15 метров. Для простоты расчетов берем 10 окон площадью 1 м 2 . Температуру внутри помещения будем считать равную 25°C, а на улице -15°C. Вычисляем площадь всех поверхностей, через которые происходит потеря тепла:

  • Окна — 10 м 2 .
  • Пол — 150 м 2 .
  • Стены — 300 м 2 .
  • Крыша (со скатами по длинной стороне) — 160 м 2 .

Формула теплопроводности строительных материалов позволяет вычислить коэффициенты для всех частей здания. Но проще использовать уже готовые данные из справочника. Там есть таблица теплопроводности строительных материалов. Рассмотрим каждый элемент по отдельности и определим его тепловое сопротивление. Оно рассчитывается по формуле R = d/λ, где d — толщина материала, а λ — коэффициент его теплопроводности.

Пол — 10 см бетона (R=0,058 (м 2 *°C)/Вт) и 10 см минеральной ваты (R=2,8 (м 2 *°C)/Вт). Теперь складываем эти два показателя. Таким образом, тепловое сопротивление пола равняется 2,858 (м 2 *°C)/Вт.

Аналогично считаются стены, окна и кровля. Материал — ячеистый бетон (газобетон), толщина 30 см. В таком случае R=3,75 (м 2 *°C)/Вт. Тепловое сопротивление пластового окна — 0,4 (м 2 *°C)/Вт.

Следующая формула позволяет выяснить потери тепловой энергии.

Q = S * T / R, где S — площадь поверхности, T — разница температур снаружи и внутри (40°C). Рассчитаем потери тепла для каждого элемента:

  • Для крыши: Q = 160*40/2,8=2,3 кВт.
  • Для стен: Q = 300*40/3,75=3,2 кВт.
  • Для окон: Q = 10*40/0,4=1 кВт.
  • Для пола: Q = 150*40/2,858=2,1 кВт.

Далее все эти показатели суммируются. Таким образом, для данного коттеджа тепловые потери составят 8,6 кВт. А для поддержания оптимальной температуры потребуется котельное оборудование мощностью не менее 10 кВт.

Материалы для внешних стен

На сегодняшний день существует множество стеновых строительных материалов. Но наибольшей популярностью в частном домостроении по-прежнему пользуются строительные блоки, кирпичи и дерево. Основные отличия — это плотность и теплопроводность строительных материалов. Сравнение дает возможность выбрать золотую середину в соотношении плотность/теплопроводность. Чем выше плотность материала, тем выше его несущая способность, а следовательно, и прочность конструкции в целом. Но при этом ниже его тепловое сопротивление, а как следствие, расходы на энергоносители выше. С другой стороны, чем выше тепловое сопротивление, тем ниже плотность материала. Меньшая плотность, как правило, подразумевает наличие пористой структуры.

Чтобы взвесить все за и против, необходимо знать плотность материала и его коэффициент теплопроводности. Следующая таблица теплопроводности строительных материалов для стен дает значение этого коэффициента и его плотность.

Материал

Теплопроводность, Вт/(м*°C)

Плотность, т/м 3

Железобетон

Керамзитобетонные блоки

Керамический кирпич

Силикатный кирпич

Газобетонные блоки

Утеплители для стен

При недостаточной тепловой сопротивляемости внешних стен могут применяться различные утеплители. Так как значения теплопроводности строительных материалов для утепления могут иметь весьма низкий показатель, то чаще всего толщины в 5-10 см будет достаточно для создания комфортной температуры и микроклимата в помещениях. Широкое применение на сегодняшний день получили такие материалы, как минеральная вата, пенополистирол, пенопласт, пенополиуритан и пеностекло.

Следующая таблица теплопроводности строительных материалов, используемых для утепления наружных стен, дает значение коэффициента λ.

Особенности применения стеновых утеплителей

Применение утеплителей для наружных стен имеет некоторые ограничения. Это прежде всего связанно с таким параметром, как паропроницаемость. Если стена сделана из пористого материала, такого как газобетон, пенобетон или керамзитобетон, то применять лучше минеральную вату, так как этот параметр у них практически одинаковый. Использование пенополистирола, пенополиуритана или пеностекла возможно только при наличии специального вентиляционного зазора между стеной и утеплителем. Для дерева это также критично. А вот для кирпичных стен данный параметр не так критичен.

Теплая кровля

Утепление кровли позволяет избежать ненужных перерасходов при отоплении дома. Для этого могут применяться все виды утеплителей как листового формата, так и напыляемые (пенополиуритан). При этом не следует забывать про пароизоляцию и гидроизоляцию. Это весьма важно, так как мокрый утеплитель (минеральная вата) теряет свои свойства по тепловой сопротивляемости. Если же кровля не утепляется, то необходимо основательно утеплить перекрытие между чердаком и последним этажом.

Пол

Утепление пола весьма важный этап. При этом также необходимо применять пароизоляцию и гидроизоляцию. В качестве утеплителя используется более плотный материал. Он, соответственно, имеет более высокий коэффициент теплопроводности, чем кровельный. Дополнительной мерой для утепления пола может послужить подвал. Наличие воздушной прослойки позволяет повысить тепловую защиту дома. А оборудование системы теплого пола (водяного или электрического) дает дополнительный источник тепла.

Заключение

При строительстве и отделке фасада необходимо руководствоваться точными расчетами по тепловым потерям и учитывать параметры используемых материалов (теплопроводность, паропроницаемость и плотность).

Из чего построить дом? Его стены должны обеспечить здоровый микроклимат без лишней влаги, плесени, холода. Это зависит от их физических свойств: плотности, водостойкости, пористости. Самым главным является теплопроводность строительных материалов, означающая их свойство пропускать сквозь себя тепловую энергию при разнице температур. Для того, чтобы количественно оценить этот параметр, используют коэффициент теплопроводности.

Для того, чтобы кирпичный дом был таким же теплым, как и деревянный сруб (из сосны), толщина его стен должна втрое превышать толщину стен сруба.

Что такое коэффициент теплопроводности

Эта физическая величина равна количеству теплоты (измеряемой в килокалориях), проходящей через материал толщиной 1 м за 1 час. При этом разница температур на противоположных сторонах его поверхности должна быть равной 1 °С. Исчисляется теплопроводность в Вт/м град (Ватт, деленный на произведение метра и градуса).

Использование данной характеристики продиктовано необходимостью грамотного подбора типа фасада для создания максимальной теплоизоляции. Это необходимое условие для комфорта живущих или работающих в здании людей. Также теплопроводность строительных материалов учитывается при выборе дополнительного утепления дома. В данном случае ее расчет особенно важен, так как ошибки приводят к неправильному смещению точки росы и, как следствие — стены мокнут, в доме сыро и холодно.

Сравнительная характеристика теплопроводности строительных материалов

Коэффициент теплопроводности материалов различный. К примеру, у сосны этот показатель равен 0,17 Вт/м град, у пенобетона – 0,18 Вт/м град: то есть, по способности сохранять тепло они примерно идентичны. Коэффициент теплопроводности кирпича – 0,55 Вт/м град, а обыкновенного (полнотелого) – 0,8 Вт/м град. Из всего этого следует, что для того, чтобы кирпичный дом был таким же теплым, как и деревянный сруб (из сосны), толщина его стен должна втрое превышать толщину стен сруба.

Практическое использование материалов с низкой теплопроводностью

Современные технологии производства теплоизолирующих материалов предоставляют широкие возможности для строительной индустрии. Сегодня совершенно не обязательно строить дома с большой толщиной стен: можно удачно комбинировать различные материалы для возведения энергоэффективных построек. Не очень высокую теплопроводность кирпича можно компенсировать использованием дополнительного внутреннего или наружного утеплителя, например, пенополистирола, коэффициент теплопроводности которого – всего 0,03 Вт/м град.

Взамен дорогих домов из кирпича и не эффективных с точки зрения энергосбережения монолитных и каркасно-панельных домов из тяжелого и плотного бетона сегодня строят здания из ячеистого бетона. Его параметры такие же, как у древесины: в доме из данного материала стены не промерзают даже в самые холодные зимы.

Потери тепла дома в процентном соотношении.

Такая технология позволяет возводить более дешевые здания. Это связано с тем, что низкий коэффициент теплопроводности строительных материалов упростил возведение минимальными затратами по финансированию. Уменьшается также и время, затрачиваемое на строительные работы. Для более легких сооружений не требуется устраивать тяжелый глубоко заглубленный фундамент: в ряде случаев достаточно легкого ленточного или столбчатого.

Особенно привлекательным данный принцип строительства стал для возведения легких каркасных домов. Сегодня с использованием материалов низкой теплопроводности возводится все больше коттеджей, супермаркетов, складских помещений и производственных зданий. Такие строения могут эксплуатироваться в любой климатической зоне.

Принцип каркасно-щитовой технологии строительства заключается в том, что между тонкими листами фанеры или плит OSB помещается теплоизолятор. Это может быть минеральная вата либо пенополистирол. Толщина материала выбирается с учетом его теплопроводности. Тонкие стены вполне справляются с задачей тепловой изоляции. Таким же образом устраивается кровля. Данная технология позволяет в короткие сроки возводить здание с минимальными финансовыми затратами.

Сравнение параметров популярных материалов для изоляции и возведения домов

Пенополистирол и минеральная вата заняли лидирующие позиции при утеплении фасадов. Мнения специалистов разделились: одни утверждают, что вата накапливает конденсат и пригодна к эксплуатации лишь при одновременном использовании с паронепроницаемой мембраной. Но тогда стены теряют дышащие свойства, и качественное применение оказывается под вопросом. Другие уверяют, что создание вентилируемых фасадов решает данную проблему. При этом пенополистирол имеет низкую проводимость тепла и хорошо дышит. У него она пропорционально зависит от плотности листов: 40/100/150 кг/м3 = 0,03/0,04/0,05 Вт/м*ºC.

Еще одна важная характеристика, которую обязательно учитывают при строительстве — паропроницаемость. Она означает возможность стен пропускать изнутри влажность. При этом не происходят потери комнатной температуры и нет необходимости проветривать помещение. Низкая теплопроводность и высокая паропроницаемость стен обеспечивают идеальный для проживания человека микроклимат в доме.

Исходя из этих условий, можно определить самые эффективные дома для проживания человека. Наиболее низкой проводимостью тепла обладает пенобетон (0,08 Вт
м*ºC) при плотности 300 кг/м3. Этот строительный материал имеет также одну из самых высоких степеней паропроницаемости (0,26 Мг/м*ч*Па). Второе место по праву занимает древесина, в частности — сосна, ель, дуб. Их теплопроводность достаточно низкая (0,09 Вт/м*ºC) при условии обработки дерева поперек волокон. А паропроницаемость этих сортов наиболее высокая (0,32 Мг/м*ч*Па). Для сравнения: использование сосны, обработанной вдоль волокон, повышает выпуск тепла до 0,17-0,23 Вт/м*ºC.

Таким образом, для возведения стен подходят лучше всего пенобетон и древесина, так как они обладают лучшими параметрами по обеспечению экологической чистоты и хорошего микроклимата внутри помещений. Для изоляции фасада подходят пенополиуретан, пенополистирол, минеральная вата. Отдельно следует сказать о пакле. Ее закладывают для исключения мостиков холода во время кладки сруба. Она увеличивает и без того отличные свойства деревянного фасада: коэффициент проводимости тепла у пакли самый низкий (0,05 Вт/м*ºC), а паропроницаемость самая высокая (0,49 Мг/м*ч*Па).

Прочный и теплый дом – это основное требование, которое предъявляется проектировщикам и строителям. Поэтому еще на стадии проектирования зданий в конструкцию закладываются две разновидности стройматериалов: конструкционные и теплоизоляционные. Первые обладают повышенной прочностью, но большой теплопроводностью, и именно их чаще всего и используют для возведения стен, перекрытий, оснований и фундаментов. Вторые – это материалы с низкой теплопроводностью. Их основное назначение – закрыть собой конструкционные материалы, чтобы понизить их показатель тепловой проводимости. Поэтому для облегчения расчетов и выбора используется таблица теплопроводности строительных материалов.

Читайте в статье:

Что такое теплопроводность

Законы физики определяют один постулат, который гласит, что тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. При этом, проходя через строительный материал, тепловая энергия затрачивает какое-то время. Переход не состоится лишь в том случае, если температура на разных сторонах от стройматериала одинаковая.

То есть, получается так, что процесс перехода тепловой энергии, к примеру, через стену, это время проникновения тепла. И чем больше времени на это затрачивается, тем ниже теплопроводность стены. Вот такое соотношение. К примеру, теплопроводность различных материалов:

  • бетон –1,51 Вт/м×К;
  • кирпич – 0,56;
  • древесина – 0,09-0,1;
  • песок – 0,35;
  • керамзит – 0,1;
  • сталь – 58.

Чтобы было понятно, о чем идет речь, надо обозначить, что бетонная конструкции не будет ни под каким предлогом пропускать через себя тепловую энергию, если ее толщина будет в пределах 6 м. Понятно, что это просто невозможно в домостроении. А значит, придется для снижения теплопроводности использовать другие материалы, у которых показатель ниже. И ими облицовывать бетонное сооружение.


Что такое коэффициент теплопроводности

Коэффициент теплоотдачи или теплопроводности материалов, который также обозначен в таблицах, это характеристика тепловой проводимости. Он обозначает количество тепловой энергии, проходящий через толщу стройматериала за определенный промежуток времени.

В принципе, коэффициент обозначает именно количественный показатель. И чем он меньше, тем теплопроводность материала лучше. Из сравнения выше видно, что стальные профили и конструкции обладают самым высоким коэффициентом. А значит, они практически не держат тепло. Из строительных материалов,сдерживающих тепло, которые используются для сооружения несущих конструкций, это древесина.

Но надо обозначить и другой момент. К примеру, все та же сталь. Этот прочный материал используют для отведения тепла, где есть необходимость сделать быстрый перенос. К примеру, радиаторы отопления. То есть, высокий показатель теплопроводности – это не всегда плохо.


Что влияет на теплопроводность строительных материалов

Есть несколько параметров, которые сильно влияют на тепловую проводимость.

  1. Структура самого материала.
  2. Его плотность и влажность.

Что касается структуры, то здесь огромное разнообразие: однородная плотная, волокнистая, пористая, конгломератная (бетон), рыхлозернистая и прочее. Так вот надо обозначить, что чем неоднороднее структура у материала, тем ниже у него теплопроводность. Все дело в том, что проходить сквозь вещество, в котором большой объем занимают поры разного размера, тем сложнее энергии через нее перемещаться. А ведь в данном случае тепловая энергия – это излучение. То есть, оно не проходит равномерно, а начинает изменять направления, теряя силу внутри материала.


Теперь о плотности. Этот параметр обозначает, на каком расстоянии между собой располагаются частички материала внутри его самого. Исходя из предыдущей позиции, можно сделать вывод: чем меньше это расстояние, а значит, больше плотность, тем тепловая проводимость выше. И наоборот. Тот же пористый материал имеет плотность меньше, чем однородный.


Влажность – это вода, которая имеет плотную структуру. И ее теплопроводность равна 0,6 Вт/м*К. Достаточно высокий показатель, сравнимый с коэффициентом теплопроводности кирпича. Поэтому когда она начинает проникать в структуру материала и заполнять собой поры, это увеличение тепловой проводимости.

Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

  • через стены уходит до 30% тепловой энергии общего расхода.
  • Через полы – 10%.
  • Через окна и двери – 20%.
  • Через крышу – 30%.

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.


Мнение эксперта

Инженер-проектировщик ОВиК (отопление, вентиляция и кондиционирование) ООО «АСП Северо-Запад»

Спросить у специалиста

“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”


Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.


Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

Теплопроводность кирпича: таблица по разновидностям

ФотоВид кирпичаТеплопроводность, Вт/м*К
Керамический полнотелый0,5-0,8
Керамический щелевой0,34-0,43
Поризованный0,22
Силикатный полнотелый0,7-0,8
Силикатный щелевой0,4
Клинкерный0,8-0,9

Теплопроводность дерева: таблица по породам

Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.


Теплопроводность металлов: таблица

Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

Теперь, что касается соотношения с температурой.

  • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
  • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.

Таблица теплопроводности других материалов

В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К
Минеральная вата (базальтовая)500,048
1000,056
2000,07
Стекловата1550,041
2000,044
Пенополистирол400,038
1000,041
1500,05
Пенополистирол экструдированный330,031
Пенополиуретан320,023
400,029
600,035
800,041

И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К
Бетон24001,51
Железобетон25001,69
Керамзитобетон5000,14
Керамзитобетон18000,66
Пенобетон3000,08
Пеностекло4000,11

Коэффициент теплопроводности воздушной прослойки

Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.


Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:

  1. Конвекция теплого воздуха внутри прослойки.
  2. Тепловое излучение от материала с плюсовой температурой.

Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах. Что касается воздушной прослойки, то такие расчеты провести сложно, поэтому берутся значения, которые в 50-х годах прошлого столетия были получены лабораторными исследованиями.


В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает. И разница значительная: с 38% до 2%. Правда, возрастает конвекция с 2% до 28%. Но так как пространство замкнутое, то движение воздуха внутри него никак не действует на внешние факторы.

Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.


Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

Если у вас возникли вопросы, на которые, как вам показалось, вы не нашли ответы в этой статье, пишите их в комментариях. Наша редакция постарается на них ответить.

Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Вернуться к оглавлению

Факторы, влияющие на величину теплопроводности

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

  1. Пористость — наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор — малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность — при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность — значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

где, λо — коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

b — справочная величина температурного коэффициента;

t — температура.

Вернуться к оглавлению

Практическое применение значения теплопроводности строительных материалов

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление — нормируемая величина.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

где, H — толщина слоя, м;

R — сопротивление теплопередаче, (м2*°С)/Вт;

λ — коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

  • ограждающая конструкция имеет однородное монолитное строение;
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 — Строительная климатология;
  • СНиП 23-02-2003 — Тепловая защита зданий;
  • СП 23-101-2004 — Проектирование тепловой защиты зданий.

Вернуться к оглавлению

Теплопроводность материалов: параметры

Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

Значения коэффициентов теплопроводности сведены в таблицу 1:

Таблица 1

Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.

Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы — это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

Теплопроводность и другие характеристики строительных материалов в цифрах. Сравнение теплопроводности строительных материалов

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

От чего зависят тепловые потери в доме

Климатические условия

Регион РФ

Допустимая энергоэффективность окна (м²×°C/Вт)

Алтай

0,64

Адыгея

0,35

Астраханская область

0,48
Башкортостан 0,6
Бурятия 0,67
Дагестан 0,35
Калининградская область 0,42
Коми 0,69
Краснодарский край 0,35
Ленинградская область 0,54
Московская область 0,52
Магаданская область 0,77
Омская область 0,64
Орловская область 0,5
Ростовская область 0,42
Татарстан 0,58
Саха (Якутия) 0,8

Что такое теплопроводность и её значимость?

Теплопроводность – это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах. Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла. Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.

Движение молекул тепла

Что такое теплопроводность: определение

При возведении зданий и сооружений могут использоваться разные материалы. Жилые и производственные постройки в условиях российского климата обычно утепляются. То есть, при их строительстве применяются специальные изоляторы, основным назначением которых является поддержание комфортной температуры внутри помещений. При расчете необходимого количества минеральной ваты или пенополистирола в обязательном порядке принимается во внимание теплопроводность использованного для возведения ограждающих конструкций основного материала.

Очень часто здания и сооружения в нашей стране строятся из разных видов бетона. Также для этой цели используются кирпич и дерево. Собственно самой теплопроводностью называется способность вещества к переносу энергии в своей толще в силу движения молекул. Идти подобный процесс может, как в твердых частях материала, так и в его порах. В первом случае он называется кондукцией, во втором — конвекцией. Остывание материала гораздо быстрее идет в его твердых частях. Воздух, заполняющий поры, задерживает тепло, конечно же, лучше.

Теплопроводность – что это

Сам термин «теплопроводность» определяет передачу энергии тепловой от предметов с более высокой температурой – предметам с более низкой. Сам теплообмен осуществляется до тех пор, пока температура обоих предметов не станет одинаковой. Чтобы обозначить энергию тепловую был создан коэффициент теплопроводности, применяемый для строительных материалов. Этот параметр дает четкое понимание того, какое количество энергии тепловой проходит в единицу времени через единицу площади. Чем выше этот показатель – тем лучше теплообмен. Чем меньше теплопроводность материал – тем более он пригоден для строительства жилых и отапливаемых помещений. Согласно строительным нормам толщина стен, препятствующая теплопотерям в зданиях должна соответствовать:

  1. Кирпич — 210 см
  2. Керамзитобетон — 90 см
  3. Дерево — 53 см
  4. Газобетон — 44 см
  5. Минеральная вата — 18 см
  6. Пенополистерол — 12 см

Теплопроводный коэффициент характеризуется показателем количества теплоты, проходящего сквозь метр толщины материала в единицу времени, равную 60 минут. При создании лучшей теплоизоляции профессионалы рекомендуют использовать эту характеристику в обязательном порядке. Также на нее стоит обратить внимание при необходимости подобрать дополнительные утепляющие материалы и конструкции. Рассмотрим соотношение материала и коэффициента теплопроводности, измеренного в Ваттах на метр квадратный Кельвин:

алюминий асбест асфальтобетон асбесто-цементные плиты бетон, желоззобетон битум бронза винипласт вода при температурі вище 0 войлок шерстяной гипсокартон гранит древесина из дуба, волокна размещены вдоль древесина из дуба, волокна размещены поперек древесина из сосны или ели, волокна размещены вдоль древесина из сосны или ели, волокна размещены поперекдо 221 Вт/м2 0,151 Вт/м2*К 1,05 Вт/м2*К 0,35 Вт/м2*К до 1,51 Вт/м2*К 0,27 Вт/м2*К 64 Вт/м2 0,163 Вт/м2*К 0,6 Вт/м2*К 0,047 Вт/м2*К 0,15 Вт/м2*К 3,49 Вт/м2*К 0,23 Вт/м2*К 0,1 Вт/м2*К 0,18 Вт/м2*К до 0,15 Вт/м2*Кплита древесно-стружечная или плита ориентировано-стружечная железобетон Картон используемый для облицовки Керамзит, плотность 200кг / м3 Керамзит, плотность 800кг / м3 Керамзитобетон, плотность 500кг / м3 Керамзитобетон, плотность 1800кг / м3 Кирпич керамический, пустотелый брутто 1000, плотность 1200кг / м3 Кирпич керамический, пустотелый брутто брутто 1400, плотность 1600кг / м3 Кирпич красный глиняный Кирпич силикатный Кладка из изоляционного кирпича Кладка из обыкновенного кирпича Кладка из огнеупорного кирпича Краска масляная0,15 Вт / м2К 1,69 Вт / м2К 0,18 Вт / м2К 0,1 Вт / м2К 0,18 Вт / м2К 0,14 Вт / м2К 0,66 Вт / м2К 0,35 Вт / м2К 0,41 Вт / м2К 0,56 Вт / м2К 0,7 Вт / м2К до 0,209 Вт / м2К до 0,814 Вт / м2К 1,05 Вт / м2К 0,233 Вт / м2К

О понятии теплопроводности

Теплопроводностью обладают все твердые, жидкие и газообразные вещества. Энергию от нагретого участка более холодному передают хаотично движущиеся частицы — молекулы, атомы, электроны. Чем ближе друг к другу они расположены, тем активнее происходит теплообмен.

Плотность материала напрямую влияет на его способность проводить тепло. Например, кирпич по сравнению с ячеистым бетоном более плотный, лучше проводит тепловую энергию. Кирпичная стена толщиной 500 мм также защищает помещение от теплопотерь, как легкобетонная толщиной 300 мм. Железобетон плотнее керамзитобетона в три раза, соответственно, он более теплопроницаемый.

Бетон представляет собой сложную неоднородную структуру. Входящие в состав компоненты обладают разной способностью теплопередачи. Наименьшую имеет воздух в капиллярах цементного камня и микрополостях внутри заполнителя. Чем материал пористее, тем хуже передается тепловая энергия.

Закономерную связь между видом заполнителя и теплопроводностью бетона подтверждают опыты материаловедов Довжика В. Г., Миснара А. Они установили, что чем мельче размер замкнутых пор в теле монолита, тем хуже передается тепло.

Третий фактор, влияющий на теплопроводность — влажность. Вода проводит тепло в 20 раз лучше воздуха. Заполняя поры бетона, она ухудшает теплоизоляционные качества. Зимой возможно промерзание увлажненного слоя ограждающей конструкции.

Таблица: коэффициентов теплопроводности металлов, полупроводников и изоляторов

Теплопроводность многих металлов следует соотношению k = 2,5·10-8σT, где Т обозначает температуру в °К, а σ — электропроводность в единицах (ом·см)-1. Это соотно­шение, которое лучше всего оправдывается для хороших проводников электричества и при высоких температурах, можно применять и для определения коэффициентов тепло­проводности.

Соотношение kpcp=const, где р обозначает плотность, а ср — удельную теплоем­кость при постоянном давлении, было предложено Стормом для того, чтобы объяснить температурные изменения этих величин для некоторых металлов и сплавов.

Таблица коэффициента теплопроводности металлов

Элементы с металлической электропроводностью.

Металл Коэффициент теплопроводности металлов (при температуре, °С) — 100 100 300 700
Алюминий2,452,382,302,260,9
Бериллий4,12,31,71,250,9
Ванадий0,310,34
Висмут0,110,080,070,11*0,15*
Вольфрам2,051,901,651,451,2
Гафний0,220,21
Железо0,940,760,690,550,34
Золото3,33,13,1
Индий0,25
Иридий1,511,481,43
Кадмий0,960,920,900,950,44 (400°)*
Калий0,990,42*0,34*
Кальций0,98
Кобальт0,69
Литий0,710,73
Магний1,61,51,51,45
Медь4,053,853,823,763,50
Молибден1,41,431,04 (1000°)
Натрий1,351,350,85*0,76*0,60*
Никель0,970,910,830,640,66
Ниобий0,490,490,510,56
Олово0,740,640,600,33
Палладий0,690,670,74
Платина0,680,690,720,760,84
Рений0,71
Родий1,541,521,47
Ртуть0,330,090.10,115
Свинец0,370,350,3350,3150,19
Серебро4,224,184,173,62
Сурьма0,230,180,170,170,21*
Таллий0,410,430,490,25 (400 0)*
Тантал0,540,54
Титан0,160,15
Торий0,410,390,400,45
Уран0,240,260,310,40
Хром0,860,850,800,63
Цинк1,141,131,091,000,56*
Цирконий0,210,200,19

* числа, набранные курсивом, относятся к жидкой фазе.

Таблица коэффициента теплопроводности полупроводников и изоляторов

Вещество Коэффициент теплопроводности при температура, °С — 100 100 500 700
Германий1,050,63
Графит0,5—4,00,5—3,00,4-1,70,4-0,9
Йод0,004
Углерод0,0160,0170,0190,023
Селен0,0024
Кремний0,84
Сера0,00290,0023
Теллур0,015

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (удельная теплопроводность),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона,  — абсолютная температура.

Коэффициент теплопроводности газов

В газах коэффициент теплопроводности может быть найден по приближённой формуле

где  — плотность газа,  — удельная теплоёмкость при постоянном объёме,  — средняя длина свободного пробега молекул газа,  — средняя тепловая скорость. Эта же формула может быть записана как

где  — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа , для одноатомного ),  — постоянная Больцмана,  — молярная масса,  — абсолютная температура,  — эффективный (газокинетический) диаметр молекул,  — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): , где  — размер сосуда,  — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Факторы, влияющие на теплопропускаемость бетона

Из-за неоднородности структуры бетонных конструкций и разных условий эксплуатации коэффициент теплопроводности в этом случае – величина условная. На этот параметр оказывают влияние:

  • Плотность. Чем плотнее материал, тем ближе друг к другу находятся его частицы, тем быстрее передается тепло. Это значит, что тяжелые бетоны имеют больший коэффициент теплопроводности, по сравнению с легкими (керамзитовыми, вермикулитовыми, перлитовыми).
  • Пористость и структура пор. Чем больше объем, занятый воздухом, тем лучше материал задерживает тепло. Но на теплоизоляционные характеристики влияет не только процентное содержание воздуха, но и размеры, а также замкнутость пор. Лучше всего прохождению тепла препятствуют мелкие замкнутые поры. Крупные поры, которые сообщаются между собой, увеличивают теплопередачу.
  • Влажность. Это еще один фактор, влияющий на коэффициент теплопередачи бетона. Вода способна проводить тепло в 20 раз лучше воздуха. Поэтому увлажненный материал резко теряет теплоизоляционные характеристики. При отрицательных температурах вода в увлажненном слое замерзает, вызывая не только повышенные теплопотери здания, но и быстрое разрушение строительного материала. В таблицах, применяемых при точных теплотехнических расчетах, часто указывают три значения коэффициента теплопроводности – в сухом виде, при нормальной влажности, в увлажненном состоянии.
  • Температура. С повышением температуры коэффициент теплопроводности увеличивается.

Сравнение коэффициента теплопроводности тяжелого бетона, пено- и газобетона, керамзитобетона, фибробетона.

Наиболее высоким коэффициентом теплопроводности обладает тяжелый бетон, армированный стальными стержнями или проволокой (железобетон) – до 2,04 Вт/(м*C). Немного ниже этот показатель у неармированных бетонных элементов.

Более низким коэффициентом теплопроводности и повышенными теплоизоляционными характеристиками обладают: керамзитобетон, изготовленный с использованием кварцевого или перлитового песка, сухой пено- и газобетон. Уровень теплопередачи фибробетона сравним с аналогичным показателем плотного керамзитобетона.

Таблица коэффициентов теплопроводности различных видов бетона

Вид бетона Коэффициент теплопроводности, Вт/(м*C)
Тяжелый армированный бетон 1,68- 2,04
Тяжелый бетон 1,29-1,52
Керамзитобетон (в зависимости от плотности) 0,14-0,66
Пенобетон (в зависимости от плотности) 0,08-0,37
Газобетон разной плотности 0,1-0,3
Фибробетон 0,52-0,75

Правильное проведение теплотехнических расчетов позволяет определить оптимальную толщину стен, что обеспечивает уменьшение расходов на отопление и комфортный микроклимат внутри здания.

Поделиться ссылкой:

Производим и предлагаем продукцию:

Читайте также:

  • Бетон для системы «теплый пол»
  • Плотность бетона: что это такое, на что влияет?
  • Влияние температуры на бетон
  • Водонепроницаемость бетона
  • Морозостойкость бетона

Виды утеплителей

Из утеплителей меньшей теплопроводностью обладают пенополистирол и экструдированный пенополиуретан. Это жесткие, хрупкие материалы, выпускающиеся в плитах, и имеющие ячеистую структуру. Но нужно учесть, что при увеличении плотности структуры материала, увеличивается и его способность пропускать тепло.

Минеральные утеплители кроме хорошей сохранности тепла, обладают отличными звукоизоляционными свойствами: они гасят звуки, не позволяя им проникнуть в помещение.

Производится минвата в виде плит или в рулонах. Плитами обкладываются стены, кровля, пол. Рулонный утеплитель пригоден для укрытия труб водоснабжения и отопления.

  • Таблица теплопроводности утеплителей
  • Утеплитель Басвул
  • Керамический кирпич — Теплопроводность

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

МатериалКоэфф. тепл. Вт/(м2*К)
Алебастровые плиты0,470
Алюминий230,0
Асбест (шифер)0,350
Асбест волокнистый0,150
Асбестоцемент1,760
Асбоцементные плиты0,350
Асфальт0,720
Асфальт в полах0,800
Бакелит0,230
Бетон на каменном щебне1,300
Бетон на песке0,700
Бетон пористый1,400
Бетон сплошной1,750
Бетон термоизоляционный0,180
Битум0,470
Бумага0,140
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,100
Войлок шерстяной0,045
Гипс строительный0,350
Глинозем2,330
Гравий (наполнитель)0,930
Гранит, базальт3,500
Грунт 10% воды1,750
Грунт 20% воды2,100
Грунт песчаный1,160
Грунт сухой0,400
Грунт утрамбованный1,050
Гудрон0,300
Древесина – доски0,150
Древесина – фанера0,150
Древесина твердых пород0,200
Древесно-стружечная плита ДСП0,200
Дюралюминий160,0
Железобетон1,700
Зола древесная0,150
Известняк1,700
Известь-песок раствор0,870
Ипорка (вспененная смола)0,038
Камень1,400
Картон строительный многослойный0,130
Каучук вспененный0,030
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,200
Кирпич кремнеземный0,150
Кирпич пустотелый0,440
Кирпич силикатный0,810
Кирпич сплошной0,670
Кирпич шлаковый0,580
Кремнезистые плиты0,070
Латунь110,0
Лед 0°С2,210
Лед -20°С2,440
Липа, береза, клен, дуб (15% влажности)0,150
Медь380,0
Мипора0,085
Опилки – засыпка0,095
Опилки древесные сухие0,065
ПВХ0,190
Пенобетон0,300
Пенопласт ПС-10,037
Пенопласт ПС-40,040
Пенопласт ПХВ-10,050
Пенопласт резопен ФРП0,045
Пенополистирол ПС-Б0,040
Пенополистирол ПС-БС0,040
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,060
Пеностекло тяжелое0,080
Пергамин0,170
Перлит0,050
Перлито-цементные плиты0,080
Песок 0% влажности0,330
Песок 10% влажности0,970
Песок 20% влажности1,330
Песчаник обожженный1,500
Плитка облицовочная1,050
Плитка термоизоляционная ПМТБ-20,036
Полистирол0,082
Поролон0,040
Портландцемент раствор0,470
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,050
Резина0,150
Рубероид0,170
Сланец2,100
Снег1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности)0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,230
Сталь52,0
Стекло1,150
Стекловата0,050
Стекловолокно0,036
Стеклотекстолит0,300
Стружки – набивка0,120
Тефлон0,250
Толь бумажный0,230
Цементные плиты1,920
Цемент-песок раствор1,200
Чугун56,0
Шлак гранулированный0,150
Шлак котельный0,290
Шлакобетон0,600
Штукатурка сухая0,210
Штукатурка цементная0,900
Эбонит0,160

Технологии укладки

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:

  1. Раствором не заполняют воздушные зазоры толщиной до 10 мм между изделиями начиная с 1 ряда. 1 метр — распространенный шаг между зазорами.
  2. По типу фасада с вентиляцией зазор воздуха толщиной 25-30 мм оставляют по всей высоте кладки между теплоизолятором и кирпичом. При работе зимой отопительной системы температура в доме будет оставаться постоянной. Свойства стены сохранять тепло обеспечат постоянные воздушные потоки, которые будут проходить по предусмотренным воздушным каналам.

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Как рассчитать необходимую теплопроводимость?

Стены из газоблоков должны иметь достаточную ширину, чтобы в помещении сохранялось тепло. Если сделать их слишком тонкими, то здание будет выхолаживаться. Чтобы не столкнуться с такой проблемой, необходимо правильно выполнить расчеты. Не допустить ошибку помогают правила СНИП, которые имеются для каждого региона страны. Влажностный режим бывает 3 типов:

  • Влажный – 1.
  • Нормальный – 2.
  • Сухой – 3.

Понять, в каком регионе проживает человек, поможет специальная карта:

Чем выше уровень влажности воздуха в регионе проживания, тем толще и плотнее должны быть стены, так как сырость способствует быстрым теплопотерям.

Без учета коэффициента теплопроводности газобетонного блока невозможно правильно определить толщину стены строящегося здания. Чтобы точно высчитать толщину стен, прибегают к специальной формуле. Она выглядит следующим образом:

T=Rreg x λ, где:

  • T – это толщина стены.
  • Rreg – необходимое сопротивление по теплопередаче для разных городов РФ.
  • λ — это коэффициент теплопроводности для газоблока (зависит от его плотности).

Пользоваться этой формулой очень просто. Практический пример:

Rreg для Москвы – 3,28. λ для газоблока марки D500, 5% влажности – 0,14. Итого: Т= 3,28 x 0,147 = 0,48.

Значит, толщина стены в Москве с учетом теплопроводности выбранного газоблока должна составлять не менее 48 см.

Для примера приведена минимальная толщина стен из газоблоков марки D500 для разных городов России:

  • Москва – 35 см.
  • Новосибирск – 45 см.
  • Якутск – 65 см.

Чем выше показатели влажности в регионе и чем там холоднее, тем толще должны быть стены. В противном случае добиться качественной теплоизоляции не удастся.

Неопытные строители часто возводят слишком тонкие стены, руководствуясь рекомендациями производителей газоблоков, которые не учитывают множество факторов в виде мостиков холода, климатических особенностей региона и пр.

Специалисты в этом вопросе приходят к единому мнению: стена из газобетона не должна быть тоньше 350 мм.

Показатели влажности ячеистого бетона

Европейский и Международный комитеты по бетону, проходящие в 1977 году в Лондоне, в связи с существенными различиями в применении в строительстве и физико-техническими свойствами между бетонами на легких заполнителях и ячеистыми бетонами, создали рабочую группу по ячеистому бетону, которая выявила, что эксплуатационная влажность – его важнейший показатель. Значение влажности ячеистого бетона составляет 4-5% от его массы и устанавливается примерно через 2-3 года. Пределы значения отпускной влажности — 25 – 35%.

Способность внутренней влаги передавать тепло обуславливает основную теплопередачу. Ячеистый бетон имеет свойство линейно повышать теплопроводность, по мере увеличения такого показателя как сорбционное влагопотребление до 15%. Дальнейший рост этого показателя влияет уже несущественно.

Есть ряд особенностей эксплуатации ячеистого бетона для того, чтобы получать заявленную теплопроводность. Так, например, обязательно использовать грунтовку для предохранения стен от увлажнения. На наружных стенах грунтовка должна быт паропроницаемая.

Проектирование стен осуществляется в зависимости от климатической зоны и режима влажности помещений. Эти показатели определяются СНиПом II-3-79**. Норма для условий эксплуатации согласно СНиПу II-3-79**:

описание различных пород, необходимость таблицы коэффициентов теплопроводности

Древесина — экологически чистый и практичный материал. Дерево активно применяется для внутренней отделки помещений. Материал также используется в строительстве загородных домов и заведений для туристов, в которых большую роль играет экологичность здания. При строительстве важно учесть теплопроводность дерева и многие другие параметры. Внутренняя отделка тоже требует внимания к характеристикам, ведь породы по-разному реагируют на тепло и влагу.

Разновидности и использование древесины

В строительстве применяются разнообразные породы древесины, которые принято разделять на хвойные и лиственные. К хвойным относятся такие виды:

  1. Сосна. Прочный и практичный материал для выполнения строительных работ. В нем собрано большое количество смолы, за счет чего он справляется с излишней влагой, при этом не поддается коррозии при сушке.
  2. Ель и пихта. Довольно прочные, но сучковатые материалы. Имеют приятый оттенок и незначительное количество смолы. При строительстве применяются как материал для элементов второстепенной важности.
  3. Кедр. Невзирая на то, что материал мягкий, он довольно прочный.

Лиственные породы делятся на мягкие и твердые. Это такие виды:

  1. Дуб. Высококачественный материал, обладающей высокой прочностью и надежностью. У дуба натуральный и приятный для глаза цвет. Как правило, он применяется для изготовления мебели, при возведении лестничного марша. Наиболее роскошно выглядит настоящий мореный дуб (выдержанный в воде около двух лет).
  2. Береза. Не столь прочный материал, зато однородный, за счет чего имеет максимально четко выраженную структуру. Из этого вида древесины получается качественная фанера, которая легко окрашивается и полируется.
  3. Осина. Слишком мягкий, но при этом практически не имеющий сучков вид древесины. Легко поддается обработке, но мелкие детали из осины делать не стоит.
  4. Липа. Широко применяется в производстве мебели. Прекрасно сохраняет свой первозданный вид даже после сушки. Липа устойчива к влаге.
  5. Клен. Довольно практичный материал, но весьма быстро рушится под воздействием влаги и вредителей. Неплохо красится, обрабатывается и проклеивается. Широко применяется как в строительстве, так и в изготовлении мебели.
  6. К лиственному типу также относится красное дерево. Красивый, дорогой и прочный материал. Чаще всего используется для элитного мебельного производства.

Чтобы выбрать подходящую породу, важно изучить таблицу теплопроводности древесины.

Достоинства материала

Строительство с использованием древесины имеет свои преимущества и недостатки. Главными плюсами при выборе такого материала будут:

  1. Экологичность. Самый весомый аргумент в пользу древесины — экологическая чистота. Некоторые современные материалы могут выделять пары тяжелых металлов и прочих химических элементов, что пагубно повлияет на здоровье жильцов дома.
  2. Ремонтопригодность. Части, сделанные из древесины, будет довольно легко отремонтировать в случае поломки или износа.
  3. Прочность и устойчивость ко многим внешним факторам, что делает долгим срок службы изделий из древесины. При правильной обработке этот материал будет безотказно служить долгие годы.
  4. Простота обработки.
  5. Плохая теплопроводность.
  6. Хорошие звукоизоляционные свойства.

Довольно обширный список. При этом маленькое число недостатков:

  1. Сильная зависимость свойств материала от того, в каких условиях росло дерево. Выбрать из-за этого качественный экземпляр бывает трудно.
  2. Изменения размеров из-за воздействия влажности и сухости. Но этот недостаток легко поправим обработкой.
  3. Легкая воспламеняемость.

Нельзя не учитывать высокую стоимость, связанную со сложностью добычи высококачественной древесины.

Влияние теплопроводности

От коэффициента теплопроводности древесины напрямую зависит ее способность сохранять температуру в помещении. Лидирующую позицию по сбережению тепла занимает кедр. Немного отстают ель, лиственница и другие сосновые породы. Все зависит напрямую от размера бревна (его диаметра), влажности материала, подгонки и утепления стыков.

Строение из сосны толщиной всего в 10 см можно сравнить со стеной из кирпича шириной в 58 см или железобетонной — 113 см. Правильно возведенный из дерева дом будет довольно компактным и теплым. Поэтому при строительстве нужно учитывать таблицу теплопроводности дерева.

Максимально тяжелое хвойное дерево лиственница — победитель сосны по теплопроводности. Она имеет более низкий коэффициент.

Теплопроводность дерева, позволяющая сохранять тепло, — не единственное достоинство лиственницы. Структура этого материла устойчива к влаге и довольно красива.

Сосна — наиболее распространенное и часто применяемое для строительства дерево. Более того, с финансовой стороны вопроса это еще и максимально бюджетный вариант. Сосна легко поддается обработке, способна украсить дом или баню своим внешним видом.

Теплопроводность кирпичной стены

Теплопроводность – один из важнейших показателей, характеризующих качество возводимого сооружения. И это неудивительно: ведь от этого коэффициента зависят не только затраты на отопление помещений, но и степень комфортности проживания в доме. Также в строительных расчетах часто фигурирует коэффициент теплосопротивления (сопротивление теплоотдаче), обратный теплопроводности (чем выше первый, тем ниже второй, и наоборот).

Теплопроводность сооружения зависит от показателей используемого вида кирпича, от параметров раствора, типа кладки, применяемых строительных технологий и утепляющих материалов.

Коэффициент теплопроводности кирпичей

Данный коэффициент обозначается буквой λ и выражается в W/(m*K).

Показатель λ достаточно широко варьируется, в зависимости от типа кирпичей и способа их изготовления. В основном, на данный коэффициент влияют материал кирпича (клинкерный, силикатный, керамический) и относительное содержание пустот. До 13% пустотности кирпичи считаются полнотелыми, выше – пустотелыми. По уменьшению коэффициента λ линейка строительной продукции будет выглядеть следующим образом:

  1. Клинкерный кирпич λ= от 0,8 до 0,9. Этот тип стройматериалов не предназначен для строительства утеплённых стен и чаще используется для изготовления полов и мощёных дорог.
  2. Силикатный кирпич полнотелого типа λ= от 0,7 до 0,8. Чуть ниже, чем у предыдущего типа, но строительство стены с его использованием требует серьёзных мер по утеплению.
  3. Керамический кирпич полнотелый λ= от 0,5 до 0,8 (в зависимости от сорта).
  4. Силикатный, с техническими пустотами λ= 0,66.
  5. Керамический кирпич пустотелого исполнения λ= 0,57.
  6. Керамический кирпич щелевого типа λ= 0,4.
  7. Силикатный кирпич щелевого типа – показатель λ аналогичен керамическому щелевому (0,4).
  8. Керамический поризованный λ= 0,22.
  9. Тёплая керамика λ= 0,11. Имея отличные показатели теплосопротивления, тёплая керамика уступает прочим видам кирпичной продукции по прочности, и поэтому применение её ограничено.

Важно при расчёте также учитывать, что для различных климатических регионов сопротивление теплоотдаче материалов будут варьироваться, в достаточно широких пределах Информацию о соотнесении теплоотдачи с климатическими параметрами, можно почерпнуть в СНиПе 23-02-2003.

Теплопроводность кладки

Теплосопротивление кирпичей является важнейшим коэффициентом и в ряде случаев является определяющим параметром при проектировании здания и выбора кладки. Вместе с тем, сопротивление

теплоотдачи сооружения зависит не только от показателя λ используемых кирпичей, но и от применяемого строительного раствора.

Наиболее частым является случай, когда теплосопротивление раствора существенно ниже, чем сопротивление кирпича.

Так, коэффициент теплоотдачи раствора на основе цемента и песка равен 0,93 W/(m*K), а цементно-шлакового раствора – 0,64.

Путем суммирования коэффициентов сопротивления теплоотдаче кирпича и раствора разработаны специальные таблицы коэффициента теплопередачи, которые можно посмотреть в ГОСТе 530-2007. Ниже приведена выдержка из таблицы:

Таблица – Теплопроводность кладки

Тип кирпичаТип раствораТеплоотдача
ГлиняныйЦементно-песчаный0,81
Цементно-шлаковый0,76
Цементно-перлитовый0,7
СиликатныйЦементно-песчаный0,87
Керамический пустотный 1,4т/м3Цементно-песчаный0,64
Керамический пустотный 1,3т/м30,58
Керамический пустотный 1,0т/м30,52
Силикатный, 11-ти пустотныйЦементно-песчаный0,81
Силикатный, 14-ти пустотный0,76

Расчет стены

Для того, чтобы использовать коэффициент теплосопротивления кирпичной стенки на практике, необходимо воспользоваться следующей формулой:

r = (толщина кладки, м)/(теплоотдача, W/(m * K)),

где r – сопротивление теплоотдаче кирпичной стены. При расчетах также необходимо учитывать степень влажности помещения и климатический регион.

Уменьшение коэффициента теплоотдачи стены

В ряде случаев коэффициент λ оставляет желать много лучшего. К тому же нарушение технологии строительства может привести к изменению теплоотдачи в большую сторону. Если применять жидкий раствор при возведении стены из щелевого кирпича, то связующий материал проникнет в пустоты и отрицательно скажется на показателях теплосбережения (сопротивление теплопередаче уменьшится).

Что делать, чтобы увеличить сопротивление теплоотдаче?

Методы уменьшения теплопередачи стены:

  1. Применение более энергосберегающих материалов (кирпичей с большей степенью пустотности).
  2. При строительстве из щелевого кирпича применять густой раствор.
  3. Прокладывание во внутреннем слое теплоизолирующих материалов. На рынке представлен огромный выбор теплоизоляции. Из наиболее популярных можно назвать стекло- и минераловатные материалы, пенополистирол, керамзит и другие. При применении утеплителей необходимо обеспечить пароизоляцию стены, чтобы избежать разрушения материалов.
  4. Оштукатуривание поверхности.

Выбираем кирпич: о «теплых» и «холодных» стройматериалах

Кирпич обладает долговечностью, механической прочностью, морозостойкостью, хорошими звукоизоляционными свойствами и безопасен с точки зрения экологии. Все эти качества делают кирпич одним из самых востребованных стройматериалов на рынке. Но, есть и ещё одно важное свойство кирпича — его теплотехнические параметры. Ведь именно теплопроводность кирпича, из которого выложены стены, влияет на микроклимат помещения в этом здании.

Немного физики или от чего зависит теплопроводность кирпича

Теплопроводность — это способность материала проводить тепло через свой объём. Количественно выражается она коэффициентом теплопроводности (λ, «лямбда») и определяется в Вт/м². Проще говоря, чем меньше теряется энергии, тем лучше, а значит, чем меньше коэффициент λ, тем «теплее» материал. Фактически на теплопроводность влияет плотность кирпича. Чем она меньше, тем меньше теплопроводность. Самый прочный и тяжелый клинкерный кирпич имеет самый высокий коэффициент λ, а лёгкий и менее прочный керамический, соответственно, самый низкий коэффициент теплопроводности.

Виды кирпича и их коэффициент проводимости тепла

В строительстве могут быть использованы разные виды кирпича. Перед тем, как приступить к возведению дома, имеет смысл узнать, насколько «теплыми» или «холодными» являются наиболее востребованные виды этого керамического материала.

  • Клинкерный — самый прочный и тяжелый кирпич с высоким коэффициентом теплопроводности — 0,8-0,9.
  • Силикатный кирпич — легкий кирпич, имеет меньший коэффициент теплопроводности — 0,4.
  • С техническими пустотами — 0,66.
  • Полнотелый кирпич — 0,8.
  • Щелевой кирпич — 0,34-0,43;
  • Кирпич поризованный — 0,22;

Теплопроводность кирпича может меняться в зависимости от его объема, плотности и расположения пустот. Специалисты рекомендуют применять в строительстве для лучшего сохранения тепла материалы с низкой теплопроводностью. Для того чтобы уберечься от холода или спастись от жары, при строительстве вашего дома необходимо учитывать теплопроводность кирпича. Ведь мы строим наши дома для того, чтобы жить в нём с комфортом.

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Материалы из бетона с добавлением пористых заполнителей

Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:

  • Пенобетон. Производится с добавлением пенообразующих веществ, за счет которых характеризуется пористой структурой с плотностью 500-1000 кг/м3. При этом способность передавать тепло определяется значением 0,1-0,37Вт/м*К.
  • Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают пустотелые блоки, которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то плотность керамзитобетона составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
  • Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.

Что такое коэффициент теплопроводности

Физический смысл коэффициента теплопроводности — это количество тепла, которое проходит через образец единичного объема за одну секунду при разнице температур в один Кельвин (градус Цельсия). Единица измерения — Вт/(м °К), обозначение — λ, k, ϰ.

Чем выше значение коэффициента, тем большей способностью к передаче тепла обладает материал. В абсолютном вакууме λ=0, максимальный — у алмаза и графена, применяемого в наноразработках.

У бетона значение коэффициента теплопроводности находится в пределах 0,05 -2,02 Вт/(м °К) в зависимости от плотности и влажности материала. У ячеистого автоклавного бетона марки М150 λ=0,055 Вт/(м °К), а тяжелые бетоны М800-1000 характеризуются показателем 2,02 Вт/(м °К).

В строительстве при расчете конструкций на сопротивление теплопередаче используют таблицу с точными значениями коэффициента. Его указывают для трех состояний материала:

  • в сухом виде;
  • при нормальной влажности;
  • при повышенной влажности.

Теплотехнический расчет проводят в соответствии с условиями эксплуатации бетона.

От чего зависит величина коэффициента

Коэффициент теплопроводности бетона определяют опытным путем. Поскольку у материала неоднородная структура, то величина непостоянна и носит условный характер.

Параметры, от которых зависит показатель:

  • Плотность. Тепловую энергию передают друг другу частицы, поэтому чем ближе они расположены, тем быстрее этот процесс. Соответственно, рыхлые материалы с меньшей плотностью способны лучше противостоять теплопередаче.
  • Пористость материала. Тепловой поток перемещается сквозь толщу монолита, часть которого составляют воздушные пустоты. Теплопроводность воздуха очень мала — 0,02 Вт/(м °К). Чем больше занятый воздухом объем, тем коэффициент λ ниже.
  • Структура пор — размеры и замкнутость. Мелкие полости снижают скорость передачи энергии, в то время как в крупных сообщающихся отверстиях теплообмен совершается конвекционным путем, увеличивая тем самым общую теплопередачу.
  • Влажность. Коэффициент теплопроводности воды 0,6 Вт/м К, это достаточно большой показатель. Проникая в полости бетона, влага уменьшает способность материала сохранять тепло.
  • Температура. Чем она у вещества выше, тем быстрее движутся молекулы. Зависимость от температуры линейная, выражается формулой λ=λо х (1+b х t), где λ и λо — искомый и начальный коэффициенты теплопроводности, b — справочная величина, t — температура в градусах.

10 лучших теплопроводящих материалов

Теплопроводность — это мера способности материала пропускать через него тепло. Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды. Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с рекомендациями S.I (Международная система).

10 лучших измеряемых теплопроводных материалов и их значения приведены ниже.Эти значения проводимости являются средними из-за разницы в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.

Материалы теплопроводящие

  1. Diamond — 2000 — 2200 Вт / м • K

    Алмаз является ведущим теплопроводным материалом и имеет измеренные значения проводимости в 5 раз выше, чем у меди, самого производимого металла в Соединенных Штатах. Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной теплопередачи.Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.

    Diamond — важный компонент многих современных портативных электронных устройств. Их роль в электронике — способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях. Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.

  2. Серебро — 429 Вт / м • K

    Серебро — относительно недорогой и распространенный теплопроводник. Серебро входит в состав многих бытовых приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для производства электрических инструментов и электроники (US Geological Survey Mineral Community 2013). Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлементов, которые являются основным компонентом солнечных батарей.

  3. Медь — 398 Вт / м • K

    Медь — наиболее часто используемый металл для производства токопроводящих приборов в США. Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла. Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы — все это приборы, в которых используются проводящие свойства меди.

  4. Золото — 315 Вт / м • K

    Золото — редкий и дорогой металл, который используется в особых проводящих целях.В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.

  5. Нитрид алюминия — 310 Вт / м • K

    Нитрид алюминия часто используется в качестве замены оксида бериллия. В отличие от оксида бериллия, нитрид алюминия не представляет опасности для здоровья при производстве, но по-прежнему демонстрирует химические и физические свойства, аналогичные оксиду бериллия. Нитрид алюминия — один из немногих известных материалов, предлагающих электрическую изоляцию наряду с высокой теплопроводностью.Он обладает исключительной стойкостью к тепловому удару и действует как электрический изолятор в механической стружке.

  6. Карбид кремния — 270 Вт / м • K

    Карбид кремния — это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода. При изготовлении и сплавлении кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.

  7. Алюминий — 247 Вт / м • K

    Алюминий обычно используется в качестве экономичной замены меди.Хотя алюминий не такой проводящий, как медь, его много, и с ним легко манипулировать из-за его низкой температуры плавления. Алюминий является важным компонентом светильников L.E.D (светоизлучающих диодов). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.

  8. Вольфрам — 173 Вт / м • K

    Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, подвергающихся воздействию высоких уровней электричества.Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов. Он также часто используется в лампах и как компонент электронно-лучевых трубок.

  9. Графит 168 Вт / м • K

    Графит — это распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к смесям полимеров для улучшения их теплопроводных свойств. Батареи — знакомый пример устройства, использующего высокую теплопроводность графита.

  10. Цинк 116 Вт / м • K

    Цинк — один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов). 20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование — это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.

Список литературы

Мохена, Т.К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. doi: 10,5772 / intechopen.75676
Нитрид алюминия. (нет данных). Получено с https://precision-ceramics.com/materials/aluminium-nitride/

.

База данных материалов Thermtest. https://thermtest.com/materials-database

Автор: Каллиста Уилсон, младший технический писатель Thermtest

Что такое теплопроводность? — Matmatch

Теплопроводность — это мера способности определенного материала передавать или проводить тепло.Электропроводность возникает, когда в материале присутствует температурный градиент. Его единицы равны (Вт / мК) и обозначаются либо λ, либо k.

Второй закон термодинамики определяет, что тепло всегда будет течь от более высокой температуры к более низкой температуре.

Уравнение теплопроводности рассчитывается по следующей формуле:

представляет собой тепловую энергию, передаваемую материалом в единицу времени. Это выражается в джоулях в секунду или в ваттах.

    • k — постоянная теплопроводности.
    • A — площадь поверхности, через которую проходит тепловая энергия, измеряется в м2.
    • ∆T — разница температур в градусах Кельвина.
    • L означает толщину материала, через который передается тепло, и измеряется в м.
    • Для вычисления постоянной теплопроводности можно использовать следующее уравнение:

Теплопроводность конкретного материала зависит от его плотности, влажности, структуры, температуры и давления.

Как это измеряется?

Некоторые распространенные методы измерения теплопроводности:

Метод защищенной горячей плиты:

Метод защищенной горячей пластины — широко используемый метод установившегося состояния для измерения теплопроводности. Материал, который необходимо протестировать, помещают между горячей и холодной пластинами. Параметры, используемые для расчета теплопроводности, — это установившаяся температура, тепло, используемое для более теплой пластины, и толщина материала.Его можно использовать для температурных диапазонов 80-1500 К и для таких материалов, как пластик, стекло и образцы изоляции. Это очень точно, но на проведение теста уходит много времени.

Метод горячей проволоки:

Метод горячей проволоки — это переходный метод, который может использоваться для определения теплопроводности жидкостей, твердых тел и газов. Стандартный метод горячей проволоки, используемый для жидкостей, включает в себя нагретую проволоку, помещаемую в образец. Теплопроводность определяется путем сравнения графика температуры проволоки с логарифмом времени, когда указаны плотность и емкость.

В случае твердых тел требуется небольшая модификация этого метода, при которой горячая проволока опирается на основу так, чтобы твердое тело не проникало внутрь. Он работает в диапазоне температур 298 — 1800 K и является быстрым и точным методом, но имеет ключевое ограничение в том, что он работает только с материалами с низкой проводимостью.

Сравнительный метод резки:

Сравнительный метод отрезного стержня — это метод устойчивого состояния, который может использоваться для испытания металлов, керамики и пластмасс.Тепловой поток проходит через образцы, теплопроводность которых известна и неизвестна, следовательно, можно проводить сравнение температурных градиентов. Он работает в диапазоне температур 293 — 1573 К, но измерения относительно неточны.

Метод лазерной вспышки:

Метод лазерной вспышки — это переходный метод, при котором лазерный импульс доставляет короткий тепловой импульс к переднему концу образца, а изменение температуры измеряется на заднем конце образца.Он работает в диапазоне температур 373 — 3273 К и может использоваться как для твердых, так и для жидкостей. Он имеет преимущество в скорости и высокой точности, но стоит довольно дорого.

Метод теплового расходомера:

Метод измерения теплового потока является методом стационарного режима и аналогичен методу с защищенной горячей пластиной, за исключением того, что для измерения теплового потока через образец используются преобразователи теплового потока, а не основной нагреватель. Тепловой поток определяется на основе падения температуры внутри терморезистора.Измерители теплового потока используются в диапазоне температур 373–573 K и могут использоваться для пластмасс, керамики, изоляционных материалов и стекла. Основное преимущество расходомеров тепла заключается в том, что они относительно просты в настройке, однако измерения не особенно точны.

Какие материалы имеют самую высокую / самую низкую теплопроводность?

Как и ожидалось, материалы, которые хорошо проводят тепло, такие как металлы, имеют более высокую константу теплопроводности, чем материалы, которые не проводят тепло так эффективно, как полимеры и дерево.

В группе металлов серебро имеет самую высокую константу теплопроводности, а висмут — самую низкую.

Теплопроводность неметаллических жидкостей намного ниже теплопроводности металлов, а самая низкая теплопроводность наблюдается у газов. Среди газов водород и гелий обладают относительно высокой теплопроводностью.

Какие приложения требуют высокой / низкой теплопроводности?

Материалы с фазовым переходом, используемые для аккумуляторов тепловой энергии, таких как системы отопления и охлаждения, должны иметь высокую теплопроводность для достижения максимальной эффективности, тогда как материалы с низкой теплопроводностью обычно используются для теплоизоляции.

Тепловые свойства инженерных материалов

Под термическими свойствами материала мы понимаем те свойства или характеристики материалов, которые зависят от температуры или тепла. Здесь нас интересует тепловое поведение твердых тел, то есть реакция твердого материала на тепловое изменение, то есть увеличение или уменьшение тепла или температуры.

Тепловые свойства конструкционных материалов составляют:

1. Удельная теплоемкость.

2. Теплопроводность.

3. Тепловое расширение.

4. Температура плавления или термостойкость.

5. Термический шок.

6. Температуропроводность.

7. Тепловое воздействие.

Эти свойства важны в таких приложениях, как термодинамика, теплопередача и плавление металлов.

1. Удельная теплоемкость (теплоемкость) :

Теплоемкость материала определяется как количество тепла, необходимое для повышения его температуры на 1 °.Теплоемкость на единицу массы материала определяется как его удельная теплоемкость. Теплоемкость на моль определяется как его молярная теплоемкость.

Математически удельная теплоемкость твердого тела определяется как —

Где, m = Масса,

T = Температура,

Q = содержание энергии, а

dQ = Энергия (тепло), добавленная или отнятая для изменения температуры dT.

Для единицы массы на градус изменения температуры удельная теплоемкость c = dQ, количество тепла, которое необходимо добавить на единицу массы твердого тела, чтобы повысить его температуру на один градус.Удельную теплоемкость материала иногда определяют как отношение его теплоемкости к теплоемкости воды. При этом удельная теплоемкость становится безразмерной единицей (поскольку удельная теплоемкость воды равна единице в единицах МКС).

Для газов существует две удельные теплоты, то есть удельная теплоемкость при постоянном объеме c v и удельная теплоемкость при постоянном давлении c p . c p всегда больше, чем c v , поскольку любое вещество расширяется при нагревании и требуется дополнительное тепло для повышения температуры на 1 градус, чтобы компенсировать энергию, необходимую для расширения.Для твердых тел разница между c p и c v незначительна, и используется только одна удельная теплоемкость (c p = c v = c). Это связано с тем, что в твердых телах и жидкостях расширение при нагревании очень мало.

Согласно классической кинетической теории тепла, теплоемкость атома в твердом теле (кристаллическом элементе) постоянна и равна 26 кДж / кг атомов (° C) при комнатной температуре. Его нужно разделить на молекулярную массу, чтобы получить удельную удельную теплоемкость твердого тела.

Удельная теплоемкость незначительно увеличивается с повышением температуры и варьируется от металла к металлу. В качестве общего приближения можно использовать увеличение на 5 процентов на каждые 100 ° C повышения температуры. Эффект повышения температуры металлов и сплавов заключается в увеличении амплитуды колебаний каждого атома, а поглощенная таким образом тепловая энергия является удельной теплоемкостью.

2. Теплопроводность :

Он определяется как количество тепла, проводимого за единицу времени через единицу площади, перпендикулярно направлению теплового потока.Теплопроводность через изотропные твердые тела выражается законом Фурье:

q = скорость теплового потока на единицу площади перпендикулярно направлению потока,

T = Температура,

x = расстояние, измеренное в направлении потока, и

k = теплопроводность.

Тепловой поток через твердые тела возникает из-за упругих колебаний атомов или молекул или из-за передачи энергии свободными электронами. Металлы имеют большой запас свободных электронов, что и объясняет их теплопроводность.Оба типа проводимости встречаются в металлах и полупроводниках. Изоляторы имеют более низкую проводимость, поскольку они полностью зависят от колебаний решетки атомов и молекул. Это более медленный процесс, чем электронная проводимость.

Теория теплопроводности через кристаллические твердые тела (металлы), основанная на квантовой (твердотельной) теории, может быть объяснена концепцией фононов, которые представляют собой характеристики частиц (газа) тепловой волны. Это квант энергии и колебания термоупругой (акустической) волны.

В диэлектриках (теплоизоляторах) теплопроводность вызывается только атомными или молекулярными колебаниями решетки (решетка — это геометрический массив линий или точек, в которых атомы считаются сферами), представляющих определенный тип кристаллической (например, металлической) структуры.

Распространение этой упругой тепловой волны (или фононов) через кристалл сродни прохождению молекулы газа через газ. На нагретой поверхности движение увеличивается, так что столкновение с другими фононами происходит с повышенной скоростью, и, таким образом, тепло передается другим частям фононного газа.Теплопроводность твердых тел определяется формулой, аналогичной формуле, полученной из кинетической теории газов.

Где, k = теплопроводность,

c = Удельная теплоемкость на единицу объема,

ν = средняя скорость частиц или скорость волны решетки (скорость звука), и

λ = длина свободного пробега решеточной волны (фонона) заданной частоты.

В идеальном кристалле атомные или молекулярные колебательные волны являются гармоническими, следовательно, X очень велик, и он должен иметь бесконечную теплопроводность.В реальных кристаллах может происходить взаимное рассеяние и волна решетки (фононы) из-за негармоничности колебаний и внутреннего несовершенства кристалла. Рассеяние фононов и, следовательно, теплопроводность зависят от кристаллической структуры металлов и сплавов.

Сравнение теплопроводности и электропроводности приведено ниже:

Ниже показаны некоторые типичные значения теплопроводности:

Теплопроводность чистых металлов увеличивается при частом значительном понижении температуры.Медь имеет теплопроводность примерно в 35 раз больше при -269 ° C, чем при 20 ° C.

Однако сплавы

не демонстрируют этого выраженного увеличения теплопроводности при более низких температурах, и для подавления этого изменения тепловых характеристик требуется лишь небольшой процент легирования.

При нормальных и повышенных температурах чистые металлы и их сплавы обладают очень низким температурным коэффициентом теплопроводности, и поэтому для всех целей проектирования обычно игнорируется влияние более высокой температуры на теплопроводность.

Теплопроводность аморфных твердых тел, таких как стекло и пластмассы, увеличивается с повышением температуры. Обычно они обладают низкой теплопроводностью при комнатной температуре. Это связано с тем, что аморфные твердые тела обладают избыточным рассеянием фононов на их неупорядоченной структуре при более низких температурах.

Теплопроводность огнеупоров (более сложных твердых тел) зависит от их химического состава и кристаллической структуры. Это связано с наличием примесей и сравнительно меньшим размером зерна и пористостью, что приводит к более низким значениям теплопроводности.

Если структура проста, как в случае карбида кремния, теплопроводность имеет большее значение. Огнеупорные глиняные кирпичи и топливный плавленый кварц также показывают увеличение теплопроводности с повышением температуры. С другой стороны, в случае магнезита и оксида алюминия, которые имеют более кристаллическую природу, теплопроводность уменьшается с повышением температуры.

3. Тепловое расширение :

Тепловое расширение возникает из-за добавления тепловой энергии к атомам и их последующего движения от их положения равновесия при повышении температуры в твердом теле.Это расширение или сжатие в результате повышения или понижения температуры является трехмерным, но на практике для простоты используется линейное тепловое расширение, а не объемное расширение.

Увеличение длины на единицу длины на градус повышения температуры называется коэффициентом линейного расширения. Тепловое расширение не обязательно изменяется равномерно с температурой, но оно достаточно линейно в узких диапазонах температур.

Если связи между атомами сильные и сильно направленные, как в ионных и ковалентных твердых телах, тепловое расширение будет относительно небольшим.С другой стороны, если атомы связаны более слабо, как в металлах, степень расширения будет выше. В молекулярном твердом теле, где связывание меньше всего сопротивляется движению молекул, тепловое расширение будет самым большим.

Тепловое расширение твердого тела связано с другими тепловыми свойствами, такими как удельная теплоемкость и температура плавления, поскольку все эти свойства происходят от колебаний решетки, которые увеличиваются с температурой. Атомы или молекулы, как объяснялось ранее, колеблются (колеблются) с определенной амплитудой около своего положения равновесия.

Амплитуда этой вибрации увеличивается с повышением температуры, что приводит к дальнейшему удалению атомов и молекул от их положения равновесия, вызывая увеличение объема (или линейного расширения) твердого тела. Таким образом, величина коэффициента теплового расширения твердых тел будет зависеть от их межатомных и межмолекулярных форм, а также от их структурного расположения.

Было замечено, что между температурой абсолютного нуля и точкой плавления общий объем элементов примерно постоянен.Это можно интерпретировать так, что материалы с более низкими температурами размягчения (плавления) будут иметь более высокие коэффициенты расширения. Это также означает, что тепловое расширение будет приближаться к нулю при абсолютной нулевой температуре.

Органические полимеры, такие как пластмассы и резина, имеют во много раз более высокие коэффициенты расширения, чем металлы, из-за их относительно более низкой точки размягчения. Это можно уменьшить, добавив наполнители (например, стекловолокно, асбест, оксид алюминия и т. Д.), Обладающие более низкими коэффициентами теплового расширения.Легирование металлов оказывает незначительное влияние на это свойство.

4. Точка плавления :

Точка плавления или температура размягчения — это важный температурный уровень, поскольку он представляет собой точку перехода между твердой и жидкой фазами, имеющими различное структурное расположение атомов в материале. По мере того как к твердому телу добавляется тепло, его тепловая энергия увеличивается до тех пор, пока атомы или молекулы на поверхности не начнут выходить из своего положения равновесия.

Существует связь между межатомным расстоянием, при котором сила связи максимальна, и амплитудой тепловой вибрации, при которой происходит это разрушение, как если бы атомы могли быть разделены в этой точке, дальнейшее увеличение силы не требуется для их дальнейшего разделения.После начала плавления любое дополнительное тепло расходуется на активацию большего количества частиц твердых тел, которые, в свою очередь, сталкиваются с соседними частицами, передавая им свою энергию.

Таким образом, структура превращается из твердого тела, имеющего определенные положения равновесия, в жидкость, имеющую только ближний порядок. Во время плавления не происходит дальнейшего повышения температуры, и твердая и жидкая фазы существуют при одинаковой температуре. Температура плавления зависит от количества необходимой тепловой энергии.

Это, в свою очередь, зависит от природы межатомных и межмолекулярных связей. Следовательно, более высокая температура плавления проявляется у материалов с более прочными связями. Ковалентные, ионные, металлические и молекулярные типы твердых веществ имеют убывающий порядок прочности связи и, следовательно, температуры плавления.

Кристаллические твердые вещества имеют высокую температуру плавления, при которой происходит внезапное превращение твердого вещества в жидкое состояние. Аморфные твердые вещества, такие как стекло, пластмассы и каучуки, а также глины не имеют определенной температуры плавления, но постепенно размягчаются в определенном диапазоне температур.

Связь между тепловым расширением и точкой плавления:

Оба зависят от связей между атомами (или молекулами) твердого тела и, таким образом, связаны между собой. Для каждого класса материалов

α T м = постоянная,… (10,4)

Где, α = коэффициент теплового расширения, а

T м = Температура плавления.

Следовательно, любые два материала данного класса, обладающие одинаковым коэффициентом расширения, будут иметь примерно одинаковую температуру плавления.

Значение этой константы:

Есть интересный вывод, что для покрытия материала другим материалом покрытие должно быть другого класса, чем основной материал, если оба должны иметь одинаковое тепловое расширение.

Термостойкость:

Точка плавления определяет термостойкость материала, поскольку температура плавления любого материала для высокотемпературного применения должна быть выше рабочей температуры.Керамические материалы, как известно, имеют высокие температуры плавления и хорошую химическую стабильность, но их трудно изготовить и они не выдерживают термического или механического удара.

Ниже приводится список некоторых материалов, обладающих стойкостью к высоким температурам:

5. Тепловой удар :

Термический шок — это эффект внезапного изменения температуры материала, тогда как сопротивление термическому удару можно определить как способность материала выдерживать термические напряжения из-за внезапных и резких изменений температуры на поверхности твердого тела.

Если твердая конструкция предотвращена таким образом, чтобы она не могла свободно расширяться или сжиматься при нагревании или охлаждении, чрезмерные термические напряжения могут привести к тепловому удару и разрушению корпуса. Тепловой удар в результате охлаждения, который приводит к растягивающим напряжениям на поверхности, намного опаснее, чем удар от нагрева.

Термостойкость твердого тела иногда определяется уравнением:

Где, k = теплопроводность,

σ т = предел прочности при растяжении,

E = модуль Юнга, а

α = линейный коэффициент теплового расширения.

Для максимальной ударопрочности:

(i) Теплопроводность должна быть высокой.

(ii) Тепловое расширение должно быть низким.

(iii) Материал должен иметь низкий модуль упругости и высокую прочность на разрыв.

г. Хрупкие материалы, такие как стекло и керамика, особенно подвержены термическому удару, потому что они легко разрушаются, а не пластичны.

6. Температуропроводность:

Температуропроводность (ч) определяется как:

c p ρ представляют собой потребность в тепле на единицу объема.Материал, имеющий высокую потребность в тепле на единицу объема, обладает низкой температуропроводностью, поскольку для воздействия на изменение температуры к материалу необходимо добавлять или отводить больше тепла. Следовательно, температуропроводность связана с диффузией тепловой энергии и может рассматриваться как представление потока энергии, возникающего в результате движения фононов через относительно неподвижную атомную решетку. Поскольку фононы имеют характер формы волны, атомы колеблются в унисон, но не переносятся физически.

7. Термические напряжения:

Когда расширение или сжатие тела из-за изменения температуры полностью или частично предотвращено, в теле будет возникать тепловое напряжение. Тепловое напряжение может возникать из-за внешних тел, соединенных с одним из них, находящимся под напряжением, например, сварной конструкции, компонентов горячей посадки железнодорожных путей. Или это может быть из-за неравномерного расширения самого корпуса, например биметаллических полос, используемых в термостатических регуляторах. Значение термического напряжения, расширения или сжатия можно рассчитать, применив простую теорию расчета напряжений.

8. Термоэластичный эффект:

Когда твердое тело подвергается нагрузке, с ним производятся работы, и оно изменяется в объеме. Если эта работа выполняется при постоянной температуре, происходит адиабатическое повышение температуры (без передачи тепла в окружающую среду или от нее). Это проявится в виде повышения температуры твердого тела, когда оно находится в растянутом состоянии. Точно так же, когда твердое тело быстро расслабляется, оно будет ощущаться. Круто. Это явление потепления или охлаждения называется термоупругим эффектом.

Чем отличается термическое сопротивление от теплопроводности? и какое устройство может их измерить?

Тепловое сопротивление материала обратно пропорционально теплопроводности. то есть теплопроводность имеет единицы Вт · м -1 · K -1 , а тепловое сопротивление — единицы K · м · Вт -1 . Как было сказано выше, теплопроводность — это способность материала проводить тепло, поэтому термическое сопротивление — это то, насколько материал сопротивляется тепловому потоку.

Что касается их измерения, это частично зависит от области применения. Существуют довольно дешевые (для научного оборудования) методы, которые вы можете использовать для измерения теплопроводности при комнатной температуре (или близкой к комнатной температуре), такие как метод оптического сканирования или метод источника в переходной плоскости. Однако, если ваше приложение связано с повышенными температурами (или более низкими температурами), вам необходимо использовать такой метод, как метод разделенных стержней, который становится более дорогостоящим как с точки зрения стоимости, так и времени.

Причина, по которой это необходимо, заключается в том, что теплопроводность может зависеть от температуры от умеренной до сильной в зависимости от материала, на который вы смотрите. Я работаю в области геологии, и кристаллические материалы, такие как минералы, могут иметь теплопроводность, которая уменьшается на порядок или всего на 10% при температуре от 0 ° C до 200–300 ° C. Мы не измеряем теплопроводность напрямую, а измеряем температуропроводность (D), то есть скорость, с которой тепловое возмущение распространяется через материал.Это связано с теплопроводностью (k) уравнением k = D * rho * C P , где rho — плотность материала, а C P — тепло, необходимое для повышения температуры материала (единицы Дж · кг. -1 К, если изобарический). Мы делаем это по ряду причин, которые в некоторой степени зависят от конкретного приложения, но стандартным методом измерения температуропроводности является анализ лазерной вспышки ($$$$). У всех вышеперечисленных методов есть проблемы, серьезность которых зависит от материала, который вы измеряете, и температуры материала (или приложенного давления).

Что касается увеличения теплопроводности материала, это опять же зависит от материала и области применения. Я не очень разбираюсь в технических материалах, поэтому не могу вам помочь, но минералы и горные породы обычно имеют более высокую теплопроводность, если у них мало или совсем нет порового пространства (пустот) в материале, меньше примесей и имеют более крупные кристаллы. Минералы с простым составом и катионами с малой массой также имеют более высокую теплопроводность. Теоретически вы можете снизить температуру до минусовой и увеличить теплопроводность кристаллического материала, но это может оказаться непрактичным для вашего применения.

Теплопроводность, теплопередача

Теплопроводность — теплопередача

Теплообменная техника
Термодинамика

Тепловые свойства металлов, преобразование проводимости

Характеристики теплопередачи твердого материала измеряются с помощью свойства, называемого термической теплопроводностью (k), измеренной в британских тепловых единицах / час-фут- o F.Это мера способности вещества передавать тепло через твердое тело за счет теплопроводности. Теплопроводность большинства жидкостей и твердых тел зависит от температуры. Для паров это зависит от давления.

Передача тепла через материалы с высокой теплопроводностью происходит быстрее, чем через материалы с низкой теплопроводностью. Соответственно, материалы с высокой теплопроводностью широко используются в теплоотводах, а материалы с низкой теплопроводностью используются в качестве теплоизоляции

Теплопроводность материалов зависит от температуры.Как правило, при повышении средней температуры материалы становятся более теплопроводными.

Коэффициент, обратный теплопроводности, представляет собой удельное тепловое сопротивление.

В Международной системе единиц (СИ) теплопроводность измеряется в ваттах на метр кельвин (Вт / (м · К)).

В британской системе измерения теплопроводность измеряется в британских тепловых единицах / (час-фут · фут · фут), где 1 британских тепловых единицы / (час · фут · фут · фут) = 1,730735 Вт / (м · К). [Справочник инженеров-химиков Perry, 7-е издание, таблица 1-4]

Другие единицы измерения, которые тесно связаны с теплопроводностью, широко используются в строительстве и текстильной промышленности.В строительной отрасли используются такие единицы, как R-Value (значение сопротивления) и U-Value (значение коэффициента пропускания). Несмотря на то, что они связаны с теплопроводностью продукта, значения R и U зависят от толщины продукта.

Точно так же в текстильной промышленности есть несколько единиц, включая Tog и Clo, которые выражают термическое сопротивление материала способом, аналогичным значениям R, используемым в строительной отрасли.

Примечание. Значения R и U, указанные в США (на основе имперских единиц измерения), не соответствуют и несовместимы с используемыми в Европе (на основе единиц измерения СИ).

Факты о теплопроводности для детей

Теплопроводность — это способность материала проводить тепло. Металлы хороши в теплопроводности. Теплопроводность материала является определяющим свойством, которое помогает в разработке эффективных технологий нагрева / охлаждения. Значение теплопроводности может быть определено путем измерения скорости, с которой тепло может проходить через материал.

Термическое сопротивление противоположно теплопроводности.Это означает, что тепло не проводит много. Материалы с высоким удельным сопротивлением называются «термоизоляторами» и используются в одежде, термосах, домашних изоляционных материалах и автомобилях, чтобы согреть людей, или в холодильниках, морозильниках и термосах, чтобы вещи оставались холодными.

Теплопроводность часто обозначается греческой буквой «каппа»,. Единицы теплопроводности — ватты на метр-кельвин. Ватты — это мера мощности, метры — мера длины, а кельвины — мера температуры.По единицам измерения мы можем видеть, что теплопроводность — это мера того, сколько энергии проходит через расстояние из-за разницы температур.

Некоторые отличные теплоизоляторы: вакуум, аэрогель, полиуретан

Некоторые отличные теплопроводники: серебро, медь, алмаз

Серебро — один из самых теплопроводных материалов (и относительно распространен), и поэтому есть несколько интересных экспериментов, которые вы можете провести с серебром, которые очень хорошо показывают, как работает теплопроводность.

Один пример: вы кладете 2 ложки в кипящую воду, одна из которых стальная, а другая серебряная. Когда вы вынимаете ложки из кипящей воды, серебряная ложка горячее, чем стальная. Причина этого в том, что серебро проводит тепло лучше, чем сталь. Серебряная ложка также будет остывать быстрее из-за этого, так как лучше отводит тепло.

Другой пример теплопроводности серебра — это нанесение различных материалов на кубики льда. Шайба для утюга просто сядет на лед и постепенно станет холоднее.Медный пенни растает через кубик льда и быстрее остывает. Серебряная монета, ложка или кольцо на кубике льда погрузится в него, как если бы кубик льда был сделан из густого сиропа, а серебро почти мгновенно станет ледяным. Опять же, это связано с тем, что серебро действительно хорошо поглощает тепло из воздуха и передает его кубику льда. Медь тоже хороша в этом, но не так хорошо, как серебро.

Картинки для детей

  • Теплопроводность может быть определена как тепловой поток q через разность температур.

  • Компоненты выхлопной системы с керамическим покрытием, имеющим низкую теплопроводность, уменьшают нагрев близлежащих чувствительных компонентов

Систематическая переоценка решеточной теплопроводности в материалах с электрически резистивными границами зерен

Снижение теплопроводности κ материала посредством наноструктурирования для создания зерен малого размера является одной из наиболее распространенных стратегий улучшения термоэлектрических материалов.В таких поликристаллических материалах теплоносящие фононы рассеиваются на границах зерен, что напрямую улучшает термоэлектрическую добротность и, в конечном итоге, добротность zT . Однако в некоторых случаях, например, в Mg 3 Sb 2 , SnSe и Mg 2 Si, наблюдается противоположная тенденция, когда более высокая теплопроводность решетки сообщается в мелкозернистом поликристаллическом материале, чем в крупнозернистые или монокристаллические материалы.Этот нефизический результат указывает на проблему с обычным использованием закона Видемана – Франца. Здесь мы связываем этот проблемный результат с электрическим сопротивлением на границах зерен, что приводит к завышенной оценке фононного или решеточного вклада в теплопроводность κ L . В материалах со значительным электрическим сопротивлением границ зерен расчетный электронный вклад в теплопроводность LσT является низким, поскольку измеренная электрическая проводимость σ низкая.Однако внутри зерна электроны могут по-прежнему переносить больше тепла, чем предполагает общая проводимость, что приводит к завышению κ L , если обычный κ L = κ LσT . Используется с измеренными значениями κ и σ . Показано, что завышение κ L в мелкозернистых образцах распространяется на широкий спектр термоэлектрических материалов, включая Mg 3 Sb 2 , Mg 2 Si , PbTe, PbSe, SnSe, (Hf, Zr) CoSb, CoSb 3 и Bi 2 Te 3 сплавов, и необходима поправка для правильного понимания и прогнозирования их заряда и нагрева транспорт.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *