Теплопроводность хорошая: Какие материалы и вещества имеют хорошую теплопроводность, а какие плохую??? Помогите

Теплопроводность. Просто о сложном. — Блоги Mastergrad

 При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше, — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (

теплообмен).

 

 

На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку. Разберем каждый элемент этой формулы более подробно.

 

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

 

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.

 

Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.

Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.

Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).

В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

 

 Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен).

Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.

Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.

Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

 

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.

Её разбор проведем на примере теплоизоляционного материала из пенополиизоцианурата (ПИР/PIR) — LOGICPIR.

LOGICPIR – это инновационный утеплитель, обладающий уникальными показателями теплопроводности – всего 0,021 Вт/м*К, позволяющий добиться максимальной экономии пространства при минимальной толщине теплоизоляции. Кроме того, PIR-плиты не впитывают влагу, тем самым предотвращая образование конденсата и надежно защищая ваш дом от появления плесенных грибов, клещей и бактерий, представляющих опасность для здоровья. LOGICPIR относится к новому поколению полиуретанов, окружающих нас повсеместно: начиная от деталей интерьера автомобилей, матрацев и обуви и заканчивая медициной, где самая поразительная сфера их применения – изготовление протезов для сердечно-сосудистой системы. Стоит ли говорить, что материал экологически безопасен, что подтверждено целым рядом сертификатов и заключений.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

  • твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;
  • газообразной фазы – теплопроводность газа, который находится в ячейках.

Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».

Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:

 

Подведем итог. Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.

Спасибо компании «Технониколь» за помощь в подготовке материала

Хорошая теплопроводность — Большая Энциклопедия Нефти и Газа, статья, страница 2

Хорошая теплопроводность

Cтраница 2

Хорошей теплопроводностью материалы должны обладать прежде всего в высокофорсированных теплообменниках, когда общую интенсивность передачи тепла в аппарате в значительной степени определяет величина термического сопротивления теплопере-дающей стенки.  [16]

Помимо хорошей теплопроводности и электропроводности, что обусловлено медной основой этих сплавов, бронзы и латуни обладают в большей или меньшей степени способностью прирабатываться и противостоять износу при трении без смазки.  [17]

Вследствие хорошей теплопроводности он расплавляется труднее меди, но в жидком состоянии остается дольше, чем другие металлы. Обладает высокой пластичностью как в холодном, так и в горячем состоянии, хорошо сваривается, но плохо обрабатывается резанием и имеет низкие литейные качества.  [18]

Вследствие хорошей теплопроводности пропитанного графита его широко применяют при изготовлении теплообменников. Кроме того, из него делают трубопроводную арматуру.  [19]

Вследствие хорошей теплопроводности пропитанного графита его широко — применяют при изготовлении теплообменников. Кроме, того, из него делают трубопроводную арматуру.  [20]

Вследствие хорошей теплопроводности пропитанного графита его широко применяют для изготовления теплообменников и трубопроводной арматуры. Пропитанный графит стоек во многих химически активных средах, в том числе в кислотах — азотной ( низкой концентрации), плавиковой ( концентрацией до 40 %), серной ( до 50 %), соляной, уксусной, муравьиной, фосфорной.  [21]

При достаточно хорошей теплопроводности стенок сосуда фоточувствительный элемент принимает температуру, близкую к температуре хладоагента.  [23]

При хорошей теплопроводности материала зерен катализатора его температура остается постоянной. При не слишком малых скоростях потока тепло отводится в основном движущимся газом.  [24]

Отметить хорошую теплопроводность меди и железа ( проволока быстро нагревается) и плохую теплопроводность стекла.  [25]

Обладает хорошей теплопроводностью и малым удельным сопротивлением. До 200 С устойчив к атмосферной коррозии. Применяется при изготовлении керамических и слюдяных конденсаторов ( вжигание серебра в керамику и слюду для получения обкладок), для изготовления припоев марок Пер, а также для покрытия медных проводов.  [26]

Медь отличается хорошей теплопроводностью и стойкостью против атмосферной коррозии.  [27]

Графит обладает хорошей теплопроводностью и высокой химической стойкостью; его применяют в качестве / конструкционного материала в химическом машиностроении для изготовления теплообменной аппаратуры. Природный графит содержит примеси, поэтому в химической промышленности используется искусственный электродный графит с пористостью 20 — 30 %, иногда достигающей 50 %, Графитированный пористый материал ПГ-50 с пористостью 47 — 58 % применяется в качестве фильтров для расплавленной серы и ее соединений.  [28]

Металлы отличаются хорошей теплопроводностью) которая осуществляется, в основном, за счет переноса энергии свободными электронами.  [29]

Графит обладает хорошей теплопроводностью и высокой химической стойкостью; его применяют в качестве конструкционного материала в химическом машиностроении5 56 — 58 для изготовления теплообменной аппаратуры.  [30]

Страницы:      1    2    3    4

Теплопроводность разных материалов

Теплопроводность — способность материала передавать теплоту. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м 2 при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(м К) или Вт/(м градус Цельсия).

Теплопроводность зависит от средней плотности и химико-минерального состава материала, его структуры, пористости, влажности и средней температуры материала. Чем больше пористость (меньше средняя плотность), тем ниже теплопроводность материала. С увеличением влажности материала теплопроводность резко увеличивается, т.е. снижаются показатели теплоизоляционных свойств материала.

Теплопроводность некоторых материалов, Вт/(м*k)

Хорошие проводники тепла

Серебро 407
Медь 384
Золото 308
Алюминий 209
Латунь 111
Платина 70
Олово 65
Серый чугун 50
Бронза 47-58
Сталь 47
Свинец 35

Плохие проводники тепла

Ртуть 8,2
Котельная накипь ~3
Мрамор 2,8
Лёд (0°С) 2,23
Песчаник ~2
Фарфор ~1,4
Кварцевое стекло 1,36
Бетон 0,7-1,2
Стекло ~0,7
Кирпич ~0,7
Вода 0,58

Теплоизоляторы

Асбест 0,4-0,8
Поливинилхлорид ~0,17
Кожа ~0,15
Дерево 0,1-0,2
Древесный уголь 0,1-0,17
Пробка ~0,05
Стекловата ~0,05
Шамот 0,04
Пенопласт 0,04
Воздух 0,034
Перо 0,02
Вакуум 0,00

«Теплопроводность». 8-й класс

Цели урока:

Образовательная

  • познакомить учащихся с одним из видов теплопередачи — теплопроводностью, научить объяснять данное явление на основании молекулярно-кинетической теории;
  • раскрыть основные научные положения изучаемой темы во взаимосвязи с природой и жизнедеятельностью человека Севера.

Развивающая

  • продолжить формирование умений выдвигать гипотезу и проверять (или опровергать) ее экспериментально;
  • развивать умения анализировать, делать выводы, обобщать;
  • прививать навык самообразовательной деятельности.

Воспитательная

  • способствовать нравственному воспитанию учащихся, воспитанию чувства патриотизма, любви к родному краю, своей малой Родине;
  • развивать коммуникативные способности, налаживать межличное взаимодействие путем организации работы в группе;
  • развивать личные качества учащихся: организованность, внимание, аккуратность.

Здоровьесберегающая

  • создание комфортного психологического климата на уроке;
  • атмосферы сотрудничества: ученик-учитель, учитель-ученик, ученик-ученик.

Тип урока: урок изучения нового материала.

Форма организации учебной деятельности учащихся: коллективная, работа в группе, индивидуальная за партой и у доски.

Оборудование: компьютер, экран, оборудование для физического эксперимента, дидактические материалы, гербарий.

План урока:

  1. Организационный этап.
  2. Актуализация знаний, выведение темы и цели урока через проблемный вопрос и фронтальный эксперимент.
  3. Изучение нового материала, используя демонстрационный эксперимент, работу с учебником.
  4. Закрепление материала. Работа в группах. Решение качественных задач, связанных с природой республики Коми. Исследовательская деятельность.
  5. Первичная проверка усвоения материала.
  6. Итог урока. Домашнее задание. Рефлексия.

Ход урока

I. Организационный этап.

(Самооценка готовности к уроку).

II. Актуализация знаний, выведение цели урока.

а) Заполните пропуски в тексте.[1]

Внутренняя энергия – это энергия ___________ и _______________ частиц из которых состоят тела.
Зажечь спичку можно разными способами. Можно потереть её о коробок, тогда ________________ энергия преобразуется во _____________. Внутренняя энергия ______________ за счёт совершения работы ______ спичкой.
Но можно спичку внести в пламя свечи и тогда внутренняя энергия её ___________ без совершения работы. Процесс изменения внутренней энергии без совершения работы называется _______________. Самопроизвольно теплопередача всегда происходит от тела ________ нагретого к телу ________ нагретому.

(Ключевые слова: внутреннюю, увеличивается, теплопередачей, увеличится, более, самой, над, взаимодействия, механическая, менее, движения).

б) На данных картинках, обведите красным карандашом те, на которых внутренняя энергия тел изменяется путем совершения механической работы и синим карандашом – путем теплопередачи.

Повторяя материал предыдущего урока, составляем схему: (слайд 1)

в) фронтальный эксперимент

У вас на столе лежат металлический цилиндр и деревянный брусок. Возьмите в одну руку брусок, в другую – цилиндр. Температура в классе 23°>С. Почему цилиндр кажется холоднее, чем брусок? (ответы детей)

Правильный ответ дадим, изучив один из видов теплопередачи – теплопроводность.

Тема нашего урока «Теплопроводность». Учащиеся выводят цели урока: ввести понятие «теплопроводность», сравнить теплопроводность твердых тел, жидкостей и газов, рассмотреть практическое применение данного явления. (слайд 2, 3)

III. Изучение нового материала.

а) демонстрационный эксперимент

Нагреваем один конец медного стержня (на стержне пластилином прикреплены кнопки) в пламене горелки. Пластилин плавится, и кнопки постепенно падают. Почему?

(ответ детей: тепло от нагретого конца стержня передается его холодному концу)

Как происходит передача энергии по стержню? Для этого заглянем внутрь стержня, объясните с молекулярно – кинетической точки зрения явление теплопроводности.

(Просмотр видеоролика слайд 4)

Составьте определение теплопроводности, сравните ваше определение с определением, данным в учебнике на стр.13, запишите его в тетрадь. Основное можно выделять цветом. (Теплопроводность – это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц) (слайд 5)

Обратите внимание на то, что при теплопроводности перенос вещества не происходит.

Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей и газов.

б) демонстрационный эксперимент (слайд 6)

Сделайте вывод из данных опытов о теплопроводности жидкостей и газов. Объясните свой вывод на основании молекулярно-кинетической теории. Запишите вывод в тетрадь.

(Теплопроводность различных веществ разная. Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых, а расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел).

в) работа с учебником.

Используя текст учебника, стр.13, заполните таблицу: (слайд 7)

теплопроводность
хорошая плохая
Металлы (серебро, медь, железо…) Жидкости (вода)
Газы (воздух, вакуум)
Пористые тела, дерево, кирпич, пробка
Шерсть, пух, мех, волосы, перья птиц
Вата, войлок
Снег, опилки, солома
жир

Для проверки на экран проецируется заполненная таблица. Объясните, используя тему урока, что объединяет, выделенные цветом вещества. (Между волокнами этих веществ содержится воздух, а воздух плохой проводник тепла)

Отвечаем на вопрос, поставленный в начале урока (Теплопроводность металла больше, он быстрее забирает тепло от руки, поэтому мы ощущаем прохладу).

IV. Закрепление материала.

В качестве закрепления изученного материала, рассмотрим роль

теплопроводности в природе, жизни человека. Обратимся к нашему краю – Республике Коми. (слайд-шоу 8)

Мы живем в республике Коми. Она расположена на северо-востоке европейской части Российской Федерации. Климат в нашей республике довольно суровый с продолжительной снежной зимой и коротким прохладным летом, поэтому животный и растительный мир Коми приспособился к неблагоприятным воздействиям природно-климатических условий на его организм. Немалую роль в этом вопросе играет явление теплопроводности. Рассмотрим некоторые примеры.

Работа в группах.

1 группа получает отрывок из русской сказки «Байка про тетерева»: Некому выстроить тетереву в зимнюю стужу домишко, а сам не умеет. Одну-то ночь всего надо пережить. «Эх, – надумал он – куда ни шло!» И бултых в снег.. .В снегу и ночевал. Ничего. Тепло было. Поутру рано встал, по вольному свету полетел куда надо».

Что спасло тетерева от холода во время ночевки в снегу?

(Тетерев типичный представитель птиц таежной зоны Коми. Зимой, когда в лесу выпадает обильный снег, тетерева ночуют под снегом. Сразу же после вечерней кормежки они камнем падают вниз с берез, пробивают своей тяжестью снежный покров и, прорыв под снегом траншею, устраиваются там на ночевку. Снег состоит из снежинок, а между ними находится воздух, который обладает плохой теплопроводностью)

Просмотр видеоролика «Тетерева на лунках». (слайд 9)

2 группа получает гербарии карликовой березы и карликовой ивы, растения, произрастающие в тундре – стране холода.

Почему для растений, обитателей тундры, характерен карликовый рост? (слайд 10)

(Низкий рост тундровых растений является очень важным приспособлением. Он позволяет им воспользоваться защитой снегового покрова, снег плохой проводник тепла. Кроме того, дает возможность получать некоторое дополнительное количества тепла от почвы, так как почва нагревается значительно сильнее, чем окружающий воздух.)

3 группа получает карточки с изображениями пушных зверей нашей республики.

Объясните защитную роль шерстяного покрова животных. (слайд 11)

(Между волосками меха находится воздух, из-за плохой теплопроводности мех предохраняет животных от перегрева летом и охлаждения зимой. Зимой распушив мех животные создают воздушную подушку с хорошими теплоизоляционными свойствами.)

Благодаря этому ездовая собака может, например, спать на снегу при температуре -50°С.

Выступление ученика «Зимняя национальная одежда Коми» (слайды 12-23[2] )

(учеником была проведена исследовательская работа на тему: «Зимняя национальная одежда Коми». Цель исследования: выяснить, почему жители Севера предпочитают одежду из оленьих шкур, а не из другого меха? Показать практическое применение явления теплопроводности).

Зимняя одежда народа Коми очень рациональна, напрямую связана с природой и приспособлена к местным климатическим условиям, она должна быть удобной и сохранять тепло. В основном для ее изготовления использовались шкуры оленей. Коми широко использовали одежду, заимствованную от ненцев: малица (глухая верхняя одежда мехом внутрь), совик (глухая верхняя одежда из оленьих шкур мехом наружу), пимы (меховые сапоги) и др. Малица являлась основным видом зимней одежды. Это шуба закрытого типа, без застежек, с капюшоном и рукавицами. Она шилась мехом вовнутрь с глухим двойным капюшоном и свободными рукавами, к которым пришивались меховые рукавицы. В особо холодную погоду поверх малицы надевался совик, сходная по покрою одежда, но сшитая мехом наружу. Обувь – пимы, представляют собой длинные, до паха, мягкие сапоги, сшитые полностью из меха. Для удобства они подвязывались под коленом шерстяными шнурками с кистями.

Для изготовления разнообразных вещей использовались части шкур оленей определенного возраста и сезона забоя. В качестве меха использовались шкуры пыжиков (оленят до полугода) и неблюев (оленят до годовалого возраста). Пимы шили только из шкурок ног оленей – камуса, то есть из меха с наиболее коротким ворсом, плотного и прочного. Для производства только одной пары длинных пим требуется камус от четырех оленей.

Почему жители Севера предпочитают одежду из оленьих шкур, а не из другого меха?

Шкура оленя уникальна. Каждый волосок пуст внутри и подобен микроскопической трубочке. Там сохраняется нагретый телом воздух, поэтому волос очень легкий, ломкий, но очень теплый. Зимний мех оленя длинный, особенно на шее, где образуется свисающая вниз грива (подвес).

Поэтому оленьи унты и шуба самые теплые. Изготовленные из оленьей шерсти (из оленьей «бороды») свитер и носки спасают даже в шестидесятиградусные морозы.

V. Первичная проверка усвоения материала.

Слайды 24[1]-27

VI. Итог урока. Домашнее задание. Рефлексия.

(Оценивание работы каждого ученика. Самооценка учащимися работы на уроке).

Домашнее задание. Параграф 4, определение выучить.

Найти и выписать в тетрадь примеры использования явления теплопроводности в различных областях человеческой деятельности.

Собрать коллекцию веществ, обладающих разной теплопроводностью.

Использованные сайты:

  1. www.slideshare.net/brenata/pril2-8957211
  2. www.finnougoria.ru/community/folk/section.php?SECTION_ID=346&ELEMENT_ID=2705

Теплопроводность. Просто о сложном.: Новости и статьи: Строительство и технологии: Разумная Недвижимость

Статья. 30.10.2019

При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше, — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).


На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку. Разберем каждый элемент этой формулы более подробно.

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.


Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.


Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.


Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).


В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

 Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества. 

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен). 


Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.


Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.


Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле


Её разбор проведем на примере теплоизоляционного материала из пенополиизоцианурата (ПИР/PIR) — LOGICPIR.

LOGICPIR – это инновационный утеплитель, обладающий уникальными показателями теплопроводности – всего 0,022 Вт/м*К, позволяющий добиться максимальной экономии пространства при минимальной толщине теплоизоляции. Кроме того, PIR-плиты не впитывают влагу, тем самым предотвращая образование конденсата и надежно защищая ваш дом от появления плесенных грибов, клещей и бактерий, представляющих опасность для здоровья. LOGICPIR относится к новому поколению полиуретанов, окружающих нас повсеместно: начиная от деталей интерьера автомобилей, матрацев и обуви и заканчивая медициной, где самая поразительная сфера их применения – изготовление протезов для сердечно-сосудистой системы. Стоит ли говорить, что материал экологически безопасен, что подтверждено целым рядом сертификатов и заключений.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

·       твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;

·       газообразной фазы – теплопроводность газа, который находится в ячейках.


Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться. 

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».


Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:


Подведем итог. Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие  должны быть как можно ниже. 

У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл. 

Любезно предоставлено компанией ТЕХНОНИКОЛЬ.


Разумная Недвижимость

По информации портала. При использовании материала гиперссылка на Razned.ru обязательна.

%d1%82%d0%b5%d0%bf%d0%bb%d0%be%d0%bf%d1%80%d0%be%d0%b2%d0%be%d0%b4%d0%bd%d0%be%d1%81%d1%82%d1%8c — English translation – Linguee

Чтобы привести автомобиль в боевую готовность и показать силу были использованы 3-дюймовые навесы и особые

[…]

колеса матового черного цвета, а также

[…] грязевые шины М/Т BF Goodrich, был добавлен […]

большой передний кенгурятник, ограничительная

[…]

планка и багажник на крыше.

ms-auto.co.jp

To be fully armed and show the impact, 3 inch lift ups and

[…]

special mat black wheel and BF Goodrich

[…] mud terrain tires, large front grill guard […]

and tail guard and roof racks are added.

ms-auto.co.jp

bb) содействовать созданию […]

у женщин и девочек положительного представления о профессиональной деятельности в области науки

[…]

и техники, в том числе в средствах массовой информации и социальных средствах информации и через информирование родителей, учащихся, преподавателей, консультантов по вопросам профориентации и разработчиков учебных программ, а также посредством разработки и расширения других стратегий, призванных стимулировать и поддерживать их участие в этих областях

daccess-ods.un.org

(bb) Promote a positive image […]

of careers in science and technology for women and girls, including in the mass media and

[…]

social media and through sensitizing parents, students, teachers, career counsellors and curriculum developers, and devising and scaling up other strategies to encourage and support their participation in these fields

daccess-ods.un.org

Эта опция меню будет доступна после установки CD/DVD/BDROM-привода в NMT, или при подключении внешнего USB-привода CD/DVD/BDROM.

popcornhour.es

This option will only be accessible when a CD/DVD/BD-ROM drive has been installed into or attached to your NMT.

popcornhour.es

Мы также добавили черные боковые пороги, 2-дюймовый

[…]

навес, эксклюзивные колеса черного цвета и всесезонные

[…] грязевые шины BF Goodrich для придания […]

более неустрашимого вида.

ms-auto.co.jp

We also added black side tube step, 2 inch lift up, exclusive black color

[…] wheel and BF Goodrich mud terrain tire […]

to make it with a look of fearless determination.

ms-auto.co.jp

Поскольку пропорциональная

[…] счетная трубка BF3 будет реагировать […]

только на термальные нейтроны, полиэтиленовый модератор,

[…]

который замедляет случайные быстрые нейтроны до термальных энергий, окружает нейтронно чувствительную трубу.

ru.flukebiomedical.com

Since the BF3 proportional counter […]

tube will only respond to thermal neutrons, a polyethylene moderator, which slows the

[…]

incident fast neutrons to thermal energies, surrounds the neutron sensitive tube.

flukebiomedical.com

Политика управления денежными средствами Компании ограничивает суммы финансовых активов, которые можно содержать в каком-либо из банков, в зависимости от размера капитала уровня такого банка и его долгосрочного кредитного рейтинга, присвоенного агентством Standard & Poors (например, не более 40% для банка с рейтингом «BB» на 31 декабря 2010 года).

kmgep.kz

The Company’s treasury policy limits the amount of financial assets held at any one bank to the lower of a stipulated maximum threshold or a percentage of the bank’s Tier I capital, which is linked to the banks long term counterparty credit rating, as measured by Standard and Poor’s rating agency, (e.g. not greater than 40% for a BB rated bank at December 31, 2010).

kmgep.kz

В состав Совета войдут также заместитель Генерального директора по вопросам социальных и гуманитарных наук (ADG/SHS),

[…] […] директор Бюро стратегического планирования (DIR/BSP), директор Бюро бюджета (DIR/BB), директор Бюро информации общественности (DIR/BPI) и – в зависимости от темы […] […]

и потребностей всемирного доклада – еще один заместитель Генерального директора по одному из программных секторов.

unesdoc.unesco.org

Other members will be ADG/SHS, DIR/BSP, DIR/BB, DIR/BPI and – subject to the specific theme and exigencies of a world report – another Programme Sector ADG.

unesdoc.unesco.org

BD выпускается в строгом соответствии с техническими условиями, все аудио могут быть расшифрованы вывода см. в разделе BD RIP, BD ISO треков были совершенны следующего поколения выходе источника

macbook-covers.net

BD produced in strict accordance with specifications, all the audio can be decoded output, see BD RIP, BD ISO tracks were perfect the next generation of source output

macbook-covers.net

SF1605x400 обработанной винт мяч

[…] шариковинтовая SF типа обрабатываемой в соответствии с BK12 и BF/FF12 опор ШВП.

zappautomation.co.uk

The SF1605x400 machined ball screw is

[…] the SF type ballscrew machined to fit the BK12 and BF/FF12 ballscrew supports.

zappautomation.co.uk

В настоящий момент компания

[…] […] Promwad работает над системой видео наблюдения и регистрации с использованием стандарта сжатия изображения JPEG2000 на базе кодека ADV212/202 и двухъядерного процессора Blackfin BF561.

promwad.com

Currently Promwad Company develops a video surveillance and recording system using JPEG2000 image compression standard based on ADV212/202 codec and Blackfin BF561 duo core processor.

promwad.com

Если заготовка имеет важное значение в стране, то

[…]

составителям кадастров рекомендуется использовать национальные

[…] данные по заготовкам или вывести значение BF по конкретной стране.

ipcc-nggip.iges.or.jp

If logging is significant in the

[…] country, the inventory compilers are encouraged to use national […]

harvest data or derive country-specific BF values.

ipcc-nggip.iges.or.jp

Еще больше положение компании в

[…] […] глазах  рынка было ухудшено решением рейтингового агентства S&P поместить кредитный рейтинг ENRC  BB+ на “credit watch negative”, что подразумевает повышенную вероятность падения рейтинга компании в ближайшие […]

три месяца.

halykfinance.kz

To make things even worse, S&P placed ENRC’s BB+ credit rating on “credit watch negative”, which implies a higher probability of a downgrade into junk territory over the next three months.

halykfinance.kz

C. Согласившись с

[…] тем, что BSP и BB следует отнести […]

к одному структурному элементу и так же, как BFC, они непосредственно

[…]

связаны с программой, эти члены Группы сочли, что по своему характеру эти службы обеспечивают выполнение программы и поэтому должны фигурировать в Части III бюджета вместе с Бюро по управлению людскими ресурсами (HRM).

unesdoc.unesco.org

C. While agreeing that BSP

[…] and BB should be placed together […]

and, with BFC, were directly linked to programme, they considered

[…]

that this was in a programme support capacity and that these services should therefore figure under Part III of the budget along with HRM.

unesdoc.unesco.org

В июне 2012 года Международным рейтинговым агентством Fitch Ratings повышены долгосрочные рейтинги Краснодарского края, а также выпуски облигаций в иностранной и национальной валюте с уровня BB до BB+.

pwc.ru

In June 2012 international ratings agency Fitch Ratings upgraded the long-term ratings for Krasnodar Territory, as well as foreign and national currency long-term issuer default ratings from ‘BB’ to ‘BB+’, and affirmed Krasnodar’s short-term rating at ‘B’.

pwc.ru

1BB 2 b iii 2 Добыча Летучие выбросы (исключая удаление газа и сжигание в факелах) из газовых скважин через входные отверстия на устройствах переработки газа или, если обработка не требуется, в точках стыковки систем транспортировки […]

газа.

ipcc-nggip.iges.or.jp

1B 2 b iii 2 Production Fugitive emissions (excluding venting and flaring) from the gas wellhead through to the inlet of gas processing plants, or, where processing is not required, to the tie-in points on gas transmission systems.

ipcc-nggip.iges.or.jp

I. Общие сведения о Шанхае должен достичь Фан-Ко,

[…] дизайн и производство BF VAV низким шасси шум […]

ветра предназначены для вентилятора выхлопных

[…]

устройств для удовлетворения оперативных потребностей различных рабочих условиях, он имеет небольшой размер, легкий вес, красивый внешний вид, низкий уровень шума, простота в обслуживании.

ru.shyngda.com

I. Overview of Shanghai should reach a Fan Co., the design and

[…] production of the BF VAV low noise wind chassis […]

designed for the blower exhaust devices

[…]

to meet the operational requirements of different working conditions, it has a small size, light weight, beautiful appearance, low noise, easy maintenance.

en.shyngda.com

Наряду со страхованием кредита на инвестиции мы наше предложение расширили на два следующих страховых продукта для страхования

[…]

просроченных задолженностей по экспортным

[…] поставочным кредитам (вид Bf и Cf), которые позволяют […]

банкам откупать экспортные задолженности

[…]

без регресса на экспортера.

egap.cz

Simultaneously with insurance of a credit for the financing of investments, we extended our offer by two other insurance products for

[…]

insurance of ceded receivables from export

[…] supplier credits (types Bf and Cf) which enable […]

banks to purchase export receivables

[…]

without recourse against the exporter.

egap.cz

Оборот

[…] компании Manitou BF, специализирующейся […]

только на подъемных машинах, превысил миллиард евро (более 15 миллиардов

[…]

эстонских крон) в год.

intrac.ee

The turnover of Manitou BF, who is focused […]

only on lifting machines, is over one milliard euro (more than 15 milliard Estonian kroons ) a year.

intrac.ee

Модели BJ и BB стали первыми марками холдинга […]

Mack, построенными под влиянием новых транспортных веяний — машины способные

[…]

перевозить более тяжелые и объемные грузы с большей скоростью.

trucksplanet.com

The Models BJ and BB were the first trucks of Mack […]

Company, built under the influence of new transport trends — machines

[…]

capable of carrying heavy and bulky loads with greater speed.

trucksplanet.com

На грузовики могут устанавливаться зарубежные

[…]

дизели Perkins мощностью 65 л.с. (базовый

[…] двигатель) и Deutz BF 04L 2011 мощностью […]

79 л.с. или отечественный владимирский

[…]

ВМТЗ Д-130Т мощностью 65 л.с. Приводы от валов отбора мощности спереди и сзади позволяют навешивать различное дополнительное оборудование.

trucksplanet.com

The trucks can be equipped with foreign

[…]

Perkins 65 hp diesel (Base engine) and Deutz BF 04L 2011 with

[…] an output of 79 hp or domestic VMTZ D-130T […]

developes 65 hp.

trucksplanet.com

В мае 2012 года рейтинговое агентство Fitch Rating повысило долгосрочные рейтинги Новосибирской

[…]

области в иностранной и национальной

[…] валюте с уровня «BB» до «BB+», а также долгосрочный […]

рейтинг по национальной шкале –

[…]

с уровня «AA-(rus)» до «AA(rus)».

pwc.ru

In May 2012, Fitch Ratings changed its long-term rating for the Novosibirsk

[…]

Region (in foreign and local currency)

[…] from BB to BB+, and its long-term national-scale […]

rating from AA-(rus) to AA(rus).

pwc.ru

Вторая категория (BBB, BB, B) — стартап имеет готовый […]

или почти готовый (тестирующийся) продукт и начал привлекать первых

[…]

клиентов, однако пока не демонстрирует высоких темпов роста клиентской базы и доходов.

digitaloctober.ru

Second category (BBB, BB, B) — the startup has […]

a finished or almost finished (at the testing stage) product and has started

[…]

attracting its first clients, but has not get demonstrated a high income or client base growth rate.

digitaloctober.com:80

16.11.2009 МРСК Центра присвоен

[…] кредитный рейтинг S&P «BB/B/ruAA-» прогноз «Стабильный», […]

свидетельствующий о способности

[…]

и готовности Компании своевременно и в полном объеме выполнять свои финансовые обязательства.

euroland.com

16.11.2009 IDGC of

[…] Centre was assigned a BB-/B/ruAA— credit rating […]

(“Stable”) by S&P, thus testifying to the Company’s capability

[…]

and readiness in the performance of its financial obligations.

euroland.com

Международное рейтинговое агентство Fitch повысило приоритетный необеспеченный рейтинг эмиссии еврооблигаций TNK-BP International Ltd /ТНК-ВР/ на сумму 700 млн долл. с уровня «BB+» до «BBB-, а также приоритетный необеспеченный рейтинг гарантированной программы по выпуску долговых обязательств объемом 5 млрд долл. и существующего выпуска облигаций в рамках программы в размере 1,5 млрд долл. с уровня «BB+» до «BBB-.

tnk-bp.com

The international rating agency Fitch raised the priority unsecured rating of the issue of eurobonds of TNK-BP International Ltd. (TNK-BP) by $700 million from the level BB+ to BBB- and the priority unsecured rating of the issue of debt securities for $5 billion and the current issue of bonds for program implementation for $1.5 billion from the level BB+ to BBB-.

tnk-bp.com

bb) должны быть упакованы […]

в закрытые контейнеры, которые были официально опечатаны и имеют регистрационный номер зарегистрированного

[…]

питомника; этот номер должен быть также указан в фитосанитарном сертификате в разделе «Дополнительная декларация.

fsvfn.ru

bb) be packed in closed containers […]

which have been officially sealed and bear the registration number of the registered

[…]

nursery; this number shall also be indicated under the rubric “Additional Declaration” on the Phytosanitary Certificate.

fsvfn.ru

bb) Место производства, свободное […]

от вредного организма – место производства, где данный вредный организм отсутствует, и

[…]

где оно официально поддерживается, cc) Участок производства, свободный от вредного организма — Определённая часть места производства, для которой отсутствие данного вредного организма научно доказано, и где в случае необходимости оно официально поддерживается в течение определённого периода времени, и которая управляется как отдельная единица, но таким же образом, как и свободное место производства.

fsvfn.ru

bb) Pest free place of production […]

denotes to a place of production where a specific type of pest is not present and the

[…]

place is officially protected, 3 cc) Pest free production site denotes to a production area where a specific type of pest is not present and this status is officially protected for a certain period of time and to a certain part of production area administered as a separate unit as in the case of place of production free from pests.

fsvfn.ru

Для учета коры в изымаемой при заготовке древесине необходимо использовать «долю коры в заготовленной древесине» (BF).

ipcc-nggip.iges.or.jp

Bark fraction in harvested wood (BF) should be 4.33 applied to account for bark in wood removals with harvest.

ipcc-nggip.iges.or.jp

Если бы Володя Малахов, до этого очень здорово

[…] игравший ту партию, пошел Bf5 c Ефименко, то мы […]

бы выиграли тот матч, вышли на чистое первое

[…]

место, и, что очень важно, поменялись бы с украинцами местами психологически.

crestbook.com

If Volodya Malakhov, who had played that game extremely well until

[…] then, had gone for Bf5 against Efimenko […]

then we’d have won the match, moved into

[…]

clear first place and, very importantly, switched places with the Ukrainians psychologically.

crestbook.com

Изъятие древесины (L древ.-изъятия ) рассчитывается с помощью уравнения 2.12 из главы 2, товарные круглые лесоматериалы с корой (H), коэффициент преобразования и

[…]

разрастания биомассы (BCEF ), доля

[…] коры в заготовленной древесине (BF), отношение подземной биомассы […]

к надземной биомассе (R), доля

[…]

углерода в сухом веществе (CF) и табличные данные по умолчанию, раздел 4.5.

ipcc-nggip.iges.or.jp

Wood removal (L wood-removals ) is calculated with Equation 2.12, Chapter 2, merchantable round wood over bark (H), biomass conversion expansion factor (BCEF ), bark

[…]

fraction in harvested wood

[…] (BF), below-ground biomass to above-ground biomass ratio (R), carbon […]

fraction of dry matter (CF)

[…]

and default tables, Section 4.5.

ipcc-nggip.iges.or.jp

Теплопроводность в жизни человека

Теплопроводность в жизни человека

Петрова Д.С. 1

1МАОУ «СОШ-63»

Котяшева Т.И. 1

1МАОУ «СОШ-63»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

С давних времен и до сегодняшнего дня люди задаются вопросом, как сохранить тепло. Проблемы поддержания температурного режима в доме, проблемы, связанные с теплой одеждой и посудой, наиболее часто становились причиной различных болезней, плохого питания и неспособности противостоять природным условиям. Решение этих проблем напрямую связано с теплопроводностью. Человеку важно знать, из какого материала состоит тот или иной предмет, понимать, от чего зависит его теплопроводность и быть готовым к его реакции в разных температурных условиях. В данной работе мы постараемся разобраться в этом, а также ответить на вопрос, почему некоторые предметы имеют хорошую теплопроводность, а некоторые совсем не проводят тепло?

Объектом исследования является явление теплопроводности.

Предметом исследования являются кухонная посуда, строительные материалы, ткани, снег.

Цель работы заключается в экспериментальном изучении теплопроводности тканей, кухонной посуды, строительных материалов и снега.

Для достижения поставленной цели необходимо решить следующие задачи:

Изучить информацию о теплопроводности;

Исследовать теплопроводность различных веществ и материалов;

Объяснить наблюдаемые явления, основываясь на физических законах;

Представить свои примеры теплопроводности;

Описать роль теплопроводности в повседневной жизни и в строительстве.

Основными методами исследования являются:

Изучение литературы по теплопроводности материалов;

Проведение экспериментов по изучению теплопроводности;

Анализ полученных результатов.

Актуальность данной работы заключается в том, что она может стать полезным источником для изучения теории на уроках физики, а также пробудить в учениках интерес и любовь к физике. Кроме того, данная работа представляет собой первые шаги на пути к серьезным открытиям в сфере теплопроводности, способным изменить нашу жизнь в лучшую сторону.

Глава 1. Из истории открытия теплопроводности Явление теплопередачи

В современной жизни материальный комфорт в каждом доме связан с тепловыми явлениями. Без теплоты в доме, без посуды, удерживающей тепло, без теплой одежды зимой и без многого другого сейчас невозможно представить жизнь. В древности люди тоже не могли обойтись без теплой одежды и предметов быта. Поэтому многие ученые и философы начали интересоваться тепловыми явлениями еще в древние времена.

Явление теплопередачи изучалось несколько веков. Но, ни в древности, ни в средние века оно не было изучено до конца. Были лишь простые и единые описания теплопередачи. Ученые утверждали, что если температура вещества повышается, то оно получает теплоту, а если температура понижается, то вещество выделяет теплоту в окружающую среду.

На протяжении многих веков ученые изучали тепловые явления, однако их деятельность получила развитие только в XVIII веке благодаря изобретенному Галилеем термометру. Первые исследования с помощью термометра были посвящены калориметрии — методу измерения количества теплоты, изучению теплового расширения тел, явлений теплопроводности. Поэтому, можно считать, что основные понятия о теплоте появились именно в XVIII веке.

В сочинении «Мемуары о теплоте» ученые Антуан Лавуазье (1743-1794) и Пьер Лаплас (1749-1827) рассказали о развитии учения о теплоте, понятии температуры, количестве теплоты и о теплоемкости. Благодаря французским ученым явление передачи тепла начало активно изучаться, и появилось множество работ, посвященных изучению теплоты.

Одна из значимых работ появилась в 1701 году и была посвящена вопросам теплоты. В работе Ньютон сформулировал закон охлаждения тел. В законе говорилось о том, что температура тела уменьшается пропорционально по мере охлаждения, приближаясь к температуре окружающей среды. Выяснилось, что скорость охлаждения зависит от параметра k=αAC (коэффициента теплопроводности). Ньютон доказал, что с увеличением коэффициента k, тело будет охлаждаться быстрее (Рис.1 – «Изменение коэффициента теплопроводности»).

Дальнейшие исследования передачи теплоты показали, что процесс охлаждения осуществляется различными способами, которые имеют разную физическую силу. Так возникли излучение теплопроводности и тепловое излучение. Эти два самостоятельных направления отличаются друг от друга тем, что тепловое излучение может осуществляться даже в полном вакууме, а излучение теплопроводности нет, также первое не требует прямого контакта при теплопередаче, а для второго оно необходимо. При теоретическом анализе, основанного на законе охлаждения Ньютона, произошли некоторые трудности, но Фурье сформулировал, что поток тепла пропорционален разности градиенту температуры, таким образом, он сформулировал закон теплопроводности. Закон Фурье показывает, что количество теплоты Q, проходящее через площадку S, за время T, вдоль направления X определяется по формуле:

где dT/dx — изменение температуры на единицу длины, k — коэффициент теплопроводности.

Рис.1 – «Изменение коэффициента теплопроводности»

В 1744 — 1745 годах появилось утверждение о том, что тепловые явления обусловлены движением молекул тела. Данное утверждение высказал М.В. Ломоносов в своих «Размышлениях о причине теплоты и холода». Однако предположения Ломоносова расходились с действующими в то время теориями о теплоте. Поэтому, чтобы отличие взглядов Ломоносова и теорий теплоты стало очевидным, обратимся к XVIII столетию и представлениям о теплоте того времени. Теплоту представляли в виде невесомой и невидимой жидкости, которая впитывает поры тела. Жидкость, которая является невидимой и невесомой одновременно назвали теплородом.

В конце XVIII века английский физик Румфорд доказал правильность идеи Ломоносова. К такому выводу Румфорд пришел, когда наблюдал за изготовлением пушек. Он обратил внимание на то, что при сверлении ствола пушки сверло сильно нагревается. Это означало, что при трении тела нагреваются. Данное явление было известно еще в начале истории человечества. Древние люди с помощью трения добывали огонь, но они не смогли увидеть за этим явлением закон природы. Румофорд стал первым исследователем, кому это оказалось посильным. При наблюдении за сверлением ствола пушки у физика появился вопрос: отчего происходит нагревание тела? Не происходит ли нагревание оттого, что металлические опилки, полученные при сверлении, обладают меньшей теплоемкостью, чем сам ствол пушки? Ответ заключается в том, что количество теплоты металла при переходе в опилки может уместиться в них, только если будет повышение температуры.

Когда появилось предположение о том, что теплоемкость сплошного металла и теплоемкость опилок одинаковы, то оказалось, что объяснения Румфорда о нагревании металла неверно. Тогда Румфорд предположил, что теплота входит в изделие из воздуха. В доказательство физик залил водой рассверливаемый ствол пушки. Получилось так, что вода нагрелась и даже закипела. Значит и первое, и второе объяснения являются верными. Узнав свою правоту Румфорд заявил: «для того чтобы получить теплоту в неограниченном количестве, достаточно продолжить сверлить, при этом теплоту нельзя считать теплородом». Поэтому все тепловые явления следует рассматривать как движение.

Глава 2. Теплопроводность 2.1. Определение теплопроводности

Различают три вида теплопередачи: конвенция, излучение и теплопроводность. Конвенция — процесс передачи тепла движущими массами жидкости и газа. Тепловое излучение — перенос тепла в газообразной середе или вакууме в виде электромагнитных волн. Теплопроводность — способность материалов передавать через свою толщину тепловой поток. Тепловой поток возникает из-за разности температур на противоположных поверхностях.

Мы остановимся на третьем виде теплопередачи и узнаем о теплопроводности немного больше. Теплопроводность больше проявляется в сплошных твердых телах, а также теплопроводность находится и в капельках жидкостях и газах. В твердых материалах основным видом теплообмена является теплопроводность. Теплопроводность материалов зависит от средней плотности и химико-минерального состава, влажности, структуры и средней температуры материала. Известно, что чем меньше средняя плотность материала, тeм ниже его теплопроводность. Тeплопроводность увеличивается тогда, кoгда увеличивается влажность материала. Рaзличные материалы имеют разную теплопроводность, одни медленно проводят теплоту, другие — быстрeе. Поэтому и количественный показатель теплопроводности — коэффициент теплопроводности (λ (лямбда)) — бyдeт y всех материалов свой. С увеличением плотности, влажности и температуры материала повышается λ. Коэффициент теплопроводностизaвисит oт плотности, влaжности, тeмпературы и cтруктуры материала.

2.2. Суть теплопроводности

Теплопроводность происходит из-за движения тепла и взаимодействия его составляющих частиц друг с другом. Процесс теплопроводности стремиться сделать температуру всего тела одинаковой. Теплопроводность — это свойство тел проводить тепло, основанное на теплообмене, которое происходит между атомами и молекулами тела. Однако, при теплопроводности не происходит перенос вещества от одного конца тела к другому. Все потому, что у жидкостей теплопроводность небольшая. Газы тоже имеют маленькую теплопроводность.

Теплопроводность жидкости намного меньше теплопроводности твердого тела. Это зависит от молекул, которые наводятся в том или ином теле и от плотности. Жидкости имеют маленькую теплопроводность из-за того, что молекулы в ней расположены далеко друг от друга, в отличие от молекул твердого тела. Плотность газа меньше плотности жидкости, следовательно, молекулы газа находятся на большом расстоянии друг от друга, а это значит, что газы имеют теплопроводность меньше, чем любые жидкости.

Плохой теплопроводностью обладают не только газы и жидкости, но и волосы, шерсть, перья и бумага. Известно, что между волокнами этих веществ расположен воздух, а это преграда для передачи тепла. Поэтому шерсть обладает плохой теплопроводностью, а значит, что она не пропускает холод и способна удерживать тепло, поэтому в мороз смело можно надевать шерстяную кофту и не волноваться о том, что можно замерзнуть. Теперь нам известно, что благодаря плотно соединенным шерстяным волоскам кофта обладает плохой теплопроводность и не пропускает холод.

Глава 3. Экспериментальные работы по изучению и созданию теплопроводности различных материалов

В России в зимнее время года, температура на улице становится все ниже. Известно, что самые холодные зимы именно в нашей стране. Однако низкие температуры не останавливают отважных ребят, которые, несмотря на мороз, выходят слепить снеговиков и покататься на санках. В некоторых случаях через определенное время дети жалуются на озябшие руки и ноги. В то же время другие ребята продолжают играть и веселиться, несмотря на холод. Нам стало интересно, почему некоторые дети в одинаковой по внешнему виду одежде замерзают, а некоторые продолжают гулять, не обращая внимания на мороз. Мы попробовали разобраться в этом и изучить свойства различных тканей с точки зрения физики. Чтобы решить проблему с теплой одеждой, нам необходимо исследовать некоторые виды тканей на теплопроводность.

Опыт №1 Изучение теплопроводности тканей

Необходимые приборы и материалы:

Лед 2х4х2 см.

Полиэтиленовые пакетики 7х5 см.

Термометр

Флисовая ткань10х10 см.

Синтетическая ткань 10х10 см.

Фланелевая ткань 10х10 см.

а

б

Хлопковая ткань 10х10 см.

Рис.2 – «Изучение теплопроводности тканей»

Болоньевая ткань 10х10 см.

Трикотажная ткань 10х10 см.

Ход работы:

Подготовить лед и кусочки ткани одинакового размера.

Положить лед в полиэтиленовые пакетики и обернуть различными кусочками ткани (Рис.2а;б– «Изучение теплопроводности тканей»).

Завязать ткани со льдом так, чтобы воздух не попадал внутрь ткани.

Через 1 час измерить температуру льда во всех пакетиках с тканью.

Табл.1 – «Теплопроводность тканей»

Спустя 1 час лед во всех тканях растаял. Только в пакетике с флисовой тканью (№2) остался лед. Это означает, что флисовая ткань не пропускает тепло и обладает плохой теплопроводностью, а значит, во флисовой одежде зимой замерзнешь намного позже, чем, например, в болоньевой. Любая ткань в своем составе имеет волокна с воздухом, которые способные удерживать тепло. Если волокна с воздухом далеко расположены друг от друга, то ткань будет пропускать тепло. Если же волокна расположены близко, ткань наоборот будет удерживать тепло.

Ткань

Температура льда, °С

Температура воды, °С спустя час

1

Синтетическая

-8

+13,5

2

Флисовая

-8

+9,4

3

Хлопковая

-8

+11,2

4

Болоньевая

-8

+12,3

5

Фланелевая

-8

+15,4

6

Трикотажная

-8

+14,7

Из приведенной таблицы (Табл.1 – «Теплопроводность тканей») видно, что наименьшая температура воды (+9,4°С) сохранилась у флисовой ткани. Затем, по мере повышения температуры воды в ткани идет хлопковая ткань (+11,2 °С), болоньевая (+12,3°С), синтетическая (+13,5°С). Высокой теплопроводностью обладают трикотажная (+14,7°С) и фланелевая (+15,4°С) ткани.

Рис.3 – «Изменение температуры льда»

Любая ткань в своем составе имеет волокна с воздухом, которые способные удерживать тепло. Если волокна с воздухом далеко расположены друг от друга, то ткань будет пропускать тепло. Если же волокна расположены близко, ткань наоборот будет удерживать тепло.

Теплопроводность тканей можно выразить графически. Для этого начертим график зависимости (Рис.3 – «Изменение температуры льда») температуры (t,°С) от времени (Т, мин.).

Опыт № 2 Изучение теплопроводности кухонной посуды

Необходимые приборы и материалы:

Термометр

Кастрюля из нержавеющей стали

Эмалированная кастрюля

Чугунная кастрюля

Вода 54°С

Рис.4 – «Теплопроводность кухонной посуды»

Ход работы:

    1.  

Налить воду одинаковой температуры во все кастрюли и закрыть их (Рис.4 – «Теплопроводность кухонной посуды»).

    1.  

Измерить начальную температуру воды и стенок кастрюль, записать температуры.

    1.  

Через 5 минут заново измерить температуру стенок и воды.

    1.  

Измерять температуры на протяжении 1 часа, через каждые 5 минут.

Табл.2 – «Температура стенок кастрюли»

Мы измеряли температуру стенок кастрюль и записали полученные результаты в таблицу (Табл.2 – «Температура стенок кастрюли»), из которой видно, что температура стенок чугунной кастрюли не изменялась на протяжении 25 минут. Температура стенок эмалированной кастрюли на протяжении 20 минут не изменялась. Температура стенок кастрюли из нержавейки сразу начала снижаться. Это значит, что кастрюля из нержавейки имеет хорошую теплопроводность и не способна хорошо удерживать тепло.

Материал кастрюли

Начальная тем-ра стенок, °С

Температура стенок через:

5

10

15

20

25

30

35

40

60

1

Нержавейка

39

38,5

35

34,2

33,1

32,7

32,1

31,8

31

31

2

Эмаль

34

33,5

32,2

32,2

32

31,4

31,4

31

29,7

28

3

Чугун

33

33

33

33

33

33

32,6

32,4

32,2

32

Табл.3 – «Температура воды»

Также мы измеряли температуру воды в разных кастрюлях на протяжении 2 часов. Результаты опыта мы записали в таблицу (Табл.3 – «Температура воды»), из которой видно, что температура воды в кастрюле из нержавейки снижалась постепенно. Температура воды в чугунной кастрюле начала снижаться сразу.

Материал кастрюли

Начальная тем-ра воды, °С

Температура воды через:

15

20

25

30

60

120

1

Нержавейка

54

49,6

47,8

46,5

45,3

43,2

38,2

2

Эмаль

54

48,3

47,1

44,5

44,2

41,8

36,1

3

Чугун

54

45

44

42,6

42

40,2

33,4

Проанализировав две таблицы, можно сказать, что температура стенок чугунной кастрюли почти не изменилась, но температура воды сразу начала снижаться. Это говорит о том, что вода, находящаяся в кастрюле, нагревает ее, чтобы не позволить пройти воздуху и остудить воду. Поэтому если температура стенок кастрюли из нержавейки быстро снижаться, а температура воды остается прежней, то нержавеющий материал обладает хорошей теплопроводностью и не способен удержать тепло на долгое время.

Теплопроводность различных материалов, из которых сделаны кастрюли можно выразить графически, построив график зависимости (Рис.5 – «Изменение температуры стенок кастрюль») температуры стенок (t,°С) от времени (Т, мин.).

Рис.5 – «Изменение температуры стенок кастрюли»

Снижение температуры воды в кастрюлях из разных материалов можно выразить графиком зависимости (Рис.6 – «Изменение температуры воды в кастрюлях») температуры воды (t,°С) от времени (Т, мин.).

Рис.6 – «Изменение температуры воды в кастрюлях»

Опыт № 3 Изучение теплоизоляционных свойств снега

Фермеры часто задаются вопросом о том, как повысить переносимость живыми организмами и растениями низкой температуры в зимний период. Коэффициент теплопроводности снега примерно в 10 раз меньше, чем коэффициент теплопроводности почв. И в 10 раз больше коэффициента теплопроводности воздуха. Если снег рыхлый, то воздух заполняет промежутки между кристаллами снега и быстрее остужает почву, чем липкий снег. Кроме того, температура почвы под снегом зависит от толщины снежного покрова. Поэтому, чем больше толщина снежного покрова, тем медленнее изменяется температура почвы под снегом.

Необходимые приборы и материалы:

Термометр

Линейка

Рис.7 – «Измерение температуры снега»

Ход работы:

Измерить температуру на поверхности снега (Рис.7 – «Измерение температуры снега»).

Измерить толщину снежного покрова.

Измерить температуру на поверхности почвы под снегом.

Рассчитать разность температур.

Сравнить теплопроводность снега и температуру почвы при разной толщине снежного покрова.

Табл.4 – «Температура снега»

Записать полученные результаты в таблицу.

Толщина снежного покрова, см

Температура, °С

Разница температур, °С

На поверхности снега

На поверхности почвы под снегом

3

-13

-10

3

8

-18

-7

11

15

-20

-6

14

20

-24

-5

19

60

-26

-2

24

На протяжении 2-х недель мы измеряли толщину и температуру снега, и температуру почвы под снегом. Полученные результаты мы записали в таблицу (Табл.4 – «Температура снега»), из которой видно, что чем больше толщина снега, тем выше температура почвы под снегом. Это говорит о том, что температура почвы под снегом также зависит от толщины снега.

Опыт №4 Изучение теплопроводности строительных материалов

В строительстве часто используют теплозащитные материалы. Теплозащитными называют строительные материалы и изделия, для тепловой защиты конструкций зданий и cооpyжений. Основной особенностью подобных материалов являются малая или средняя плотность и низкая теплопроводность. Мы решили узнать, какие строительные материалы имеют плохую теплопроводность и способны сохранять тепло в доме.

Необходимые приборы и материалы:

Измеритель теплопроводности материалов МИТ-1

Пенопласт

Пеноплекс

Бетон

Рис.8 – «Измерение теплопроводности пеноплекса»

Дерево

Кирпич

Ход работы:

Подключить МИТ-1 к источнику питания.

Сделать отверстие в материалах диаметром 6мм.

Вставить измерительный зонд МИТ-1 исследуемые материалы (Рис.8 – «Измерение теплопроводности пеноплеска»).

Снять показания.

Записать полученные результаты в таблицу.

Табл.5 – «Теплопроводность строительных материалов»

Материал

Теплопроводность, Вт/мК

1

Пенопласт

0,0446

2

Пеноплекс

0,0507

3

Дерево

0,0787

4

Бетон

1,055

5

Кирпич

1,095

Из полученной таблицы (Табл.5 – «Теплопроводность строительных материалов») видно, что наименьшей теплопроводностью обладает пенопласт (0,0446Вт/мК), значит, пенопласт способен долго удерживать тепло. Именно поэтому в строительстве пенопласт часто используют для обшивки домов. Хорошей теплопроводностью обладают бетон (1,055Вт/мК) и кирпич (1,095Вт/мК), это говорит о том, что бетон и кирпич плохо сохраняют тепло. Поэтому материалы, обладающие хорошей теплопроводностью, используют только для строительства домов.

Заключение

Подводя итоги исследования теплопроводности тканей, кухонной посуды, строительных материалов, снега, можно сделать следующие выводы:

Результаты исследования теплопроводности показывают, что чем лучше теплопроводность, тем хуже материал удерживает тепло. Если теплопроводность плохая, значит материал хорошо удерживает тепло и не пропускает холод.

Изучение теплопроводности доказывает, что теплопроводность вещества зависит от его агрегатного состояния. У твердых тел теплопроводность будет больше, чем у жидкостей или газов.

Теплопроводность тканей зависит от молекул, которые входят в состав тканей. Ткани, имеющие в своем составе молекулы, расположенные далеко друг от друга, имеют теплопроводность лучше, чем ткани с составом молекул, не имеющих воздуха между собой.

Изучение теплопроводности снега доказывает, что рыхлый снег является плохим носителем тепла, в то время как липкий снег способен хорошо удерживать тепло и согревать землю. Как показали исследования, толщина снежного покрова играет большую роль в изменении температуры почвы.

Изучение истории теплопроводности позволило нам узнать, что явление теплопроводности изучалось на протяжении несколько веков. Теплопроводность является одним из видов теплопередачи, в процессе которого частицы тела взаимодействуют друг с другом, стремясь сделать температуру тела одинаковой.

Теплопроводность различных материалов широко используется в строительстве, быту и часто встречается в повседневной жизни человека. Изучение теплопроводности имеет большое значение для здоровья и комфорта человека, а также играет бoльшую рoль в создании материала, полeзного для человека. Таким образом, создание и открытие веществ, обладающих теплоизоляционными свойствами, является одним из вaжнейших задач человечества.

Библиографический список

 

Беляевский И. А. Исследование теплопроводности различных веществ// Международный школьный научный вестник. – 2017. — №1. – С.72-76

 

Буховцев Б. Б., Мякишев Г. Я., Сотский Н. Н. Физика: учеб. для 10 кл. общеобраоват. учреждений: базовый и профил. уровни. – 16-е изд. – М.: Просвещение, 2007. 366с.

 

Коноплева Н. К. Алюминий, нержавейка… — выбираем домашнюю кастрюлю(посуду). – URL: http://www.liveinternet.ru/users/v0va07/post201139685

 

Прохоров А. М. Физичес кая энциклопедия в пяти томах. Советская энциклопедия, 1988. – 532с.

 

Чуянов В. А.Энциклопедический словарь юного физика. Сост. — М.: Педагогика, 1984.— 352 с., ил.

Просмотров работы: 6777

10 лучших теплопроводных материалов

Теплопроводность — это мера способности материала пропускать через него тепло. Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды. Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с рекомендациями S.I (Международная система).

10 лучших измеряемых теплопроводных материалов и их значения приведены ниже.Эти значения проводимости являются средними из-за разницы в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.

Материалы теплопроводящие

  1. Diamond — 2000 — 2200 Вт / м • K

    Алмаз является ведущим теплопроводным материалом и имеет измеренные значения проводимости в 5 раз выше, чем у меди, наиболее производимого металла в Соединенных Штатах. Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной теплопередачи.Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.

    Diamond — важный компонент многих современных портативных электронных устройств. Их роль в электронике — способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях. Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.

  2. Серебро — 429 Вт / м • K

    Серебро — относительно недорогой и распространенный теплопроводник. Серебро входит в состав многих бытовых приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для производства электрических инструментов и электроники (US Geological Survey Mineral Community 2013). Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлементов, которые являются основным компонентом солнечных батарей.

  3. Медь — 398 Вт / м • K

    Медь — наиболее часто используемый металл для производства токопроводящих приборов в США. Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла. Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы — все это приборы, в которых используются проводящие свойства меди.

  4. Золото — 315 Вт / м • K

    Золото — редкий и дорогой металл, который используется для специальных проводящих применений.В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.

  5. Карбид кремния — 270 Вт / м • K

    Карбид кремния — это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода. При изготовлении и сплаве кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.

  6. Оксид бериллия– 255 Вт / м • K

    Оксид бериллия используется во многих высокопроизводительных деталях для таких приложений, как электроника, поскольку он обладает высокой теплопроводностью и является хорошим электрическим изолятором.

  7. Алюминий — 247 Вт / м • K

    Алюминий обычно используется в качестве экономичной замены меди. Хотя алюминий не такой проводящий, как медь, его много, и с ним легко манипулировать из-за его низкой температуры плавления. Алюминий — важнейший компонент L.Фары E.D (светодиоды). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.

  8. Вольфрам — 173 Вт / м • K

    Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, которые подвергаются воздействию высоких уровней электричества. Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов.Он также часто используется в лампах и как компонент электронно-лучевых трубок.

  9. Графит 168 Вт / м • K

    Графит — это распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к смесям полимеров для улучшения их теплопроводных свойств. Батареи — знакомый пример устройства, использующего высокую теплопроводность графита.

  10. Цинк 116 Вт / м • K

    Цинк — один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов).20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование — это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.

Список литературы

Мокхена, Т. К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. DOI: 10.5772 / intechopen.75676

Оксид бериллия Получено с https://thermtest.com/materials-database#Beryllium-Oxide

База данных материалов Thermtest. https://thermtest.com/materials-database

Автор: Каллиста Уилсон, младший технический писатель Thermtest

Теплопроводность — образование в области энергетики

Теплопроводность , часто обозначаемая как [математика] \ каппа [/ математика], является свойством, которое связывает скорость тепловых потерь на единицу площадь материала до скорости его изменения температуры.{\ circ} F} \ right) [/ math]. [3] Материалы с более высокой теплопроводностью являются хорошими проводниками тепловой энергии.

Поскольку теплопередача за счет теплопроводности включает в себя передачу энергии без движения материала, логично, что скорость передачи тепла будет зависеть только от разницы температур между двумя точками и теплопроводности материала.

Для получения дополнительной информации о теплопроводности см. Гиперфизика.

Значения для обычных материалов

Теплопроводность, [математика] \ каппа [/ математика] [4]
Материал Электропроводность при 25 o C
Акрил 0.2
Воздух 0,024
Алюминий 205
Битум 0,17
Латунь 109
Цемент 1,73
Медь 401
Алмаз 1000
Войлок 0,04
Стекло 1,05
Утюг 80
Кислород 0.024
Бумага 0,05
Кремнеземный аэрогель 0,02
Вакуум 0
Вода 0,58


Из таблицы справа видно, что большинство материалов, которые обычно считаются хорошими проводниками, обладают высокой теплопроводностью. В основном металлы обладают очень высокой теплопроводностью, которая хорошо сопоставима с тем, что известно о металлах.Кроме того, изоляционные материалы, такие как аэрогель и изоляция, используемые в домах, имеют низкую теплопроводность, что указывает на то, что они не пропускают тепло через себя легко. Таким образом, низкая теплопроводность свидетельствует о хорошем изоляционном материале.

Промежуточные материалы не обладают значительными изолирующими или проводящими свойствами. Цемент и стекло не проводят слишком большое количество тепла и не обладают хорошей изоляцией.

Идея о том, что теплопроводность определенных материалов связана с тем, насколько хорошо они изолируют, обеспечивает связь между теплопроводностью и R-значениями / U-значениями.Поскольку значения U и R отражают, насколько хорошо определенный материал сопротивляется потоку тепла, теплопроводность играет роль в формировании этих значений. Однако значения U и R также зависят от толщины материала, тогда как теплопроводность этого не учитывает.

Для дальнейшего чтения

Список литературы

  1. ↑ HyperPhysics. (12 мая 2015 г.). Теплопроводность [Онлайн]. Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html
  2. ↑ Р. Чабай, Б. Шервуд. (12 мая 2015 г.). Материя и взаимодействия , 3-е изд., Хобокен, Нью-Джерси, США: John Wiley & Sons, 2011
  3. ↑ Д. Грин, Р. Перри. (12 мая 2015 г.). Справочник инженеров-химиков Перри , 7-е изд., McGraw-Hill, 1997.
  4. ↑ The Engineering Toolbox. (12 мая 2015 г.). Теплопроводность обычных материалов и газов [Онлайн]. Доступно: http://www.engineeringtoolbox.com/thermal-conductivity-d_429.html

Маловероятный конкурент алмаза как лучшего проводника тепла

Маловероятный материал, кубический арсенид бора, мог бы обеспечить чрезвычайно высокую теплопроводность — на уровне отраслевого стандарта, установленного для дорогих алмазов, — сообщают исследователи в текущем выпуске журнала Physical Review Letters .

Открытие того, что химическое соединение бора и мышьяка может конкурировать с алмазом, самым известным проводником тепла, удивило команду физиков-теоретиков из Бостонского колледжа и Лаборатории морских исследований. Но новый теоретический подход позволил команде раскрыть секрет потенциально экстраординарной способности арсенида бора проводить тепло.

Меньшие, более быстрые и более мощные микроэлектронные устройства ставят перед собой непростую задачу отвода выделяемого тепла.Хорошие теплопроводники, находящиеся в контакте с такими устройствами, быстро отводят тепло от нежелательных «горячих точек», которые снижают эффективность этих устройств и могут привести к их выходу из строя.

Алмаз — самый ценный из драгоценных камней. Но, помимо блеска и красоты ювелирных изделий, он обладает множеством других замечательных свойств. Наряду со своими углеродными родственниками графитом и графеном, алмаз является лучшим проводником тепла при комнатной температуре, имея теплопроводность более 2000 Вт на метр на Кельвин, что в пять раз выше, чем у лучших металлов, таких как медь.В настоящее время алмаз широко используется для отвода тепла от компьютерных микросхем и других электронных устройств. К сожалению, алмазы редкие и дорогие, а производство высококачественных синтетических алмазов сложно и дорого. Это подтолкнуло к поиску новых материалов со сверхвысокой теплопроводностью, но в последние годы не было достигнуто большого прогресса.

По словам соавтора Дэвида Бройдо, профессора физики в Бостонском колледже, высокая теплопроводность алмаза хорошо известна благодаря легкости составляющих его атомов углерода и жестким химическим связям между ними.С другой стороны, не ожидалось, что арсенид бора будет особенно хорошим теплопроводником, и на самом деле было оценено — с использованием обычных критериев оценки — теплопроводность в 10 раз меньше, чем у алмаза.

Команда обнаружила, что расчетная теплопроводность кубического арсенида бора чрезвычайно высока, более 2000 Вт на метр на Кельвин при комнатной температуре и превышает теплопроводность алмаза при более высоких температурах, по словам Бройдо и соавторов Тома Райнеке, старшего научного сотрудника Лаборатория военно-морских исследований и Лукас Линдсей, научный сотрудник NRL, получивший докторскую степень в Британской Колумбии.

Броидо сказал, что команда использовала недавно разработанный теоретический подход для расчета теплопроводности, который они ранее тестировали со многими другими хорошо изученными материалами. Уверенные в своем теоретическом подходе, команда внимательно изучила арсенид бора, теплопроводность которого никогда не измерялась.

В отличие от металлов, в которых электроны переносят тепло, алмаз и арсенид бора являются электрическими изоляторами. Для них тепло переносится колебательными волнами составляющих атомов, и столкновение этих волн друг с другом создает внутреннее сопротивление тепловому потоку.Команда была удивлена, обнаружив необычное взаимодействие определенных колебательных свойств в арсениде бора, которое выходит за рамки рекомендаций, обычно используемых для оценки теплопроводности электрических изоляторов. Оказывается, ожидаемые столкновения между колебательными волнами гораздо менее вероятны в определенном диапазоне частот. Таким образом, на этих частотах в арсениде бора может проводиться большое количество тепла.

«Эта работа дает новое важное понимание физики теплопереноса в материалах и демонстрирует возможности современных вычислительных методов для количественного прогнозирования материалов, теплопроводность которых еще предстоит измерить», — сказал Броидо.«Мы рады увидеть, можно ли подтвердить наши неожиданные открытия для арсенида бора путем измерения. Если это так, это может открыть новые возможности для применений в пассивном охлаждении с использованием арсенида бора, а также продемонстрирует важную роль, которую такая теоретическая работа может сыграть в дает полезные рекомендации по выявлению новых материалов с высокой теплопроводностью «.


Нанесение алмазных покрытий при более низких температурах расширяет возможности электронных устройств
Предоставлено Бостонский колледж

Ссылка : Маловероятный конкурент алмаза как лучшего проводника тепла (2013 г., 8 июля) получено 21 июля 2021 г. с https: // физ.org / news / 2013-07-Competitor-diamond-therm-проводник.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

Какие металлы лучше всего проводят тепло? | Metal Supermarkets

Теплопроводность измеряет способность металла проводить тепло.Это свойство различается в зависимости от типа металла, и его важно учитывать в приложениях, где часто встречаются высокие рабочие температуры.

В чистых металлах теплопроводность остается примерно такой же при повышении температуры. Однако в сплавах теплопроводность увеличивается с температурой.

Какие металлы лучше всего проводят тепло?

Обычные металлы, ранжированные по теплопроводности
Рейтинг Металл Теплопроводность [БТЕ / (ч · фут⋅ ° F)]
1 Медь 223
2 Алюминий 118
3 Латунь 64
4 Сталь 17
5 бронза 15

Как видите, из наиболее распространенных металлов медь и алюминий обладают самой высокой теплопроводностью, а сталь и бронза — самой низкой.Теплопроводность — очень важное свойство при выборе металла для конкретного применения. Поскольку медь является отличным проводником тепла, она хороша для теплообменников, радиаторов и даже днища кастрюль. Поскольку сталь плохо проводит тепло, она подходит для использования в высокотемпературных средах, таких как двигатели самолетов.

Вот некоторые важные области применения, в которых требуются металлы, хорошо проводящие тепло:

  • Теплообменники
  • Радиаторы
  • Посуда

Теплообменники

Теплообменник — это обычное применение, где важна хорошая теплопроводность.Теплообменники выполняют свою работу, передавая тепло для нагрева или охлаждения.

Медь — популярный выбор для теплообменников в промышленных объектах, систем кондиционирования воздуха, охлаждения, резервуаров для горячей воды и систем теплых полов. Его высокая теплопроводность позволяет теплу быстро проходить через него. Медь имеет дополнительные свойства, желательные для теплообменников, включая устойчивость к коррозии, биологическому обрастанию, нагрузкам и тепловому расширению.

Алюминий также может использоваться в некоторых теплообменниках как более экономичная альтернатива.

Теплообменники обычно используются в следующих ситуациях:

Промышленные объекты

Теплообменники на промышленных объектах включают ископаемые и атомные электростанции, химические предприятия, опреснительные установки и морские службы.

На промышленных предприятиях медно-никелевый сплав используется для изготовления трубок теплообменника. Сплав имеет хорошую коррозионную стойкость, что защищает от коррозии в морской среде. Он также обладает хорошей устойчивостью к биологическому обрастанию, чтобы избежать образования водорослей и морского мха.Алюминиево-латунный сплав имеет аналогичные свойства и может использоваться как альтернатива.

Солнечные системы термального водоснабжения

Солнечные водонагреватели — это экономичный способ нагрева воды, в котором медная трубка используется для передачи солнечной тепловой энергии воде. Медь используется из-за ее высокой теплопроводности, устойчивости к воздушной и водной коррозии и механической прочности.

Газовые водонагреватели

Газо-водяные теплообменники передают тепло, выделяемое газовым топливом, воде.Они распространены в жилых и коммерческих котлах. Для газовых водонагревателей предпочтительным материалом является медь из-за ее высокой теплопроводности и простоты изготовления.

Принудительное воздушное отопление и охлаждение

Тепловые насосы, использующие воздух, давно используются для отопления жилых и коммерческих помещений. Они работают за счет теплообмена воздух-воздух через испарительные агрегаты. Их можно использовать в дровяных печах, котлах и печах. Опять же, медь обычно используется из-за ее высокой теплопроводности.

Радиаторы

Радиаторы — это тип теплообменника, который передает тепло, выделяемое электронным или механическим устройством, в движущуюся охлаждающую жидкость. Жидкость отводит тепло от устройства, позволяя ему остыть до желаемой температуры. Используются металлы с высокой теплопроводностью.

В компьютерах

радиаторы используются для охлаждения центральных процессоров или графических процессоров. Радиаторы также используются в мощных устройствах, таких как силовые транзисторы, лазеры и светодиоды (светодиоды).

Радиаторы предназначены для увеличения площади поверхности, контактирующей с охлаждающей жидкостью.

Алюминиевые сплавы являются наиболее распространенным материалом для теплоотвода. Это потому, что алюминий стоит меньше меди. Однако медь используется там, где требуется более высокий уровень теплопроводности. В некоторых радиаторах используются комбинированные алюминиевые ребра с медным основанием.

Посуда

Металл с хорошей теплопроводностью чаще используется в быту в посуде. Когда вы разогреваете еду, вы не хотите ждать весь день.Вот почему медь используется для изготовления дна высококачественной посуды, потому что металл быстро проводит тепло и равномерно распределяет его по своей поверхности.

Однако, если у вас ограниченный бюджет, вы можете использовать алюминиевую посуду в качестве альтернативы. Для разогрева еды может потребоваться немного больше времени, но ваш кошелек будет вам благодарен!

Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 85 обычными магазинами в США, Канаде и Великобритании.Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.

В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и пластины. Мы можем разрезать металл в точном соответствии с вашими требованиями.

Посетите одно из наших 80+ офисов в Северной Америке сегодня.

Потенциал арсенида бора для систем охлаждения — ScienceDaily

Маловероятный материал, кубический арсенид бора, мог бы обеспечить чрезвычайно высокую теплопроводность — на уровне отраслевого стандарта, установленного для дорогостоящих алмазов, — сообщают исследователи в текущем выпуске журнала Письма о физических проверках .

Открытие того, что химическое соединение бора и мышьяка может конкурировать с алмазом, самым известным проводником тепла, удивило команду физиков-теоретиков из Бостонского колледжа и Лаборатории морских исследований.Но новый теоретический подход позволил команде раскрыть секрет потенциально экстраординарной способности арсенида бора проводить тепло.

Меньшие, более быстрые и более мощные микроэлектронные устройства ставят перед собой непростую задачу отвода выделяемого тепла. Хорошие теплопроводники, находящиеся в контакте с такими устройствами, быстро отводят тепло от нежелательных «горячих точек», которые снижают эффективность этих устройств и могут привести к их выходу из строя.

Алмаз — самый ценный из драгоценных камней.Но, помимо блеска и красоты ювелирных изделий, он обладает множеством других замечательных свойств. Наряду со своими углеродными родственниками графитом и графеном, алмаз является лучшим проводником тепла при комнатной температуре, имея теплопроводность более 2000 Вт на метр на Кельвин, что в пять раз выше, чем у лучших металлов, таких как медь. В настоящее время алмаз широко используется для отвода тепла от компьютерных микросхем и других электронных устройств. К сожалению, алмазы редкие и дорогие, а производство высококачественных синтетических алмазов сложно и дорого.Это подтолкнуло к поиску новых материалов со сверхвысокой теплопроводностью, но в последние годы не было достигнуто большого прогресса.

По словам соавтора Дэвида Бройдо, профессора физики в Бостонском колледже, высокая теплопроводность алмаза хорошо известна благодаря легкости составляющих его атомов углерода и жестким химическим связям между ними. С другой стороны, не ожидалось, что арсенид бора будет особенно хорошим теплопроводником, и на самом деле, по оценкам — с использованием обычных критериев оценки — теплопроводность в 10 раз меньше, чем у алмаза.

Команда обнаружила, что расчетная теплопроводность кубического арсенида бора чрезвычайно высока, более 2000 Вт на метр на Кельвин при комнатной температуре и превышает теплопроводность алмаза при более высоких температурах, по словам Бройдо и соавторов Тома Райнеке, старшего научного сотрудника Лаборатория военно-морских исследований и Лукас Линдсей, научный сотрудник NRL, получивший докторскую степень в Британской Колумбии.

Броидо сказал, что команда использовала недавно разработанный теоретический подход для расчета теплопроводности, который они ранее тестировали со многими другими хорошо изученными материалами.Уверенные в своем теоретическом подходе, команда внимательно изучила арсенид бора, теплопроводность которого никогда не измерялась.

В отличие от металлов, в которых электроны переносят тепло, алмаз и арсенид бора являются электрическими изоляторами. Для них тепло переносится колебательными волнами составляющих атомов, и столкновение этих волн друг с другом создает внутреннее сопротивление тепловому потоку. Команда была удивлена, обнаружив необычное взаимодействие определенных колебательных свойств в арсениде бора, которое выходит за рамки рекомендаций, обычно используемых для оценки теплопроводности электрических изоляторов.Оказывается, ожидаемые столкновения между колебательными волнами гораздо менее вероятны в определенном диапазоне частот. Таким образом, на этих частотах в арсениде бора может проводиться большое количество тепла.

«Эта работа дает новое важное понимание физики теплопереноса в материалах и демонстрирует возможности современных вычислительных методов для количественного прогнозирования материалов, теплопроводность которых еще предстоит измерить», — сказал Броидо. «Мы очень рады, что наши неожиданные открытия относительно арсенида бора могут быть подтверждены измерениями.Если это так, это может открыть новые возможности для приложений пассивного охлаждения с использованием арсенида бора, а также продемонстрирует важную роль, которую такая теоретическая работа может сыграть в предоставлении полезного руководства для определения новых материалов с высокой теплопроводностью ».

Исследование было поддержано Программой процессов теплового переноса Национального научного фонда, Управлением военно-морских исследований США и Управлением науки Министерства энергетики США.

История Источник:

Материалы предоставлены Бостонским колледжем . Примечание. Содержимое можно редактировать по стилю и длине.

Теплопроводность

0,08 9011 airgel
Материал Теплопроводность
(кал / сек) / (см 2 C / см)
Теплопроводность
(Вт / м · К) *
Алмаз 1000
Серебро 1,01 406,0
Медь 0,99 385,0
Золото 314
Латунь 109,0
Алюминий 0,50 205,0
Железо 0,163 Сталь 50,2
Свинец 0,083 34,7
Меркурий 8,3
Лед 0,005 1.6
Стекло обычное 0,0025 0,8
Бетон 0,002 0,8
Вода при 20 ° C 0,0014 0,6
Снег (сухой) 0,00026
Стекловолокно 0,00015 0,04
Кирпич изоляционный 0,15
Кирпич, красный 0,6
Пробковая плита 0,00011 0,04
Войлок 0,0117 0,0117 0,0117 шерсть 0,04
Полистирол (пенополистирол) 0,033
Полиуретан 0,02
Дерево.0001 0,12-0,04
Воздух при 0 ° C 0,000057 0,024
Гелий (20 ° C) 0,138
° 0,172
Азот (20 ° C) 0,0234
Кислород (20 ° C) 0,0238
0,003

* Большая часть от Янга, Хью Д., Университетская физика, 7-е изд. Таблица 15-5. Значения для аэрогеля алмаза и диоксида кремния из Справочника по химии и физике CRC.

Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. С учетом этого два приведенных выше столбца не всегда совпадают. Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт / мК для полиуретана может быть принято как номинальное значение, которое определяет пенополиуретан как один из лучших изоляторов.NIST опубликовал процедуру численного приближения для расчета теплопроводности полиуретана на http://cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана, наполненного фреоном, с плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0,022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК.

Индекс

Таблицы

Ссылка
Young
Ch 15.

Высокая теплопроводность — обзор

4.3.1 Состав стали и долговечность

Металлы с высокой теплопроводностью, такие как медь или алюминий, не могут использоваться для этого применения из-за их плохих механических свойств при высоких температурах и давлениях требуется для этого солнечного применения, поэтому обычно используется сталь.

Углеродистая и низколегированная нержавеющая сталь имеет лучшую теплопроводность, чем высоколегированная аустенитная нержавеющая сталь, и они дешевле, но эти стали имеют более низкую коррозионную стойкость, чем аустенитная нержавеющая сталь.

Углеродистая сталь ASTM 335 марки P22 использовалась в установке DISS в PSA, с DSG с водой в качестве HTF, и наблюдались проблемы с коррозией из-за эрозии и кавитации, вызванной двухфазным потоком. Теперь в этой технологии производители используют аустенитную нержавеющую сталь AISI 316, чтобы гарантировать механическую устойчивость к высоким рабочим давлениям и радиальным температурным градиентам, возникающим при двухфазном потоке. Толщина ресивера увеличивается в зависимости от максимального рабочего давления (100 бар), что приводит к получению более толстой трубки (> 4.5 мм), что напрямую отражается на эффективном удорожании технологии [5].

Когда в качестве HTF используются синтетические масла и органические вещества, такие как системы дифенил / дифенилоксид, обычно используется аустенитная нержавеющая сталь AISI 321L из-за ее более низкой проницаемости для водорода по сравнению с другими аустенитными нержавеющими сталями. Диффузия водорода является основным недостатком этой технологии из-за термической деградации HTF, а высокие парциальные давления водорода достигаются в вакуумном кольцевом пространстве [21].Типичная толщина стенки составляет 2 мм.

В трубках приемника расплавленной соли обычно используется смесь NaNO 3 (60 мас.%) — KNO 3 (40 мас.%) Солей (солнечная соль) или смесь NaNO 3 (7 мас.%) — KNO 3 (53 мас.%) — NaNO 2 (40 мас.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *