Теплообменники для горячего водоснабжения частного дома: Теплообменник ГВС, горячее водоснабжение от любого источника тепла

Теплообменник ГВС, горячее водоснабжение от любого источника тепла

 Организация горячего водоснабжения является одним из основных условий комфортной жизни. Существует множество различных установок и систем для подогрева воды в домашней сети ГВС, однако одним из наиболее эффективных и экономичных считается метод нагрева воды от сети отопления.

 Теплообменник для горячей воды подбирается индивидуально, исходя из запросов владельца и возможностей отопительного оборудования. Правильный расчет и грамотный монтаж системы позволят вам навсегда забыть про перебои в горячем водоснабжении.

Применение пластинчатого теплообменника для ГВС

 Нагрев воды от теплосети полностью обоснован с экономической точки зрения – в отличие от классических водонагревательных котлов, использующих газ или электроэнергию, теплообменник работает исключительно на отопительную систему. В результате конечная стоимость каждого литра горячей воды оказывается для домовладельца на порядок ниже.

Пластинчатый теплообменник для горячего водоснабжения использует тепловую энергию теплосети для нагрева обычной водопроводной воды. Нагреваясь от пластин теплообменника, горячая вода поступает к точкам водоразбора – кранам, смесителям, душевую в ванной комнате и пр.

Отбор тепла от котла отопления

 Важно учитывать, что вода-теплоноситель и нагреваемая вода никак не контактируют в теплообменнике: две среды разделены пластинами теплообменного аппарата, через которые осуществляется теплообмен.

Использовать воду из системы отопления в бытовых нуждах напрямую нельзя – это нерационально и зачастую даже вредно:

  • Процесс водоподготовки для котельного оборудования – достаточно сложная и дорогая процедура. 
  • Для умягчения воды часто используются химические реагенты, которые негативно сказываются на здоровье.
  • В трубах отопления с годами скапливается колоссальный объем вредных отложений.

 Однако использовать воду отопительной системы косвенно никто не запрещал – теплообменник ГВС обладает достаточно высоким КПД и полностью обеспечит вашу потребность в горячей воде.

Типы теплообменников для систем ГВС

Среди множества типов различных теплообменников в бытовых условиях используются только два – пластинчатые и кожухотрубные. Последние практически исчезли с рынка вследствие больших габаритов и низкого КПД.

Тип теплообменника ГВС

Пластинчатый теплообменник ГВС представляет собой ряд гофрированных пластин на жесткой станине. Все пластины идентичны по размерам и конструкции, но следуют в зеркальном отражении друг к другу и разделяются специальными прокладками – резиновыми и стальными. В результате строгого чередования между парными пластинами образуются полости, которые заполняются теплоносителем или нагреваемой жидкостью – смешение сред полностью исключено. Через направляющие каналы две жидкости движутся навстречу друг другу, заполняя каждую вторую полость, и так же, по направляющим, выходят из теплообменника отдав/получив тепловую энергию.

Чем выше количество или размер пластин в теплообменнике – тем больше площадь полезного теплообмена и выше производительность теплообменника. У многих моделей на направляющей балке между станиной и запорной (крайней) плитой остается достаточно пространства, чтобы установить несколько плит аналогичного типоразмера. В этом случае дополнительные плиты всегда устанавливаются парами, иначе потребуется менять направление «вход-выход» на запорной плите.

Схема и принцип работы пластинчатого теплообменника ГВС

Схема теплообменника для горячей воды


Все пластинчатые теплообменники можно разделить на:

  • Разборные (состоят из отдельных плит)
  • Паяные (герметичный корпус, не разборные)

Преимущество разборных теплообменников заключается в возможности их доработки (добавление или удаление пластин) – в паяных моделях эта функция не предусмотрена. В регионах с низким качеством водопроводной воды такие теплообменники можно разбирать и очищать от мусора и отложений вручную. 

Более высокой популярностью пользуются паяные пластинчатые теплообменники – из-за отсутствия зажимной конструкции они имеют более компактные размеры, чем разборная модель аналогичной производительности. Компания «МСК-Холод» производит подбор и продажу паяных пластинчатых теплообменников ведущих мировых брендов — Alfa Laval, SWEP, Danfoss, ONDA, KAORI, GEA, WTT, Kelvion (Кельвион Машимпэкс), Ридан. У нас вы можете купить теплообменник ГВС любой производительности для частного дома и квартиры.

Преимущество паяный теплообменников в сравнении с разборными

  • Небольшие габариты и вес
  • Более строгий контроль качества
  • Продолжительный срок службы
  • Устойчивость к высоким давлениям и температурам

Очистка паяных теплообменников выполняется безразборным методом. Если по истечении определенного периода эксплуатации начали снижаться теплотехнические характеристики, то в аппарат на несколько часов заливается раствор реагента, удаляющего все отложения. Перерыв в работе оборудования составит не более 2-3 часов.

Схемы подключения теплообменника ГВС

Теплообменник вода-вода имеет несколько вариантов подключения. Первичный контур всегда подключается к распределительной трубе теплосети (городской или частной), а вторичный – к трубам водоснабжения. В зависимости от проектного решения можно использовать параллельную одноступенчатую схему ГВС (стандартная), двухступенчатую смешанную или двухступенчатую последовательную схему ГВС.

Схема подключения определяется согласно нормам «Проектирования тепловых пунктов» СП41-101-95. В случае, когда соотношение максимального потока тепла на ГВС к максимальному потоку тепла на отопление (QГВСmax/QТЕПЛmax) определяется в границах ≤0,2 и ≥1 за основу принимается одноступенчатая схема подключения, если же соотношение определяется в пределах 0,2≤ QГВСmax/QТЕПЛmax ≤1, то в проекте используется двухступенчатая схема подключения.

Стандартная

Параллельная схема подключения считается наиболее простой и экономичной в реализации. Теплообменник устанавливается последовательно относительно регулирующей арматуры (запорного клапана) и параллельно теплосети. Для достижения высокого теплообмена системе требуется большой расход теплоносителя.

Стандартная схема работы ГВС

Двухступенчатая

При использовании двухступенчатой схемы подключения теплообменника нагрев воды для ГВС осуществляется либо в двух независимых аппаратах, либо в установке-моноблок. Вне зависимости от конфигурации сети схема монтажа значительно усложняется, но значительно повышается КПД системы и снижается расход теплоносителя (до 40%).

Подготовка воды выполняется в два этапа: на первом используется тепловая энергия обратного потока, которая нагревает воду примерно до 40°С. На втором этапе вода подогревается до нормированных показателей 60°С.

Двухступенчатая смешанная система подключения выглядит следующим образом:

Двухступенчатая смешанная система ГВС

Двухступенчатая последовательная схема подключения:

Двухступенчатая схема ГВС

Последовательную схему подключения можно реализовать в одном теплообменном аппарате ГВС. Этот тип теплообменника более сложное устройство в сравнение со стандартными и стоимость его порядком выше.

Расчет теплообменника для ГВС

При расчете теплообменника ГВС учитываются следующие параметры:

  • Количество жильцов (пользователей)
  • Нормативный суточный расход воды на одного потребителя
  • Максимальная температура теплоносителя в интересующий период
  • Температура водопроводной воды в указанный период
  • Допустимые теплопотери (нормативно – до 5%)
  • Количество точек водозабора (краны, душ, смесители)
  • Режим эксплуатации оборудования (постоянный/периодический)

Производительность теплообменника в городских квартирах (подключение к муниципальной теплосети) зачастую рассчитывается исключительно по данным зимнего периода. В это время температура теплоносителя достигает 120/80°С. Однако в весенне-осенний период показатели могут упасть до 70/40°С, в то время, как температура воды в водопроводе остается критично низкой. Поэтому расчет теплообменника желательно проводить параллельно для зимнего и весенне-осеннего периодов, при этом никто не может дать гарантии, что расчеты окажутся на 100% верны – ЖКХ нередко «пренебрегают» общепринятыми стандартами обслуживания потребителей.

В частном секторе, при монтаже теплообменника к собственной системы отопления, точность расчета на ступень выше: вы всегда уверены в работе своего котла и можете указать точную температуру теплоносителя.

Наши специалисты помогут вам выполнить правильный расчет теплообменника для ГВС и подобрать наиболее подходящую модель. Расчет выполняется бесплатно и занимает не более 20 минут – укажите свои данные и мы вышлем вам результат.

Теплообменники ГВС

Теплообменник для горячей воды (ГВС) от отопления: виды, обвязка

Наличие теплой воды — нормальное требование для комфортного существования. Вот только далеко не везде есть возможность подключиться к централизованному источнику горячей воды. В большинстве частных домов и в некоторых многоэтажках приходится заботиться об этом самостоятельно. Один из вариантов — использовать теплообменник для горячей воды от отопления. Во всяком случае, в отопительный сезон будете с горячей водой. 

Принцип работы

Теплообменники для приготовления воды ГВС работают по бесконтактному принципу. Устройство их может быть разным, но принцип действия не отличается — работают они по принципу теплопередачи. Есть нагретый теплоноситель (в данном случае из системы отопления), который подается в  трубы/каналы теплообменника. Горячий теплоноситель отдает часть тепла трубкам, по которым течет. По другим, параллельно расположенным каналам, течет вода, которую необходимо нагреть. Контактируя с нагретыми теплоносителем стенками, она нагревается. Именно так и работает теплообменник для горячей воды от отопления.

Принципиальная схема использования теплообменника для подготовки горячей воды от отопления

Принципиальная схема использования теплообменника для подготовки горячей воды от отопления

Чтобы нагрев был эффективным, теплообменник должен быть сделан из материала с высокой теплопроводностью. Обычно это металлы — медь, нержавеющая сталь. Медь — дорогой металл, но имеет отличную теплопроводность. Нержавеющая сталь хуже проводит тепло, но за счет прочности стенки могут быть очень тонкими, что делает такие теплообменники тоже эффективными.

Как использовать теплообменники для получения ГВС от отопления

Есть несколько возможностей нагревать воду для бытовых нужд при помощи теплообменника и отопления:

  • Нагрев проточной воды. Недостаток — ограниченные возможности по расходу горячей воды, отсутствие запаса, сложность реализации поддержания стабильной температуры (надо организовывать узел подмеса или ставить контроллер). Достоинства — требуется мало места, малое количество компонентов.
  • Нагрев воды в какой-то емкости. Теплообменник для горячей воды от отопления опускается в какую-то емкость, заполненную водой. По сути, это уже бойлер косвенного нагрева. Но в нем установлен теплообменник и подключается он к ГВС. Но речь сейчас не о них, так что не в этой статье. Самый элементарный теплообменник - труба, по которой бежит теплоноситель

    Самый элементарный теплообменник — труба, по которой бежит теплоноситель

Виды теплообменников для горячей воды

Вообще, существует много конструкций теплообменников, так как  они используются часто, в различных устройствах. Поговорим подробнее о наиболее доступных, надежных и эффективных. Для бытовых целей используются два вида:

  • Пластинчатые (паянные или разборные).
  • Кожухотрубные.
Теплообменник для горячей воды от отопления: в частном секторе используются два типа - пластинчатые (слева) и кожухотрубные (справа)

Теплообменник для горячей воды от отопления: в частном секторе используются два типа — пластинчатые (слева) и кожухотрубные (справа)

В них тепловые среды — теплоноситель от системы отопления и вода из ХВС (холодного водоснабжения) не смешиваются. Каналы, по которым они протекают, между собой никак не связаны. Поэтому при закачке на подогрев воды питьевого качества, такую же и получаем на выходе.

Пластинчатые

Пластинчатый теплообменник для горячей воды от отопления состоит из нескольких металлических пластин с выдавленными ходами. Собираются они в зеркальном отражении, так что получаются изолированные друг от друга каналы для циркуляции жидкостей. Пластины изготавливают методом штамповки из листового металла. Толщина — до 1 мм. Металл, как правило, нержавеющая антикоррозионная сталь, но есть и из титана, специальных сплавов.

Каналы на пластинах чаще всего делают в виде равносторонних треугольников с разными углами. Чем острее угол, тем быстрее движется жидкость, чем тупее, тем больше сопротивление и медленнее движение. По схеме движения сред по каналам, пластины бывают одноходовыми и многоходовыми. В первых направление движения сред не меняется от начала и до конца. Еще их отличительная особенность — среды движутся в противоток (для большей эффективности).

В многоходовых пластинчатых теплообменниках каналы расположены так, что среды меняют направление движения по нескольку раз. Строение у них более сложное, стоимость выше, но они способны отбирать максимум тепла (высокий КПД). В многоходовых теплообменниках можно добиться небольшой разницы в температурах обоих жидкостей.

По способу соединения бывают двух типов — разборными и паянными. Пластины разборных пластинчатых теплообменников соединяются при помощи специальных эластичных прокладок (из резины, фторопласта). Для обеспечения герметичности каналов, они стягиваются металлическими стержнями-стяжками. Для стабилизации в конструкции присутствуют две массивные плиты — неподвижная и подвижная. На неподвижной закреплены стержни, на них нанизываются пластины с ходами. Чем их больше, тем больше мощность, больше передаваемая теплота. Последней устанавливается подвижная пластина, на стяжки накручиваются гайки, зажимаются до герметичности каналов. Благодаря такой конструкции, эти теплообменники можно разобрать, прочистить, добавить или убрать пластины. И в этом достоинство этой конструкции. Недостаток — пластинчатый теплообменник для горячей воды от отопления имеет больший вес и размер (если сравнивать с паянными).

Два вида пластинчатых теплообменных устройств - паяный (слева) и разборной (справа)

Два вида пластинчатых теплообменных устройств — паяный (слева) и разборной (справа)

Паянные пластинчатые теплообменники собираются на заводе. Нержавеющие пластины свариваются в аргонной среде, что позволяет избежать коррозии в местах сварки. Паянные пластинчатые теплообменники неразборные, в связи с чем могут возникнуть сложности с промывкой. Их преимущество — более компактные размеры и меньший вес, так как нет необходимости в стабилизирующих плитах.

У каждого теплообменника есть входы и выходы для подключения теплоносителя (от отопления) и воды. Эти выходы могут быть в виде фланца, трубы под сварку, резьбового соединения. Они позволяют подключить теплообменник для горячей воды от отопления к трубам любого типа.

Кожухотрубные

Кожухотрубные теплообменник для горячей воды от отопления проще по конструкции, но менее эффективны, из-за чего, для обеспечения необходимой температуры, должны иметь солидные размеры. Низкая эффективность, большие размеры и материалоемкость — это причины, по которым в быту они используются реже. Но их конструкция надежней — они выдерживают суровые условия эксплуатации. Так что в промышленности чаще применяется именно этот вид теплообменных агрегатов.

Кожухотрубные теплообменники представляют собой трубу-кожух, внутри которой уложены более мелкие трубки. Обычно это медные трубки, но могут быть и из другого материала, причем не только из металла.

Кожухотрубный теплообменник для ГВС - устройство и принцип работы

Кожухотрубный теплообменник для ГВС — устройство и принцип работы

По тонким трубкам движется нагреваемая вода, которая подается затем в краны. Теплоноситель из системы отопления движется по пространству внутри кожуха, которое не занято трубками с подогреваемой водой. Направление движения — в противоток. Этим обеспечивается большая теплоотдача. Но стоит сказать, что общее КПД таких установок ниже, чем пластинчатых.

Схемы подключения

Кроме типа теплообменника, надо выбрать еще и способ его подключения. Есть несколько типовых схем. В любом случае, два выхода подключаются к отоплению, один — к холодному водоснабжению, один — к разводке горячей/подогретой воды.

Параллельная (стандартная)

В самом простом случае теплообменник для горячей воды от отопления подключают параллельно существующей системы. Такая схема проще всего в реализации, но для достаточного нагрева необходимо, чтобы теплоноситель двигался активно. То есть, обязательно в подаче теплоносителя наличие циркуляционного насоса. В системах с естественной циркуляцией такой тип установки малоэффективен.

Теплообменник для горячей воды от отопления: схема параллельного подключения

Теплообменник для горячей воды от отопления: схема параллельного подключения

При монтаже, подача теплоносителя всегда подключается к верхнему патрубку, а обратка — к нижнему. При подключении воды ситуация противоположная — холодная вода подключается в нижний патрубок, гребенка горячей — к верхнему.

Схема обвязки теплообменника для ГВС от отопления

Схема обвязки теплообменника для ГВС от отопления

Простейшая схема обвязки содержит отсечные краны на всех четырех патрубках — для возможности отключения, чистки, технического обслуживания. Также на входе от отопления устанавливается грязевик — фильтр с мелкой сеткой. Так как зазоры в теплообменнике совсем небольшие, попадание окалины либо других загрязнений может вызвать закупорку каналов. Такой же фильтр желательно установить на вводе холодной воды — дольше будет работать оборудование.

Данную схему можно усовершенствовать, сделав рециркуляцию горячей воды в гребенке ГВС (закольцовывают после последней точки разбора). При таком построении, тепло неиспользуемой горячей воды не пропадает, а используется: вода из гребенки ГВС подмешивается к холодной воде из водопровода. На подогрев поступает уже не совсем холодная, а теплая. Теплообменник для горячей воды от отопления только доводит ее до требуемой температуры.

Обвязка с контуром рециркуляции ГВС

Обвязка с контуром рециркуляции ГВС

При разборе нагретой воды, на подогрев идет преимущественно вода из трубы холодного водоснабжения. Когда разбора нет, по кругу насос «гоняет» теплую, нагрузка на котел отопления совсем небольшая.

Управление температурой происходит при помощи датчика и регулирующего клапана, установленного на обратке (можно и на подачу поставить). Показания с датчика (температура воды в выходной ветке на ГВС) поступают на прибор управления. По результатам сравнения с выставленными данными, регулируется интенсивность потока теплоносителя, тем самым регулируется интенсивность нагрева.

Двухступенчатая

Всем хороши описанные выше схемы, кроме того, что для нагрева должен проходить большой поток теплоносителя. Иначе вода не успеет прогреться. Второй недостаток — приходится «заворачивать» поток теплоносителя из системы отопления. При большом расходе и недостаточной мощности отопительного котла, в холода могут быть заметны понижения температуры. Для более рационального использования тепла придумали двухступенчатую систему подключения теплообменников.

Один из вариантов двухступенчатого подключения теплообменников

Один из вариантов двухступенчатого подключения теплообменников

В данном случае первичный нагрев идет от обратного трубопровода отопления. Тем самым более рационально используются энергоносители. Доводится температура до нормы при помощи повторного нагрева, но уже от теплоносителя, который идет на подачу. Подключить теплообменник для горячей воды от отопления можно параллельно — как на верхней схеме. Второй вариант представлен на нижней — в разрыв подающей трубы от системы отопления.

Вариант двухступенчатого нагрева

Вариант двухступенчатого нагрева

При использовании второй схемы, первичный нагрев происходит от обратки. Нагретая в этом теплообменнике вода подается на второй, установленный на подаче. Тут она доводится до нужной температуры и уходит потребителю.

Есть еще схема двуступенчатого нагрева с использованием тепла от рециркуляции горячей воды. В этом случае рационально используется тепло ранее нагретой воды.

Первичный нагрев - от рециркуляции горячей воды, окончательный - от системы отопления

Первичный нагрев — от рециркуляции горячей воды, окончательный — от системы отопления

При использовании любой из этих схем, нагрузка на котел значительно снижается. Утилизируется то тепло, которое раньше не использовалось. Тем самым эти схемы помогают экономить на энергоносителях.

Для нормальной работы теплообменника, подключенного по любой из схем, при монтаже необходимо соблюдать технологические требования. Обязательно соблюдение уклона труб ГВС в сторону точек разбора. Если трасса проходит над дверью, в высшей точке ставят воздухоотводчик. Кроме того, при длинной трассе, необходимы дополнительные автоматические или ручные устройства для сброса воздуха (воздухоотводчики). В противном случае могут быть проблемы с подачей воды.

для чего он нужен в частном доме и как осуществить его подбор и расчет своими руками

Теплообменник для горячей воды от отопления – самый экономичный вариант организации горячего водоснабжения частного дома.

Теплообменник увеличивает эффективность отопления, обеспечивает бесперебойное снабжение дома горячей водой – и все это делается одновременно.

Что это такое

Что такое теплообменник для горячего водоснабжения – это устройство, в котором производится обмен тепловой энергией между двумя раздельными средами. Говоря проще, горячая вода, находящаяся в одной емкости, нагревает холодную воду, находящуюся в другой, причем, между собой эти емкости не сообщаются. Простым примером прибора можно назвать трубу с холодной водой, которая помещена в трубу большего диаметра с горячей водой.

Вода в меньшей трубе начнет нагреваться, стремясь уравнять температуру с внешней средой. Теплообменник для ГВС принцип работы его не меняется при любом типе устройства.

Для поддержания процесса в стабильном режиме обе жидкости движутся (циркулируют) с определенной скоростью, что позволяет получить устойчивый постоянный процесс.

При правильной конструкции и точной настройке скорости циркуляции обеих жидкостей потери тепла сводятся к минимуму.

Применение аппарата позволяет использовать один источник нагрева для систем отопления и ГВС одновременно, снижая тем самым количество оборудования и расходы на теплоноситель. Прибор для горячего водоснабжения частного дома выгоден тем, что позволяет добиться большей автономности жилища и уменьшить зависимость от сетевых ресурсов.

Обратите внимание! Этот аппарат не является самостоятельным нагревателем, для работы ему требуется теплоноситель, уже имеющий нужную температуру среды.

Для чего нужен

Теплообменник в системе отопления и ГВС может выполнять несколько функций:

  • Нагрев воды для бытовых нужд (системы отопления и ГВС).
  • Стабилизация работы (подогрев теплоносителя от горячей воды в собственном котле).

Отопление дома непосредственно через теплообменник требует наличия теплоносителя со стабильной и регулируемой температурой. Если использовать прямой подогрев теплоносителя в котле, температура будет постоянно меняться, добиться нужной степени нагрева будет очень сложно.

Решает эти проблемы аппарат, в котором регулировка параметров теплоносителя осуществляется плавно и эффективно.

Наличие горячего теплоносителя дает возможность нагрева воды для бытовых нужд.

Учитывая, что вода движется независимо друг от друга, можно использовать тепло одной системы для нагрева другой без всяких ограничений. Эта функция выполняется аппаратом, который осуществляет передачу тепловой энергии от теплоносителя к воде из системы отопления и ГВС, делая ее независимой от окружающих сетей и снимая зависимость от компаний-поставщиков.

Важно! Теплообменник для отопления частного дома – многоплановый механизм, позволяющее значительно экономить на горячем водоснабжении.

От каких факторов зависит эффективность

На работоспособность влияют несколько факторов:

  • Конструкция устройства.
  • Режим работы, температура отдающего теплоносителя.
  • Величина потерь тепла или, проще, состояние внутренней поверхности трубок (отсутствие накипи или наслоений, работающих как теплоизолятор и снижающих способность к принятию или отдаче тепловой энергии).

Поскольку устройство выбирается на стадии проектирования и монтажа, а режим работы устанавливается при настройке системы отопления в целом, то наиболее важным фактором становится борьба с потерями. Для этого теплообменник бытовой периодически промывают и очищают с помощью различных средств, которых достаточно в продаже.

Для удаления накипи применяют кислотные составы, а жировые отложения очищаются с помощью каустической соды. После очистки устройство тщательно промывают и вновь подключают к оборудованию. Другим средством, осуществляющим профилактику и снижающим степень загрязнения, являются фильтры. С их помощью отсеиваются посторонние частицы, взвесь, жировые соединения. При этом, фильтры также подлежат периодической промывке или замене.

Обратите внимание! На отложение солей или появление накипи на стенках или поверхностях устройства в большой степени влияет скорость движения воды. Чем она выше, тем меньше возможность образования наслоений, но при этом снижается работоспособность. Теплообменник для каждого дома нуждается в правильном выборе режима работы.

Классификация

Вне зависимости от модели, они делятся на стальные и чугунные. Такое деление возникло в процессе развития и формирования систем отопления и водоснабжения.

Традиционно использовались чугунные устройства, поскольку их было легче производить – отливка производилась быстрее и обходилась дешевле, чем изготовление стальных деталей, их сборка, герметизация и т.д.

Кроме того, отсутствие или дороговизна нержавеющих сталей не оставляла никаких вариантов.

Со временем возможности материалов уравнялись, а производственный процесс позволил изготавливать изделия любой сложности из нержавейки. При этом, от чугуна как материала не отказались, так как простота и скорость литьевого производства сохранили свою привлекательность. И по сей день приборы из обоих материалов производятся, активно используются.

Чугунный

Теплообменники из чугуна отличаются большим весом и массивностью. Отливка корпусов с тонкими стенками сложна и ненадежна, поэтому чугунный аппарат всегда значительно тяжелее, чем стальной. Кроме того, отрицательным свойством материала является его хрупкость.

При резких механических или термических воздействиях – ударах, резком заполнении холодного корпуса горячей водой – механизм может треснуть, что не поддается ремонту.

При этом, обычно чугунные корпуса имеют секционное строение, что позволяет изменять размеры и мощность устройства и удалять вышедшие из строя секции. Чугун подвержен коррозии, появлению на внутренней поверхности накипи. Эффективность теплоотдачи у таких механизмов довольно высока, хотя снижена возможность оперативного изменения режима работы.

Стальной

Стальные (нержавеющие) приборы полностью лишены недостатков своих чугунных собратьев. Они прочны, не разрушаются от ударов и резких перепадов температуры, в гораздо меньшей степени подвержены коррозии

(на нержавейку воздействует только электрохимическая коррозия). Сборка их производится прямо на заводе, что осложняет их ремонтопригодность.

Теплоотдача стали высока, она быстро набирает или отдает тепло, что при активных режимах использования может привести к усталостным напряжениям металла, появлению трещин или выходу прибора из строя.

Наиболее распространен пластинчатый теплообменник для отопления, представляющий собой набор плоских пластин с каналами для прохода греющей и нагреваемой среды. Большая площадь пластин способствует эффективной передаче тепла.

Типы моделей

Установлены приборы могут быть в разных точках, что влияет на их эффективность, а также требует различного конструктивного решения. В зависимости от вида и модели источника нагрева могут быть использованы разные типы:

Внутренние

Теплообменники, находящиеся непосредственно в нагревательных устройствах – котлах, печах и т.д. Установка в такой точке дает максимальную эффективность, так как практически отсутствуют потери на нагрев корпуса, на охлаждение теплоносителя во время транспортировки от нагревателя до аппарата.

Чаще всего такие устройства встроены в котел уже на стадии производства, что упрощает задачи по монтажным или наладочным работам – требуется лишь настройка оптимального режима функционирования.

Внешние

Внешние теплообменники устанавливаются отдельно от источника тепла. Такой способ применяется при невозможности или значительной удаленности источника от системы отопления. Например, если в доме используется отопление от сети ЦО, теплообменник бытовой для нагрева холодной воды будет являться внешним устройством. Эффективность такого устройства несколько ниже, чем у внутренних типов, что обусловлено меньшей температурой теплоносителя.

Какой вид лучше выбрать

Подбор теплообменника для гвс осуществляется в случае, если отопление подается не от котла, или в системе его не предусмотрено. Для местных систем отопления или при наличии подключения дома к системе ЦО выбор внешнего устройства очевиден, поскольку иных вариантов не имеется.

Подбор теплообменника производится по имеющимся параметрам системы и обусловлен строением котла, способом получения теплоносителя, величиной необходимого потребления воды и т.д.

Как произвести расчет

Расчет для теплообменника гвс производится путем довольно сложных вычислений, требующих специальной подготовки. Детальный расчет требует составления теплового баланса, учета устройств теплопередачи, расчета средней разности температур и т.д. Все эти операции требуют познаний в области теплотехники, которыми обладает далеко не каждый, а вероятность ошибки очень высока даже у специалиста.

Выход из положения можно найти в сети интернет – онлайн-калькуляторы, в достаточном количестве имеющиеся на сайтах производителей теплового оборудования, позволяют получить нужные данные просто и достаточно надежно. Для проверки расчет следует продублировать несколько раз, сопоставить полученные результаты для выбора наиболее верного.

Монтаж

Работы по монтажу представляют собой установку и подключение устройства к соответствующим магистралям. Теплообменник водяной необходимо подключить к системе ГВС. Порядок действий определяется типом конструкции устройства и точкой установки в помещении.

Как установить внутренний

Внутренний теплообменник обычно уже установлен и нуждается только в подключении к системе ГВС. Все необходимые действия – присоединение соответствующих патрубков в разрыв отвода от трубопровода ХВС и к вновь образованной линии ГВС.

Как установить внешний

Монтаж внешних устройств производится в непосредственной близости от сети питания. Производится подключение теплоносителя в разрыв питающей магистрали. Система ГВС подключается на выходной патрубок, на входной подключается отвод от ХВС. Выполняется настройка или запуск устройства.

Важно! Все входящие или выходящие линии должны быть оборудованы вентилями с обводными трубопроводами для отключения теплообменника при необходимости ремонта или обслуживания.

Готовим механизм самостоятельно

Для самостоятельного изготовления следует, прежде всего, определиться с моделью устройства. Изготовить теплообменник для системы отопления своими руками проще всего бойлерного типа, поскольку такой вариант наиболее доступен и эффективен.

Упрощая, такое устройство представляет собой бочку с нагретым теплоносителем, внутри которой находится змеевик или трубная доска с множеством трубок для нагрева ГВС.

Вариантов может быть очень много, каждый мастер привносит в конструкцию какие-то свои идеи.

Водяная рубашка

Самодельный теплообменник водоводяной «водяная рубашка» – это тот самый вариант, о котором уже упоминалось. Труба (емкость), расположенная внутри другой трубы (емкости) с теплоносителем. Изготовление такой модели несложно, но потребует обеспечения герметичности большей емкости, что в домашних условиях непросто сделать. Температурные расширения, неминуемые при эксплуатации, оказывают отрицательное влияние на прочность сварного шва.

Эффективность системы прямо пропорциональна длине внутреннего трубопровода, для чего обычно используют змеевики или подобные устройства, увеличивающие длину и площадь соприкосновения поверхности трубы.

Распространенным вариантом является медная трубка, свернутая кольцами или зигзагами, омываемая горячим теплоносителем из большей емкости.

Трубная доска

Такой прибор представляет собой пучок трубок, присоединенных к двум плоским пластинам с отверстиями (отсюда и название). Пластины отсекают емкости, одна из которых имеет входной и выходной патрубки для поступления холодной воды и вывода нагретой. Вторая емкость служит для обеспечения циркуляции воды, увеличивает длину трубок и, соответственно, площади соприкосновения.

Вся конструкция помещается в корпус с горячим теплоносителем, который нагревает воду в трубках. Такая система требует участия умелого сварщика, так как количество трубок велико, требует качественного присоединения. Нарушение герметичности любого шва приведет к перемешиванию воды с теплоносителем, что недопустимо.

Полезное видео по теме


Теплообменник – несложное, эффективное устройство, необходимое в частном доме позволяет значительно сэкономить на поставках ресурсов. Самостоятельное изготовление прибора вполне возможно, но потребует определенных познаний и качественной сборки.

что это такое, как сделать своими руками для частного дома, принцип работы системы

Чтобы увеличить уровень комфорта своего жилища, владельцы прибегают к использованию различных приспособлений. Бесперебойное водоснабжение горячей и холодной водой остается наиболее актуальным вопросом. Среди разного рода устройств, обеспечивающих подобные нужды, можно выделить теплообменник от отопления для горячей воды.

Особенности

Данный прибор дает возможность в значительной степени расширить функциональные возможности оборудования, основным назначением которого является обогрев помещений. Поскольку подача холодной и горячей воды является фактором, свидетельствующим о благоустроенности жилого дома, наличие эффективного оборудования для этой цели является обязательным.

С водоснабжением холодной водой в частных домах ситуация обстоит несколько проще, чем с ГВС. Горячее водоснабжение представляет собой более сложную систему, где продуктивность работы напрямую зависит от нагревательного механизма. В роли такого элемента довольно часто выступает отопительный бытовой котел.

В продаже существует огромное количество подобных агрегатов, которые различаются по своим конструктивным особенностям. Исходя из этого, нагрев жидкости будет осуществляться по-разному. К одному из вариантов, который в последнее время получил широкое распространение, стоит отнести теплообменник для горячего водоснабжения.

Устройство имеет такое название благодаря своей главной функции – в теплообменниках происходят процессы обмена температурами. А поскольку дело касается ГВС, становится понятно, что тепловая энергия от горячей воды из отопления передается холодной, чтобы та достигла нужной температуры. На некоторых предприятиях используются воздушные теплообменники с вентиляторами, кроме того, существуют теплообменники для дымохода, которые позволяют экономить тепловую энергию.

Особенность процесса заключается в том, что горячая вода из отопительной системы циркулирует через теплообменник, при этом отдавая определенную часть тепла холодной жидкости, находящейся в какой-либо емкости. Обычно в роли резервуара выступает бойлер. А весь процесс именуется косвенной технологией нагрева, поскольку в ходе обеспечения нужной температуры воде не происходит непосредственного контакта энергоносителя с конструкцией подогрева системы подачи воды.

На работу теплообменника оказывают влияние следующие факторы:

  • площадь контакта двух сред и самого агрегата;
  • показатели теплопроводности материалов, которые использовались при изготовлении конструкции;
  • разница в температуре между холодной водой и водой из системы отопления. Чем больше это значение, тем меньше будет эффективность работы прибора.

Некоторые мастера для домашнего применения в качестве такого устройства используют самодельные изделия, которые будут выполнять передачу тепла между жидкими средами.

Виды и принцип работы

Теплообменное оборудование на современном рынке представлено в большом многообразии.

Весь имеющийся ассортимент товаров данной линейки можно разделить на такие два вида, как:

  • пластинчатые агрегаты;
  • кожухотрубные устройства.

Последняя разновидность за счет низкого показателя КПД, а также больших размеров почти не реализуется сегодня на рынке. Пластинчатый теплообменник состоит из одинаковых пластин гофрированного типа, которые фиксируются к прочной станине из металла. Элементы расположены в зеркальном отражении относительно друг друга, а между ними имеются стальные и резиновые уплотнители. От размеров и количества пластин напрямую зависит полезная площадь теплообмена.

Пластинчатые приборы можно разделить на два подвида исходя из конфигурации, такие как:

  • паяные агрегаты;
  • разборные теплообменники.

Разборные устройства отличаются перед продукцией паяного типа сборки тем, что при первой же необходимости приспособление можно модернизировать и подстроить под личные нужды, например, добавить либо же удалить определенное количество пластин. Разборные теплообменники востребованы в областях, где для бытовых нужд используется жесткая вода, за счет особенностей которой на элементах агрегата скапливается напить и различные загрязнения. Эти новообразования отрицательно сказываются на эффективности работы устройства, поэтому нуждаются в регулярной очистке, а благодаря своей конфигурации такая возможность есть всегда.

Кроме того, теплообменники разборного типа отличаются компактными размерами, за счет отсутствия зажимной конструкции в системе.

Неразборные устройства выделяются следующими особенностями:

  • высокий уровень устойчивости к высокому давлению и колебаниям температуры;
  • большой эксплуатационный срок;
  • небольшой вес.

Чистка паяных агрегатов происходит без разборки всей конструкции.

Если налицо стало ухудшение работы прибора по истечении определенного периода использования, то специалисты рекомендуют приобрести специальный реагент, который поможет справиться с новообразованиями и накипью внутри теплообменника.

Из расчета вида и варианта установки агрегата следует выделить два типы теплообменников для горячей воды от отопления.

  • Теплообменники внутреннего типа расположены в самих нагревательных приборах – печах, котлах и других. Монтаж такого рода позволяет получить максимальную эффективность в ходе эксплуатации изделий, поскольку потери тепла на нагрев корпуса будут минимальными. Как правило, такие устройства уже на стадии изготовления котлов встраиваются в него. Это в значительной степени облегчает монтаж и пусконаладочные работы, поскольку требуется только выполнить настройку необходимого режима работы теплообменника.
  • Внешние теплообменники необходимо подключать отдельно от источника тепловой энергии. Такие устройства актуальны для использования в случаях, когда работа прибора зависит от удаленного источника отопления. В качестве примера выступают дома, в которых предусмотрено централизованное отопление. В таком варианте бытовой агрегат, нагревающий воду, выступает в роли внешнего приспособления.

Теплообменники внешнего типа имеют более низкий показатель эффективности работы в сравнении с внутренними устройствами.

Принимая во внимание вид материала, из которого выполняются проборы, стоит выделить следующие модели:

  • стальные теплообменники;
  • приборы, выполненные из чугуна.

Кроме того, выделяются системы с медной пайкой. Они используются для централизованного отопления многоквартирных домов.

Никелевый припой рекомендован для отопительных систем, которые эксплуатируются в промышленной сфере либо в ходе контакта с химически агрессивными теплоносителями.

Особенностями чугунного оборудования стоит считать следующие его характеристики:

  • сырье довольно медленно остывает, что позволяет экономить на работе всей отопительной системы;
  • материал имеет высокие показатели теплопроводности, всем изделиям из чугуна присущи свойства, при которых он очень быстро нагревается и отдает тепло другим элементам;
  • сырье отличается стойкостью к образованию накипи на основании, кроме того, он более устойчив к коррозии;
  • при помощи монтажа дополнительных секций можно увеличить мощность и функциональные возможности агрегата в целом;
  • продукцию из этого материала можно транспортировать по частям, разбив его на секции, что облегчает процесс доставки, а также монтаж и работы по обслуживанию теплообменника.

Как и у любого другого товара, у подобного зависимого прибора имеются следующие недостатки:

  • чугун отличается небольшой устойчивостью к резким температурным колебаниям, подобные явления могут быть чреваты образованием трещин на приборе, что отрицательно скажется на показателях мощности теплообменника;
  • даже имея большие размеры, чугунные агрегаты очень хрупкие, исходя из чего механические повреждения, в особенности в ходе транспортировки продукции, могут серьезно повредить его;
  • материал склонен к сухой коррозии;
  • большая масса и габариты прибора иногда усложняют разработку и монтаж системы.

Стальные теплообменные приборы для подачи горячей воды примечательны следующими достоинствами:

  • высокий показатель теплопроводности;
  • небольшая масса продукции. Сталь не утяжеляет систему, поэтому подобные устройства являются оптимальным вариантом в случае, когда необходим теплообменник, задачей которого является обслуживание большой площади;
  • стальные агрегаты устойчивы к механическим воздействиям;
  • теплообменник из стали не реагирует на колебания температур внутри конструкции;
  • материалу присущи хорошие показатели эластичности, однако, длительный контакт с сильно нагретой либо охлажденной средой может привести к образованию трещин в области сварных швов.

К минусам приборов относятся следующие особенности:

  • предрасположенность к электрохимической коррозии. Поэтому при постоянном контакте с агрессивной средой эксплуатационный срок прибора существенно сократится;
  • в устройствах отсутствует возможность увеличения эффективности работы;
  • стальной агрегат очень быстро теряет тепло, что чревато повышенным расходом топлива для продуктивного функционирования;
  • низкий уровень ремонтопригодности. Своими руками починить устройство практически невозможно;
  • окончательная сборка теплообменника из стали производится в условиях цеха, где он был изготовлен. Агрегаты представляют собой монолитные блоки больших размеров, за счет чего возникают сложности с их доставкой.

Некоторые производители, чтобы увеличить качество стальных теплообменников, покрывают его внутренние стенки чугуном, благодаря этому возрастает надежность конструкции.

Схема подключения

Работы по монтажу включают в себя установку и подключение прибора к необходимым коммуникациям. Технология работ зависит от типа теплообменника для горячего водоснабжения, а также от места его установки в помещении. Для монтажа устройства внутреннего типа необходимо лишь подключение его к системе ГВС.

Технология выполнения работ сводится к присоединению соответствующих патрубков в разрыв отвода от трубопровода холодного водоснабжения и новой системы подачи горячей воды. Внешние агрегаты располагаются вблизи от источника питания. Устройство нужно подключить в разрыв магистрали, система ГВС подводится к выходному патрубку, на входной патрубок проводится подключение отвода холодного водоснабжения.

После выполнения всех вышеперечисленных действий выполняется настройка и запуск теплообменника. При подключении приборов необходимо помнить, что все входящие и выходящие линии требуют наличия специальных вентилей, за счет которых при необходимости можно выполнить отсоединение теплообменника от системы отопления для выполнения обслуживания или ремонтных работ.

Как сделать?

Для того чтобы самостоятельно сделать теплообменник для горячей воды от отопления, в первую очередь стоит определиться с выбором типа устройства. Проще всего будет сделать устройство бойлерного типа. Агрегат представляет собой бочку с теплоносителем, внутри которой будет расположен змеевик для нагрева ГВС.

Для выполнения работ понадобятся следующие материалы и изделия:

  • металлическая трубка и бак;
  • анод;
  • регулятор мощности.

Трубка скручивается в спираль, в емкости выполняются два отверстия, нижнее будет использовано для подвода холодной воды, верхнее – для горячей. Можно также сделать так называемую трубную доску. Такое изделие состоит из трубок, которые присоединяются к двум пластинкам с отверстиями. Пластины отсекают друг от друга емкости, в первой происходит поступление холодной воды и вывод нагретой, вторая емкость используется для циркуляции воды, увеличивая длину трубок и площадь контакта. Такое устройство опускается в корпус теплоносителя, который нагреет воду в трубках.

Советы

Главной проблемой, с которой сталкивается человек в ходе эксплуатации теплообменника, является накипь. Она выступает в роли теплоизоляционного слоя, который увеличивает время, требуемое для нагрева воды, как следствие – возрастает расход электроэнергии. Производители для снижения риска образования накипи стараются использовать в своих системах специальные трубки, которые проходят определенную полировку, а также изготавливаются из материалов, устойчивых к ее образованию.

Современные технологии позволяют бороться с накипью при помощи магнитного воздействия на воду. Чтобы сделать правильный выбор теплообменника для горячего водоснабжения от отопления стоит учесть строение и тип имеющейся системы отопления, ее параметры и величину потребления воды.

Более подробно о теплообменниках вы можете узнать из видео.

Пластинчатый теплообменник ГВС: схема обвязки и расчет

Обеспечить себе в доме или квартире горячее водоснабжение можно многими способами и непосредственный нагрев, например прямоточным электронагревателем или бойлером – не самый эффективный способ. В простоте и надежности отлично зарекомендовал себя пластинчатый теплообменник ГВС. Если есть источник тепла, например автономное отопление или даже централизованное, то тепло для нагрева воды вполне разумно взять от них, не тратя дорогостоящее электричество для этих целей.

Устройство и принцип работы

Пластинчатый теплообменник (ПТО) обеспечивает переход тепла от нагретого теплоносителя холодному, при этом не перемешивая их, развязывая два контура между собой. Теплоносителем может быть пар, вода или масло. В случае с горячим водоснабжением чаще источником тепла является теплоноситель системы отопления, а нагреваемой средой – холодная вода.

Конструктивно теплообменник представляет собой группу гофрированных пластин, собранных параллельно друг другу. Между ними образуются каналы, по которым течет теплоноситель и нагреваемая среда, притом послойно они чередуются между собой, не перемешиваясь при этом. За счет чередования слоев, по которым текут жидкости обоих контуров, увеличивается площадь теплообмена.

Схема работы теплообменника

Гофрирование чаше выполняется в виде волн, притом ориентированных так, чтобы каналы одного контура располагались под углом к каналам второго контура.

Подключение входов и выходов делаются так, чтобы жидкости текли навстречу друг другу.

Поверхность и материал пластин подбирается исходя из требуемой мощности теплообмена, вида теплоносителя. В особенно эффективных и продуманных теплообменниках поверхность формуется для возбуждения завихрений возле поверхности пластины, повышая теплообмен, не создавая сильного сопротивления общему току.

Теплообменник включается между двумя контурами:

  1. Последовательно к системе отопления или параллельно с наличием регулирующей арматуры.
  2. К входу от холодного водопровода и выходом к потребителю ГВС.

Холодная вода, протекая через теплообменник нагревается за счет тепла от системы отопления до требуемой температуры и подается на кран потребителя.

Основные характеристики пластинчатого теплообменника:

  • Мощность, Вт;
  • Максимальная температура теплоносителя, оС;
  • Пропускная способность, производительность, литры/час;
  • Коэффициент гидравлического сопротивления.

Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин.

Максимальная температура задается подбором материалов и способом соединения пластин и корпуса теплообменника.

Пропускная способность повышается с увеличением числа пластин, так как они подключаются фактически параллельно, то каждая новая пара пластин добавляет дополнительный канал для тока жидкости.

Коэффициент гидравлического сопротивления важен при расчете нагрузки на систему отопления, где от этого зависит выбор циркуляционного насоса, немаловажен и для других источников тепла. Зависит от типа гофрирования пластин и размера сечения каналов и их количества.

Именно по этим параметрам подбирается в итоге теплообменник для конкретной ситуации. Чаще всего пластинчатые теплообменники имеют разборную конструкцию, в которой можно наращивать или уменьшать число пластин и выбирать их тип и размер. Мощность и производительность теплообменника должно хватать для того, чтобы нагреть проточную холодную воду, и при этом не создать критической нагрузки на систему отопления.

Для наиболее востребованных случаев, каким является обеспечение горячей водой частного хозяйства, дома или квартиры производятся готовые теплообменники с постоянными характеристиками.

Расчет

Выбор подходящего теплообменника сложно выполнить, оперируя только одной лишь его мощностью или пропускной способностью. Эффективность подготовки ГВС зависит и от состояния теплоносителя в первом контуре и во втором, от материала и конструкции теплообменника, скорости и массовой части теплоносителя, проходящего в единицу времени через пластинчатый теплообменник. Однако, естественно следует предварительно выполнить расчет, позволяющий прийти к определенному сочетанию мощности и производительности для выбора подходящей модели.

Базовые данные необходимые для расчета:

  • Тип среды в обоих контурах (вода-вода, масло-вода, пар-вода)
  • Температура теплоносителя в системы отопления;
  • Максимально допустимое снижение температуры теплоносителя после прохождения теплообменника;
  • Начальная температура воды, используемой для ГВС;
  • Требуема температура ГВС;
  • Целевой расход горячей воды в режиме максимального потребления.

Кроме этого в формулах для расчета задействована удельная теплоемкость жидкости в обоих контурах. Для ГВС используется табличное значение для начальной температуры воды, чаще +20оС, равное 4,182 кДж/кг*К. Для теплоносителя следует отдельно находить значение удельной теплоемкости, если в его составе имеется антифриз или другие присадки для улучшения его качеств. Аналогично для централизованного отопления берется приблизительное значение или фактическое на основании данных теплокоммунэнерго.

Целевой расход определяется количеством пользователей для горячей воды и количеством устройств (краны, посудомоечная и стиральная машинка, душ), где она будет использована. Согласно требованиям СНиП 2.04.01-85 необходимы следующие значения расхода горячей воды:

  • для раковины – 40 л/ч;
  • ванная – 200 л/ч;
  • душевая – 165 л/ч.

Значение для раковины умножается на количество устройств в доме, которые могут использоваться параллельно, и складывается со значением для ванны или душевой в зависимости от того, что именно используется. Для посудомоечной и стиральной машинки значения берутся из паспорта и инструкции и только при условии, что они поддерживают использование горячей воды.

Второе базовое значение – это мощности теплообменника. Рассчитывается исходя из полученного значения расхода жидкости и разницы температур воды на входе в теплообменник и на выходе.

P = m * С *Δt,

где m – расход воды, С – удельная теплоемкость, Δt – разница температур воды на входе и выходе ПТО.

Для получения массового расхода воды следует расход, выраженный в л/ч умножить на плотность воды 1000 кг/м3.

КПД теплообменников оценивается на уровне 80-85%, и многое зависит от конструкции самого оборудования, так что полученное значение следует разделить на 0,8(5).

С другой стороны ограничением по мощности будет расчет, выполненный со стороны первого контура с теплоносителем, где, используя уже разницу допустимых температур для системы отопления, получаем максимально допустимый забор мощности. Конечный результат будет компромиссом между двумя полученными значениями.

Если забора мощности для нагрева нужного количества горячей воды не хватает, то разумнее использовать две ступени подогрева и, соответственно, два теплообменника. Мощность распределяется между ними поровну от требуемого расчета. Одна ступень выполняет предварительный нагрев, используя в качестве источника тепла обратку отопления с пониженной температурой. Второй ПТО уже нагревает окончательно воду за счет горячей воды с подачи отопления.

Схема обвязки

Подключают теплообменник к системе отопления несколькими способами. Самый простой вариант с параллельным включением и наличием регулировочного клапана, работающего от термоголовки.

Обязательными являются запорные шаровые вентили на всех выводах теплообменника, чтобы иметь возможность полностью перекрыть доступ жидкости и обеспечить условия для демонтажа оборудования. Регулировкой мощности и, соответственно, нагревом горячей воды должен заниматься клапан с управлением от термоголовки. Клапан устанавливается на подводящую трубу от отопления, а датчик температуры на выход контура ГВС.

При цикличной организации ГВС с наличием накопительной емкости устанавливается дополнительно тройник на входе нагреваемого контура для включения холодной водопроводной воды и обратки по ГВС. Избежать ненужного тока в обратном направлении в ветке горячей и холодной воды не даст обратный клапан.

Недостатком этой схемы является сильно завышенная нагрузка на систему отопления и неэффективный нагрев воды во втором контуре при большем перепаде температур.

Гораздо продуктивнее и надежнее работает схема с двумя теплообменниками, двухступенчатая.

1 – пластинчатый теплообменник; 2 – регулятор температуры прямого действия: 2.1 – клапан; 2.2 – термостатический элемент; 3 – циркуляционный насос ГВС; 4 – счетчик горячей воды; 5 – электро-контактный манометр (защита от «сухого хода»)

Идея заключается в использовании двух теплообменников. В первой ступени используется с одной стороны обратка системы отопления, а с другой холодная вода из водопровода. Это дает предварительный нагрев примерно на 1/3 или половину от необходимой температуры, при этом не страдает обогрев дома. Включение контура выполняется последовательно с байпасом, на котором уже закреплен игловой вентиль, с помощью которого регулируется объем теплоносителя.

Второй ПТО, вторая ступень, подключаемая параллельно системе отопления – это с одной стороны подача горячего теплоносителя от котла или котельной, а с другой уже подогретая на первой ступени вода ГВС.

Регулировкой первой ступени заниматься нет нужды. Устанавливаются лишь шаровые вентили на все четыре отвода и обратный клапан на подачу холодной воды.

Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.

как сделать своими руками в частном доме

Теплообменник для системы отопленияТеплообменник для системы отопленияТеплообменник для горячей воды – незаменимый элемент в системе отопления частного дома. Именно он передает тепло холодной воде, тем самым нагревая ее и обеспечивая жильцов бесперебойным горячим водоснабжением. От продуктивности работы теплообменника напрямую зависит не только комфорт домочадцев, но и долговечность обогревательных приборов, поэтому очень важно, чтобы агрегат был выполнен качественно. Ввиду этого многие задаются вопросом: стоит ли мастерить теплообменник своими руками или лучше не рисковать и приобрести уже готовый? Первый вариант, безусловно, сложнее, но он вполне реализуем, если детально разобраться, как сделать теплообменник: материалы, конструктивные особенности, монтаж – обо всем этом и не только пойдет речь далее.

Особенности и функции теплообменника

Прежде чем рассматривать основные моменты изготовления и монтажа теплообменника для горячей воды, абсолютно не лишним будет узнать, что же собой представляет этот агрегат и для чего он нужен.

Теплообменник – техническое устройство, соединяющее между собой два теплоносителя: холодный и горячий. Как правило, он имеет вид обычной трубной конструкции. Между носителями беспрерывно осуществляется передача тепла – от холодного к горячему, благодаря чему дом и обеспечивается горячей водой. Причем у теплообменника нет собственного источника тепла – он использует энергию, поступающую от системы отопления.

Таким образом, главная функция агрегата – подогрев холодной воды и получение на выходе горячей. Эффективность выполнения этой функции зависит от трех факторов:

  • температурная разница между двумя теплоносителями;
  • габариты теплообменника и, следовательно, площадь контакта носителей;
  • материал, из которого изготовлен теплообменник.
виды теплообменниковвиды теплообменниковПластинчатый теплообменник

Последний фактор важен не только в плане эффективности агрегата, но и в вопросе его изготовления и монтажа. Для выполнения теплообменника может использоваться пластик, сталь и чугун. Первый материал не всегда эффективен ввиду своей низкой теплопроводности. Что касается выбора между сталью и чугуном, то здесь следует сравнить характеристики двух материалов, чтобы определиться с наиболее подходящим.

Чугунный теплообменник

Плюсы тепловых агрегатов из чугуна:

  • Высокая теплопроводность – чугунные элементы быстро нагреваются и эффективно передают тепло от одного носителя к другому.
  • Медленное остывание – теплообменники из чугуна долгое время остывают, что дает возможность сэкономить на работе отопительной системы.
  • Долговечность – чугун устойчив к воздействию слабых кислот и к образованию накипи, поэтому он менее подвержен коррозии, нежели многие другие металлы, что и обеспечивает длительный срок службы теплообменника.
  • Возможность увеличения функциональности – уже после установки агрегата к нему можно нарастить новые чугунные секции, тем самым увеличив мощность теплового оборудования.

Минусы чугунных теплообменников:

  • Громоздкость – чугунные агрегаты отличаются внушительным весом, что усложняет их эксплуатацию и обслуживание. При этом, чем больше масса теплообменника, тем выше его мощность.

Совет. Обязательно учитывайте вес чугунного теплового прибора при выборе места для его установки – важно, чтобы монтажное основание было очень прочным.

  • Хрупкость – несмотря на большой вес, агрегаты из чугуна боятся механических ударов: они быстро обзаводятся трещинами, сколами и прочими деформациями.
  • Низкая устойчивость к температурным перепадам – хоть чугун и выдерживает максимально высокие температуры, от резких термических изменений на поверхности теплообменника могут появляться трещины, что чревато значительным снижением его работоспособности.

Стальной теплообменник

Преимущества приборов из стали:

  • Повышенная теплопроводность – как и чугун, сталь оперативно нагревается и отлично передает тепло холодному носителю.
  • Низкий вес – стальные теплообменники не утяжеляют общую систему отопления, поэтому их можно использовать для обеспечения горячего водоснабжения в домах большой площади.
  • Ударопрочность – стальные конструкции очень крепкие, поэтому им не страшны механические повреждения.
  • Устойчивость к термическим изменениям – сталь без последствий выдерживает резкие перепады температур внутри системы.

Недостатки стальных теплообменников:

  • Восприимчивость к коррозии – для стали характерна низкая устойчивость к кислотным средам, что значительно сокращает срок эксплуатации теплообменника.
  • Невозможность увеличить мощность устройства путем добавления новых секций.
  • Быстрое остывание – сталь быстро отдает температуру, что увеличивает расходы на топливо.

Совет. Для изготовления качественного и долговечного теплообменника рекомендуется использовать трубы из жаропрочной стали диаметром не меньше 32 мм и толщиной стенки 5 мм и более.

Изготовление теплообменника

Конструктивно теплообменники для горячей воды могут быть двух видов: внешние и внутренние. К первым относятся подкова и змеевик. Подкова очень легка в исполнении, но не отличается высокой мощностью: для ее изготовления нужно просто сварить две чугунные или стальные трубы – в результате вы получите агрегат с маленькой площадью контакта носителей и, следовательно, с низкой мощностью нагрева поступающей холодной воды.

Более удачным вариантом внешнего теплообменника будет змеевик – он изготавливается посредством сварки нескольких труб: чем больше труб вы используете, тем мощнее будет агрегат.

Внутренний теплообменник представляет собой бак, в который помещается трубка, нагревающая поступающую в нее воду. Чтобы смастерить такой прибор своими руками, вам понадобится:

  • стальной бак для воды;
  • стальная или чугунная трубка;
  • анод;
  • регулятор мощности.

Изготовление теплообменника не займет много времени: скрутите трубку в спираль, закрепите ее на стенках бака, а затем сделайте в емкости два выхода: нижний – для холодной воды, верхний – для горячей.

установка теплообменникаустановка теплообменникаНаружный теплообменник

Монтаж теплообменника

Когда все компоненты готовы, можно приступать к монтажу теплообменника. В случае с внешним агрегатом работа выполняется следующим образом:

  • на входе и выходе сваренной конструкции нарежьте резьбу;
  • с помощью муфты соедините вход теплообменника с системой отопления
  • используя аналогичную муфту, соедините выход теплообменника с трубой горячего водоснабжения.

Внутренний теплообменник монтируется по такой схеме:

  • вблизи батарей отопления установите бак с трубкой-термонагревателем;
  • рядом с трубкой внутри бака установите анод;
  • через нижний выход проведите в бак трубу отопительной системы, а через верхний – трубу, которая будет забирать холодную воду.

По желанию можете подключить к нагревательной трубке регулятор мощности, а к нему – термостат для управления температурой нагрева воды.

Важно! Верх и низ стального бака должны быть запаяны, чтобы предостеречь попадание в емкость воздуха, который будет забирать температуру, предназначенную для нагрева воды.

Как видим, даже столь сложный агрегат системы отопления, как теплообменник для горячей воды, вполне реально соорудить и установить своими руками. Главное – детально продумать каждый шаг: от выбора материала до финального подключения. Так что не пренебрегайте предложенной вам инструкцией – она поможет избежать ошибок в обеспечении собственного дома бесперебойной горячей водой.

Как изготовить теплообменник змеевик: видео

Теплообменник для системы отопления: фото

Теплообменник для системы отопленияТеплообменник для системы отопления

Теплообменник для системы отопленияТеплообменник для системы отопления

Теплообменник для системы отопленияТеплообменник для системы отопления

Устройство и принцип работы теплообменника для систем отопления

Особенности подключения к системе горячего водоснабжения

Если для сушилки полотенец используется отдельный отвод (последовательное подключение к системе горячего водоснабжения), а вода из него выводится через источники внутри квартиры, то установка полотенцесушителя на горячую воду проводится без дополнительных работ. Но при таком подключении сушки для полотенец снижается температура горячей воды. Его обычно используют в небольших домах.

В каких случаях нужен теплообменник для систем отопленияВ каких случаях нужен теплообменник для систем отопления

Цены на сушилки разного типа в магазине

Чаще устройство подключается к водопроводу, заменяя часть стояка, такое можно увидеть в ванной в панельном доме. При установке полотенцесушителя на стояк горячего водоснабжения необходима дополнительная страховка в виде байпаса.

Пластинчатые теплообменники области применения

Пластинчатые теплообменники применяются в системе отопления дома, горячего водоснабжения, в системах кондиционирования в больших коттеджах, школах, садах, бассейнах, в целых микрорайонах, а также в системе отопления домов сельской местности. Широкое применение пластинчатые теплообменники нашли в пищевой промышленности.

Теплообменники для отопления имеют ряд неоспоримых преимуществ по сравнению с остальными устройствами, используемыми для создания подходящего микроклимата.

В каких случаях нужен теплообменник для систем отопленияВ каких случаях нужен теплообменник для систем отопления

Подобные отопительные приборы обладают рядом преимуществ над другими видами.

Положительные качества

Среди основных положительных качеств устройства, обеспечивающего отопление, можно отметить следующие:

  • высокий уровень компактности;
  • пластинчатые теплообменники имеют высокий коэффициент теплопередачи;
  • коэффициент тепловых потерь максимально низкий;
  • потери давления находятся на минимальном уровне;
  • выполнение монтажно-наладочных, ремонтных и изоляционных работ требует низких финансовых затрат;
  • при возможном засорении это устройство может быть разобрано, очищено и собрано обратно всего двумя рабочими уже через 4-6 часов;
  • имеется возможность добавить мощность пластинам.

https://youtube.com/watch?v=pOTVV58Rj3U

Кроме того, благодаря своей простоте подключение теплообменника к системе отопления может быть осуществлено просто на полу в тепловом пункте или на обычной несущей конструкции блочного теплового пункта. Отдельно стоит отметить низкий уровень загрязняемости поверхности теплообменника, что вызвано высокой турбулентностью потока жидкости, а также благодаря качественной полировке используемых теплообменных пластин. На сегодняшний срок эксплуатации уплотнительной прокладки у ведущих европейских производителей составляет не менее 10 лет. Срок же службы пластин составляет 20-25 лет. Стоимость замены уплотнительной прокладки может составлять 15-25% от общей стоимости всего агрегата.

Очень важно, что после проведения детального расчета конструкцию современного пластинчатого теплообменника можно изменить под необходимые и указанные в техническом задании характеристики (вариативность конструкции и изменяемость задачи). Абсолютно все пластинчатые теплообменники устойчивы к высокому уровню вибрации

У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю.

Из чего состоит современный теплообменник

Теплообменник современного типа состоит из нескольких частей, каждая из которых играет свою важную роль:

  • неподвижной плиты, к которой присоединяются все подводимые патрубки;
  • прижимной плиты;
  • теплообменных пластин со вставленными прокладками уплотнительного типа;
  • верхней и нижней направляющих;
  • задней стойки;
  • шпилек с резьбой.

В каких случаях нужен теплообменник для систем отопленияВ каких случаях нужен теплообменник для систем отопления

На данном изображении представлен кожухотрубный теплообменник.

Благодаря такой уникальной конструкции теплообменник способен обеспечивать наиболее эффективную компоновку всей поверхности используемого теплообменника, что дает возможность создавать небольшой по габаритам аппарат отопления. Абсолютно все пластины в собранном пакете одинаковы, только часть из них развернута к другой под углом в 180 градусов. Именно поэтому во время необходимого стягивания всего пакета должны образовываться каналы. Именно через них во время процесса нагрева и протекает рабочая жидкость, принимающая участие в теплообмене. Благодаря такой компоновке элементов системы достигается правильное чередование каналов.

На сегодняшний день можно смело утверждать, что теплообменники пластинчатого типа из-за своих технических характеристик являются более популярными. Ключевой элемент любого современного теплообменника — это теплопередающие пластины, которые изготавливаются из стали, не подверженной коррозии, толщина пластин находится в диапазоне от 0,4 до 1 мм. Для изготовления используется высокотехнологичный метод штамповки.

Во время работы пластины прижимаются друг к другу, образуя тем самым щелевые каналы. Лицевая сторона каждой из таких пластин имеет специальные канавки, куда специально устанавливается резиновая контурная прокладка, которая обеспечивает полную герметичность каналов. Всего имеется четыре отверстия, два из них необходимы для обеспечения подвода и отвода нагреваемой среды к каналу, а два другие отвечают за предотвращение случаев перемешивания греющей и нагреваемой сред. На случай прорыва одного из малых контуров пластинчатые теплообменники защищены дренажными пазами.

Если имеет место большая разница в расходе сред и совсем небольшое отличие в конечных температурах, то есть возможность многократно использовать теплообменный процесс, который будет происходить через петлеобразное направление потоков.

Двухступенчатая последовательная схема.

Сетевая
вода разветвляется на два потока: один
проходит через регулятор расхода РР, а
второй через подогреватель второй
ступени, затем эти потоки смешиваются
и поступают в систему отопления.

При
максимальной температуре обратной воды
после отопления 70ºС
и
средней нагрузке горячего водоснабжения
водопроводная вода практически
догревается до нормы в первой ступени,
и вторая ступень полностью разгружается,
т.к. регулятор температуры РТ закрывает
клапан на подогреватель, и вся сетевая
вода поступает через регулятор расхода
РР в систему отопления, и система
отопления получает теплоты больше
расчетного значения.

Если
обратная вода имеет после системы
отопления температуру 30-40ºС
, например, при плюсовой температуре
наружного воздуха, то подогрева воды в
первой ступени недостаточно, и она
догревается во второй ступени. Другой
особенностью схемы является принцип
связанного регулирования. Сущность его
состоит в настройке регулятора расхода
на поддержание постоянного расхода
сетевой воды на абонентский ввод в
целом, независимо от нагрузки горячего
водоснабжения и положения регулятора
температуры. Если нагрузка на горячее
водоснабжение возрастает, то регулятор
температуры открывается и пропускает
через подогреватель больше сетевой
воды или всю сетевую воду, при этом
уменьшается расход воды через регулятор
расхода, в результате температура
сетевой воды на входе в элеватор
уменьшается, хотя расход теплоносителя
остается постоянным. Теплота, недоданная
в период большой нагрузки горячего
водоснабжения, компенсируется в периоды
малой нагрузки, когда в элеватор поступает
поток повышенной температуры. Снижение
температуры воздуха в помещениях не
происходит, т.к. используется
теплоаккумулирующая способность
ограждающих конструкций зданий. Это и
называется связанным регулированием,
которое служит для выравнивания суточной
неравномерности нагрузки горячего
водоснабжения. В летний период, когда
отопление отключено, подогреватели
включаются в работу последовательно с
помощью специальной перемычки. Эта
схема применяется в жилых, общественных
и промышленных зданиях при соотношении
нагрузок
Выбор схемы зависит от графика центрального
регулирования отпуска теплоты: повышенный
или отопительный.

Преимуществом
последовательной
схемы по сравнению с двухступенчатой
смешанной является выравнивание
суточного графика тепловой нагрузки,
лучшее использование теплоносителя,
что приводит к уменьшению расхода воды
в сети. Возврат сетевой воды с низкой
температурой улучшает эффект теплофикации,
т.к. для подогрева воды можно использовать
отборы пара пониженного давления.
Сокращение расхода сетевой воды по этой
схеме составляет (на тепловой пункт)
40% по сравнению с параллельной и 25% — по
сравнению со смешанной.

Недостаток
– отсутствие возможности полного
автоматического регулирования теплового
пункта.

Зависимая схема с трёхходовым клапаном и циркуляционными насосами

В каких случаях нужен теплообменник для систем отопления

Зависимая схема подключения теплового пункта системы отопления к источнику тепла с трёхходовым клапаном регулятора теплового потока и циркуляционно-смесительными насосами в подающем трубопроводе системы отопления.

Данную схему в ИТП применяют при соблюдении условий:

1 Температурный график работы источника тепла (котельной) превышает либо равен температурному графику системы отопления. Тепловой пункт подключённый по данной принципиальной схеме может работать как с подмесом к подаче потока из обратного трубопровода, так и без него, то есть пустить теплоноситель из подающего трубопровода тепловой сети напрямую в систему отопления.

Например расчётный температурный график системы отопления 90/70°C, равен температурному графику источника, но источник независимо от внешних факторов всё время работает с температурой на выходе 90°C, а для системы отопления подавать теплоноситель с температурой в 90°C нужно лишь при расчётной температуре наружного воздуха (для Киева -22°C). Таким образом в тепловом пункте к воде, поступающей от источника будет подмешиваться остывший теплоноситель из обратного трубопровода пока температура наружного воздуха не опустится до расчётного значения.

2 Подключение теплового пункта выполнено к безнапорному коллектору, гидравлической стрелке или теплотрассе с разницей давлений между подающим и обратным трубопроводом не более 3м.вод.ст..

3 Давление в обратном трубопроводе источника тепла в статическом и динамическом режимах превышает как минимум на 5м.вод.ст высоту от места подключения теплового пункта до верхней точки системы отопления (статику здания).

4 Давление в подающем и обратном трубопроводе источника тепла, а также статическое давление в тепловых сетях не превышают максимально допустимого давления для системы отопления здания подключённой к данному ИТП.

5 Схема подключения теплового пункта должна обеспечивать автоматическое качественное регулирование системой отопления по температурному или временному графику.

Описание работы схемы ИТП с трёхходовым клапаном

Принцип работы данной схемы схож с работой первой схемы за исключением того, что трёхходовым клапаном может быть полностью перекрыт отбор из обратного трубопровода, при котором весь теплоноситель, поступающий от источника тепла без подмеса будет подан в систему отопления.

В случае полного перекрытия подающего трубопровода источника тепла, как и в первой схеме, в систему отопления будет подаваться только вышедший из неё теплоноситель, отбираемый из обрата.

В каких случаях нужен теплообменник для систем отопления

Зависимая схема с трёхходовым клапаном, циркуляционными насосами и регулятором перепада давления.

Применяется при перепаде давления в месте подключения ИТП к тепловой сети превышающем 3м.вод.ст.. Регулятор перепада давления в данном случае подбирается для дросселирования и стабилизации располагаемого напора на вводе.

ТЕПЛООБМЕННИКИ

Теплообменник — это устройство, используемое для передачи тепла между двумя или более жидкостями. Жидкости могут быть одно- или двухфазными и, в зависимости от типа теплообменника, могут быть разделены или находиться в прямом контакте. Устройства, включающие источники энергии, такие как стержни ядерного топлива или огневые нагреватели, обычно не рассматриваются как теплообменники, хотя многие принципы, заложенные в их конструкции, одинаковы.

Чтобы обсудить теплообменники, необходимо дать некоторую форму категоризации.Обычно используются два подхода. Первый рассматривает конфигурацию потока в теплообменнике, а второй основан на классификации типа оборудования, прежде всего, по конструкции. Оба рассмотрены здесь.

Классификация теплообменников по конфигурации потока

Существует четыре основных конфигурации потока:

На рисунке 1 показан идеализированный противоточный теплообменник, в котором две жидкости текут параллельно друг другу, но в противоположных направлениях.Этот тип организации потока позволяет максимально изменить температуру обеих жидкостей и, следовательно, является наиболее эффективным (где эффективность — это количество фактически переданного тепла по сравнению с теоретическим максимальным количеством тепла, которое может быть передано).

Рисунок 1. Противоток.

В теплообменниках с прямоточным потоком потоки текут параллельно друг другу и в том же направлении, как показано на рисунке 2. Это менее эффективно, чем противоток, но обеспечивает более однородную температуру стенок.

Рисунок 2. Попутный поток.

По эффективности теплообменники с перекрестным потоком занимают промежуточное положение между противоточными и параллельными теплообменниками. В этих установках потоки текут под прямым углом друг к другу, как показано на рисунке 3.

Рисунок 3. Поперечный поток.

В промышленных теплообменниках часто встречаются гибриды вышеуказанных проточных типов. Примерами являются комбинированные теплообменники с поперечным / противотоком и многоходовые теплообменники.(См., Например, рисунок 4.)

Рисунок 4. Поперечный / противоточный поток.

Классификация теплообменников по конструкции

В этом разделе теплообменники классифицируются в основном по их конструкции, Garland (1990) (см. Рисунок 5). Первый уровень классификации — разделение типов теплообменников на рекуперативные и регенеративные. Рекуперативный теплообменник имеет отдельные пути потока для каждой жидкости, и жидкости протекают одновременно через теплообменник, обмениваясь теплом через стенку, разделяющую пути потока.Рекуперативный теплообменник имеет единственный путь потока, по которому попеременно проходят горячие и холодные жидкости.

Рисунок 5. Классификация теплообменников.

Регенеративные теплообменники

В регенеративном теплообменнике путь потока обычно состоит из матрицы, которая нагревается, когда горячая жидкость проходит через нее (это известно как «горячий удар»). Это тепло затем передается холодной жидкости, когда она протекает через матрицу («холодный удар»).Рекуперативные теплообменники иногда называют емкостными теплообменниками . Хороший обзор регенераторов дает Walker (1982).

Регенераторы в основном используются для рекуперации тепла газа / газа на электростанциях и в других энергоемких отраслях. Два основных типа регенератора — статический и динамический. Оба типа регенераторов являются кратковременными в эксплуатации, и, если при их проектировании не уделить должного внимания, обычно происходит перекрестное загрязнение горячего и холодного потоков.Однако использование регенераторов, вероятно, расширится в будущем, поскольку предпринимаются попытки повысить энергоэффективность и утилизировать больше низкопотенциального тепла. Однако, поскольку регенеративные теплообменники, как правило, используются для специальных применений, рекуперативные теплообменники более распространены.

Рекуперативные теплообменники

Существует много типов рекуперативных теплообменников, которые можно в широком смысле сгруппировать в непрямой контакт, прямой контакт и специальные. В теплообменниках с косвенным контактом теплоносители отделяются друг от друга за счет использования трубок, пластин и т. Д., Теплообменники с прямым контактом не разделяют жидкости, обмениваясь теплом, и фактически полагаются на то, что жидкости находятся в тесном контакте.

В этом разделе кратко описаны некоторые из наиболее распространенных типов теплообменников, и они организованы в соответствии с классификацией, приведенной на рисунке 5.

В этом типе пары разделены стенкой, обычно металлической. Примерами являются трубчатые теплообменники, см. Рисунок 6, и пластинчатые теплообменники, см. Рисунок 7.

Трубчатые теплообменники очень популярны из-за гибкости, которую проектировщик должен учитывать в широком диапазоне давлений и температур.Трубчатые теплообменники можно разделить на несколько категорий, из которых кожухотрубный теплообменник является наиболее распространенным.

Кожухотрубный теплообменник состоит из ряда трубок, установленных внутри цилиндрической оболочки. На рисунке 8 показан типичный блок, который можно найти на нефтехимическом заводе. Две жидкости могут обмениваться теплом, одна жидкость течет по внешней стороне трубок, а вторая жидкость течет по трубкам. Жидкости могут быть одно- или двухфазными и могут течь в параллельном или перекрестном / противотоке.Кожухотрубный теплообменник состоит из четырех основных частей:

  • Передняя часть — это то место, где жидкость входит в трубную часть теплообменника.

  • Задний конец — это то место, где жидкость на трубной стороне выходит из теплообменника или где она возвращается в передний коллектор в теплообменниках с несколькими проходами на трубной стороне.

  • Пучок труб — состоит из трубок, трубных решеток, перегородок, стяжек и т. Д. Для удержания пучка вместе.

  • Кожух — содержит пучок труб.

Популярность кожухотрубных теплообменников привела к разработке стандарта для их обозначения и использования. Это стандарт ассоциации производителей трубчатых теплообменников (TEMA). Обычно кожухотрубные теплообменники изготавливаются из металла, но для специальных применений (например, с использованием сильных кислот в фармацевтических препаратах) могут использоваться другие материалы, такие как графит, пластик и стекло. Также нормально, что трубы прямые, но в некоторых криогенных применениях используются спиральные катушки или катушки Хэмпсона .Простая форма кожухотрубного теплообменника — это двухтрубный теплообменник. Этот теплообменник состоит из одной или нескольких трубок, содержащихся внутри трубы большего размера. В самой сложной форме нет большой разницы между многотрубным двухтрубным теплообменником и кожухотрубным теплообменником. Однако двухтрубные теплообменники, как правило, имеют модульную конструкцию, поэтому несколько блоков могут быть соединены болтами для достижения требуемой нагрузки. Книга E.A.D. Сондерс [Saunders (1988)] дает хороший обзор трубчатых теплообменников.

К другим типам трубчатых теплообменников относятся:

  • Печи — технологическая жидкость проходит через печь в прямых или спирально намотанных трубах, а нагрев осуществляется горелками или электрическими нагревателями.

  • Пластинчатые трубы — в основном используются в системах рекуперации тепла и кондиционирования воздуха. Трубки обычно монтируются в какой-либо форме воздуховода, а пластины действуют как опоры и обеспечивают дополнительную площадь поверхности в виде ребер.

  • С электрическим нагревом — в этом случае жидкость обычно течет по внешней стороне электрически нагреваемых трубок (см. Джоулев нагрев).

  • Теплообменники с воздушным охлаждением состоят из пучка труб, вентиляторной системы и несущей конструкции. Трубки могут иметь ребра различного типа для обеспечения дополнительной площади поверхности со стороны воздуха. Воздух либо всасывается через трубы вентилятором, установленным над пучком (принудительная тяга), либо продувается через трубы вентилятором, установленным под пучком (принудительная тяга). Как правило, они используются в местах, где есть проблемы с получением достаточного количества охлаждающей воды.

  • Тепловые трубы, сосуды с мешалкой и теплообменники из графитовых блоков можно рассматривать как трубчатые или помещать в Рекуперативные «Особые предложения». Тепловая труба состоит из трубы, материала фитиля и рабочей жидкости. Рабочая жидкость поглощает тепло, испаряется и переходит на другой конец тепловой трубы, где конденсируется и выделяет тепло. Затем жидкость под действием капилляров возвращается к горячему концу тепловой трубы для повторного испарения. Сосуды с мешалкой в ​​основном используются для нагрева вязких жидкостей.Они состоят из емкости с трубками внутри и мешалки, такой как пропеллер или ленточный винтовой импеллер. Трубки несут горячую жидкость, а мешалка вводится для обеспечения равномерного нагрева холодной жидкости. Теплообменники с угольным блоком обычно используются, когда необходимо нагреть или охладить агрессивные жидкости. Они состоят из твердых блоков углерода, в которых просверлены отверстия для прохождения жидкости. Затем блоки скрепляются болтами вместе с коллекторами, образуя теплообменник.

Пластинчатые теплообменники отделяют жидкости, обменивающиеся теплом, с помощью пластин.У них обычно есть улучшенные поверхности, такие как ребра или тиснение, и они либо скреплены вместе, спаяны или сварены. Пластинчатые теплообменники в основном используются в криогенной и пищевой промышленности. Однако из-за высокого отношения площади поверхности к объему, малого количества жидкостей и способности обрабатывать более двух паров они также начинают использоваться в химической промышленности.

Пластинчатые и рамные теплообменники состоят из двух прямоугольных концевых элементов, которые удерживают вместе несколько рельефных прямоугольных пластин с отверстиями на углу для прохождения жидкостей.Каждая из пластин разделена прокладкой, которая герметизирует пластины и обеспечивает поток жидкости между пластинами, см. Рис. 9. Этот тип теплообменника широко используется в пищевой промышленности, поскольку его можно легко разобрать для очистки. Если утечка в окружающую среду является проблемой, можно сварить две пластины вместе, чтобы гарантировать, что жидкость, протекающая между сваренными пластинами, не сможет протекать. Однако, поскольку некоторые прокладки все еще присутствуют, утечка все еще возможна. Паяные пластинчатые теплообменники предотвращают возможность утечки, спаяя все пластины вместе, а затем приваривая впускные и выпускные отверстия.

Рисунок 6. Классификация трубчатых теплообменников.

Рисунок 7. Классификация пластинчатого теплообменника.

Рисунок 8. Кожухотрубный теплообменник.

Рисунок 9. Пластинчато-рамный теплообменник.

Пластинчато-ребристые теплообменники состоят из ребер или прокладок, зажатых между параллельными пластинами. Ребра могут быть расположены так, чтобы допускать любую комбинацию поперечного или параллельного потока между соседними пластинами. Также возможно пропустить до 12 потоков жидкости через один теплообменник за счет тщательного расположения коллекторов.Обычно они изготавливаются из алюминия или нержавеющей стали и спаяны вместе. Их основное применение — сжижение газа из-за их способности работать с близкими температурами.

Пластинчатые теплообменники в некоторых отношениях аналогичны кожухотрубным. Прямоугольные трубы со скругленными углами уложены друг на друга, образуя пучок, который помещается внутри оболочки. Одна жидкость проходит через трубки, тогда как жидкость течет параллельно через зазоры между трубками.Они, как правило, используются в целлюлозно-бумажной промышленности, где требуются проточные каналы большего размера.

Спиральные пластинчатые теплообменники образуются путем наматывания двух плоских параллельных пластин вместе в змеевик. Затем концы уплотняются прокладками или свариваются. Они в основном используются с вязкими, сильно загрязняющими жидкостями или жидкостями, содержащими частицы или волокна.

В этой категории теплообменников не используется поверхность теплопередачи, из-за чего она часто дешевле, чем косвенные теплообменники.Однако, чтобы использовать теплообменник прямого контакта с двумя жидкостями, они должны быть несмешиваемыми, или, если будет использоваться одна жидкость, она должна претерпеть фазовый переход. (См. Прямая контактная теплопередача.)

Наиболее легко узнаваемая форма теплообменника с прямым контактом — градирня с естественной тягой, которая используется на многих электростанциях. Эти агрегаты состоят из большой примерно цилиндрической оболочки (обычно более 100 м в высоту) и насадки внизу для увеличения площади поверхности. Охлаждаемая вода распыляется на набивку сверху, в то время как воздух проходит через дно набивки и поднимается вверх через башню за счет естественной плавучести.Основная проблема, связанная с этим и другими типами градирен с прямым контактом, заключается в постоянной необходимости восполнения подачи охлаждающей воды за счет испарения.

Конденсаторы прямого контакта иногда используются вместо трубчатых конденсаторов из-за их низких капитальных затрат и затрат на обслуживание. Существует множество вариантов конденсатора прямого контакта. В простейшей форме охлаждающая жидкость разбрызгивается сверху емкости над паром, поступающим сбоку емкости. Затем конденсат и охлаждающая жидкость собираются внизу.Большая площадь поверхности распылителя гарантирует, что они являются достаточно эффективными теплообменниками.

Закачка пара используется для нагрева жидкости в резервуарах или в трубопроводах. Пар способствует передаче тепла за счет турбулентности, создаваемой впрыском, и передает тепло за счет конденсации. Обычно попытки собрать конденсат не предпринимаются.

Прямой нагрев в основном используется в сушилках, где влажное твердое вещество сушится путем пропускания его через поток горячего воздуха. Другая форма прямого нагрева — это горение под водой.Он был разработан в основном для концентрирования и кристаллизации коррозионных растворов. Жидкость испаряется пламенем, а выхлопные газы направляются вниз в жидкость, которая находится в резервуаре.

Воздухоохладитель с мокрой поверхностью в некоторых отношениях похож на теплообменник с воздушным охлаждением. Однако в устройствах этого типа вода распыляется по трубкам, а вентилятор всасывает воздух и воду по пучку труб. Вся система закрыта, и теплый влажный воздух обычно выбрасывается в атмосферу.

Скребковые теплообменники состоят из емкости с рубашкой, через которую проходит жидкость, и вращающегося скребка, который непрерывно удаляет отложения с внутренних стенок емкости. Эти агрегаты используются в пищевой и фармацевтической промышленности в тех случаях, когда на нагретых стенках сосуда с рубашкой образуются отложения.

Статические регенераторы или регенераторы с неподвижным слоем не имеют движущихся частей, кроме клапанов. В этом случае горячий газ проходит через матрицу в течение фиксированного периода времени, в конце которого происходит реверсирование, горячий газ отключается, а холодный газ проходит через матрицу.Основная проблема с этим типом агрегата заключается в том, что и горячий, и холодный поток прерывистый. Для преодоления этого и обеспечения непрерывной работы требуются по крайней мере два статических регенератора или можно использовать роторный регенератор.

В роторном регенераторе насадка цилиндрической формы вращается вокруг оси цилиндра между парой газовых уплотнений. Горячий и холодный газ протекает одновременно по каналам с обеих сторон газовых уплотнений и через вращающуюся насадку. (См. Рекуперативные теплообменники.)

Термический анализ любого теплообменника включает решение основного уравнения теплопередачи.

(1)

Это уравнение рассчитывает количество тепла, передаваемого через область dA, где T h и T c — локальные температуры горячей и холодной жидкости, α — местный коэффициент теплопередачи, а dA — местная дополнительная площадь, на которой α основано. Для плоской стены

(2)

где δ w — толщина стенки, а λ w — ее теплопроводность.

Для однофазного обтекания стенки α для каждого из потоков является функцией Re и Pr. Когда происходит конденсация или кипение, α также может зависеть от разницы температур. После того как коэффициент теплопередачи для каждого потока и стены известен, общий коэффициент теплопередачи U определяется выражением

(3)

где сопротивление стенки r w равно 1 / α w . Общая скорость теплопередачи между горячей и холодной текучими средами тогда определяется выражением

(4)

Это уравнение предназначено для постоянных температур и коэффициентов теплопередачи.В большинстве теплообменников это не так, поэтому используется другая форма уравнения

(5)

где — общая тепловая нагрузка, U — средний общий коэффициент теплопередачи, а ΔT M — средняя разница температур. Расчет ΔT M и отказ от предположения о постоянном коэффициенте теплопередачи описаны в разделе «Средняя разница температур».

Расчет U и ΔT M требует информации о типе теплообменника, геометрии (например,g., размер проходов в пластине или диаметр трубы), ориентация потока, чистый противоток или поперечный поток и т. д. Затем можно рассчитать общую нагрузку с использованием предполагаемого значения AT и сравнить с требуемой нагрузкой. Затем можно внести изменения в предполагаемую геометрию и U, ΔT M и пересчитать, чтобы в конечном итоге перейти к решению, которое равно требуемой нагрузке. Однако при выполнении термического анализа на каждой итерации также следует проверять, не превышен ли допустимый перепад давления.Компьютерные программы, такие как TASC от HTFS (Heat Transfer and Fluid Flow Service), автоматически выполняют эти вычисления и оптимизируют конструкцию.

Механические аспекты

Все типы теплообменников должны пройти определенную механическую конструкцию. Любой теплообменник, работающий при давлении выше атмосферного, должен быть спроектирован в соответствии с местным кодом конструкции сосуда под давлением , например ASME VIII (Американское общество инженеров-механиков) или BS 5500 (Британский стандарт).Эти нормы определяют требования к резервуару высокого давления, но не касаются каких-либо специфических особенностей конкретного типа теплообменника. В некоторых случаях для определенных типов теплообменников существуют специальные стандарты. Два из них перечислены ниже, но в целом отдельные производители определяют свои собственные стандарты.

ССЫЛКИ

Гарланд, У. Дж. (1990) Частное сообщение.

Уокер, Г. (1982) Industrial Heat Exchangers-A Basic Guide , Hemisphere Publishing Corporation.

Rohsenow, W. M. и Hartnett, J. P. (1973) Handbook of Heat Transfer , New York: McGraw-Hill Book Company. DOI: 10.1016 / 0017-9310 (75)

-9

Сондерс, Э. А. Д. (1988) Теплообменники — выбор, проектирование и строительство, Longman Scientific and Technical. DOI: 10.1016 / 0378-3820 (89)

-5

Ассоциация производителей трубчатых теплообменников, (1988 г.) (ТЕМА), седьмое издание. Кожухотрубные теплообменники .

Американский институт нефти (API) 661: Теплообменники с воздушным охлаждением для нефтяной промышленности .

.

Страница не найдена | MIT

Перейти к содержанию ↓
  • образование
  • Исследовательская работа
  • новаторство
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Alumni
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Alumni
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

,

Теплообменник Сравнение безрезервуарного водонагревателя

Для безбакерных теплообменников водонагревателя используются различные материалы, как первичные, так и вторичные, если применимо. В этом руководстве по безбаквальным теплообменникам исследуется:

Давайте сравним варианты безбакерных теплообменников для водонагревателя.

Что такое теплообменник?

Как следует из названия, теплообменник — это среда, часть, через которую тепло сгорания передается воде. Теплообменники постоянно нагреваются до 199 000 БТЕ тепла, что превышает мощность большинства газовых печей.Они также охлаждаются холодной водой, равной 30 ° F, текущей по окружающей их трубе. В результате эти детали должны быть чрезвычайно прочными и устойчивыми к трещинам, вызванным нагревом и охлаждением. Они также должны очень хорошо проводить тепло. Теплообменник называется первичным теплообменником, если блок также имеет вторичный теплообменник.

Что такое вторичный теплообменник?

Вторичные теплообменники используются в газовых безбаквальных водонагревателях, газовых печах, котлах и других газовых системах, работающих на природном газе и пропане, с конденсационной технологией.Их цель — повысить эффективность теплопередачи, часто с низких или средних 80-х до средних и высоких 90-х годов. В газовых водонагревателях это достигается за счет использования горячих дымовых газов для нагрева поступающей воды перед выпуском газов. В этом заключается различие между конденсационными и неконденсирующими водонагревателями без резервуара.

Дополнительную информацию можно найти в нашем Руководстве по покупке безрезервуарного водонагревателя. Возможно, вам будет полезно все руководство, или вы можете использовать поле навигации по содержимому вверху, чтобы перейти к разделу «Газовые водонагреватели: с конденсацией или без конденсации».

  • Плюсы: Вторичные теплообменники настолько эффективны, что воздухообменники с ними могут вентилироваться через стену с использованием ПВХ, а не через крышу с использованием металла, поскольку в выхлопных газах остается мало тепла.
  • Минусы: Выхлопные газы очень кислые, поэтому они разрушают некоторые металлы.

Материалы теплообменника с плюсами и минусами

Бесконтактные теплообменники изготавливаются из нескольких металлов и сплавов. В этом списке указаны металлы, прочность, устойчивость к коррозии и другие достоинства и недостатки.

Медь:

Это самый распространенный металл, используемый в теплообменниках всех производителей. Металл доступен по цене по сравнению с другими вариантами, но его преимущества выходят за рамки стоимости. У него самая высокая (лучшая) теплопроводность из всех металлов — 401, что примерно в 20 раз выше, чем у нержавеющей стали, поэтому тепло передается быстро. Медные теплообменники также очень хорошо справляются с расширением и сжатием. Единственный недостаток меди заключается в том, что она медленно растворяется под действием кислотности дымовых газов, а также снижает ее проводимость.По этим причинам его нельзя использовать во вторичных теплообменниках.

В нашем обзоре безрезервуарных водонагревателей руководства для Takagi, EcoSmart и Rheem относятся к числу тех, где используются медные первичные теплообменники.

Медный сплав:

Нержавеющая сталь содержит некоторое количество меди, поэтому это медный сплав, но уровень меди не такой высокий, как в медном сплаве с металлической маркировкой. Преимущество медного сплава заключается в том, что он обеспечивает отличную теплопроводность благодаря меди, но он гораздо лучше сопротивляется коррозии, чем чистая медь.Конденсационные водонагреватели Takagi относятся к числу тех, у которых есть первичные теплообменники из медного сплава.

Алюминий:

Этот металл обладает многими хорошими качествами, но не является лучшим ни в одной категории. Он легче меди и нержавеющей стали. Его рейтинг теплопроводности составляет 237, то есть примерно на 40% меньше, чем у меди, но на 1000% больше, чем у нержавеющей стали. Он противостоит коррозии лучше, чем медь, поскольку образует собственный оксидный слой, который защищает его от кислотности. Некоторые установки Bosch имеют алюминиевые вторичные теплообменники, включая Bosch Therm C 1210ES и Greentherm C950ES Series.

Нержавеющая сталь:

Почти все вторичные теплообменники изготовлены из нержавеющей стали , поскольку они должны обладать высокой устойчивостью к кислотности выхлопных газов сгорания. Исключение составляют агрегаты серии Noritz NRC98 с коммерческими медными теплообменниками.

Существуют различные марки нержавеющей стали, но не все производители раскрывают, какой тип они используют.

Takagi использует нержавеющую сталь 316L, морскую нержавеющую сталь, подходящую для солевых сред.«16» относится к 16% хрома в смеси.

Noritz использует теплообменники из нержавеющей стали STS 304. STS304 — это европейское название нержавеющей стали A2 или 18/10, содержащей около 18% хрома и около 10% никеля.

Navien использует нержавеющую сталь для обоих теплообменников, а не только для вторичных теплообменников. Это обеспечивает лучшую коррозионную стойкость, при этом обеспечивая рейтинг эффективности до 0,97 UEF, один из самых высоких в отрасли. Это одна из причин, по которой Navien с комфортом предлагает лучшую в отрасли 15-летнюю гарантию на теплообменник, длина которой соответствует Takagi и Bosch.

Модели Noritz EZ111 и EZ98 также имеют двойные теплообменники из нержавеющей стали, хотя гарантия на них составляет всего 12 лет.

Какой материал лучше всего подходит для теплообменников?

Как мы уже отмечали, у каждого есть свои плюсы и минусы. По невысокой стоимости и теплопроводности медь — топ. Для борьбы с коррозией нержавеющую сталь нельзя бить.

У нас есть две рекомендации по этому поводу, и обе относятся к конденсационным безбактовым нагревателям:

1). Если вы покупаете проточный водонагреватель на конденсирующем газе, избегайте моделей без вторичных теплообменников из нержавеющей стали.

2). Если ваша цель — снизить стоимость, подойдут первичные теплообменники из меди или сплавы. Если вы готовы платить больше, чтобы повысить надежность, лучше всего подойдут двойные теплообменники из нержавеющей стали.

Кредиты изображений: stanleyplumbing.net

.Промышленный теплообменник

: эксплуатация и техническое обслуживание для минимизации загрязнения и коррозии

1. Введение

Теплообменник играет важную роль в промышленном применении. Он применяется для нагрева и охлаждения крупных промышленных технологических жидкостей [1]. Теплообменник представляет собой динамическую конструкцию, которая может быть адаптирована к любому промышленному процессу в зависимости от температуры, давления, типа жидкости, фазового потока, плотности, химического состава, вязкости и многих других термодинамических свойств [2, 3].В связи с глобальным энергетическим кризисом эффективная рекуперация или рассеивание тепла стала жизненно важной задачей для ученых и инженеров [4].

Теплообменники предназначены для оптимизации площади поверхности стенки между двумя жидкостями, чтобы максимизировать эффективность при минимальном сопротивлении потоку жидкости через теплообменники в пределах стоимости материалов. Рабочие характеристики теплообменных поверхностей могут быть улучшены за счет добавления гофр или ребер в теплообменник, которые увеличивают площадь поверхности и могут направлять поток жидкости или вызывать турбулентность [5].Эффективность промышленных теплообменников можно контролировать в режиме онлайн, отслеживая общий коэффициент теплопередачи на основе его температуры, которая имеет тенденцию к снижению со временем из-за загрязнения [6].

Потенциальный ущерб оборудованию, вызванный образованием накипи, может быть очень дорогостоящим, если обработанная вода не обрабатывается правильно. Для очистки воды в промышленности обычно используются химические вещества. В США химикаты на сумму 7,3 миллиарда долларов в год выбрасываются в воздух, сбрасываются в реки и закапываются на свалки каждый год.Сорок процентов этих химикатов закупается промышленностью для борьбы с накипью в градирнях, котлах и другом теплопередающем оборудовании. Этот процент также представляет собой токсичные отходы на сумму более 2 миллиардов долларов, которые составляют триллион галлонов загрязненной воды, ежегодно сбрасываемой в землю, которая принадлежит всем нам.

Техническое обслуживание загрязненных трубчатых теплообменников может выполняться несколькими методами, такими как кислотная очистка, пескоструйная очистка, струя воды под высоким давлением, очистка пули или буровых штанг.В крупномасштабных системах охлаждающей воды для теплообменников обработка воды, такая как очистка, добавление химикатов, каталитический подход и т. Д., Используются для минимизации загрязнения теплообменного оборудования [7]. Другие процессы очистки воды также используются в паровых системах для электростанций для минимизации загрязнения и коррозии теплообменника и другого оборудования. Большинство химикатов и добавок, используемых для уменьшения загрязнения и коррозии, опасны для окружающей среды [8]. Итак, настало время применять химические вещества, безопасные для окружающей среды [9, 10, 11].

2. О промышленном теплообменнике

Промышленный теплообменник — это теплообменное оборудование, в котором используется процесс обмена тепловой энергией между двумя или более средами, имеющими разную температуру. Промышленные теплообменники применяются в различных промышленных приложениях, таких как производство электростанций, нефтегазовая промышленность, химические перерабатывающие предприятия, транспорт, альтернативные виды топлива, криогенная промышленность, кондиционирование воздуха и охлаждение, рекуперация тепла и другие отрасли.Кроме того, теплообменники — это оборудование, всегда тесно связанное с нашей повседневной жизнью, например, испарители, воздухоподогреватели, автомобильные радиаторы, конденсаторы и маслоохладители. В большинстве теплообменников поверхность теплообмена разделяет жидкость, которая включает широкий диапазон различных конфигураций потока для достижения желаемых характеристик в различных приложениях. Теплообменники можно классифицировать по-разному. Как правило, промышленные теплообменники классифицируются в соответствии с конструкцией, процессами переноса, степенью компактности поверхности, схемами потока, схемами прохода, фазой технологических жидкостей и механизмами теплопередачи, как показано на Рисунке 1.

Рисунок 1.

Классификация промышленных теплообменников [12].

3. Основные концепции конструкции теплообменника

Концепции конструкции теплообменника должны соответствовать нормальным технологическим требованиям, указанным в условиях эксплуатации для сочетания некорродированных и корродированных условий, а также чистых и загрязненных условий. Одним из важнейших критериев конструкции теплообменника является то, что теплообменник должен быть спроектирован таким образом, чтобы его было легко обслуживать, что обычно означает чистку или замену деталей, трубок, фитингов и т.повреждены в результате старения, вибрации, коррозии или эрозии в течение всего периода эксплуатации.

Следовательно, конструкция теплообменника должна быть как можно более простой, особенно если ожидается сильное загрязнение. За счет минимизации температуры в сочетании с выбором скорости жидкости и снижением концентрации предшественников загрязняющих веществ снижается вероятность потенциального загрязнения. Кроме того, должна быть разрешена самая высокая скорость потока в условиях падения давления и эрозии потока. Кроме того, выбор материала в пределах ограниченных затрат замедляет накопление отложений и позволяет сократить время пребывания.Он также должен быть совместимым с точки зрения pH, коррозии и не только с теплообменником, но также с точки зрения теплового оборудования и линий передачи теплообменника.

4. Обрастание

Обрастание всегда определяется как образование и накопление отложений нежелательных материалов на поверхностях технологического оборудования. Эти обычно материалы с очень низкой теплопроводностью образуют изоляцию на поверхности, которая может значительно ухудшить характеристики поверхности по передаче тепла при разнице температур, для которой она была разработана [13].Вдобавок к этому засорение увеличивает сопротивление потоку жидкости, что приводит к более высокому перепаду давления в теплообменнике. На поверхностях теплопередачи могут возникать многие типы загрязнения, например, кристаллизационное загрязнение, загрязнение твердыми частицами, коррозионное загрязнение, загрязнение химическими реакциями, биологическое загрязнение и загрязнение отверждением [14]. Загрязнение может иметь очень дорогостоящий эффект в промышленности, что в конечном итоге увеличивает расход топлива, прерывает работу, производственные потери и увеличивает затраты на техническое обслуживание [15].

Обрастание состоит из пяти стадий, которые можно кратко охарактеризовать как инициирование обрастания, перенос на поверхность, прикрепление к поверхности, удаление с поверхности и старение на поверхности [16]. Есть несколько параметров, влияющих на факторы загрязнения, такие как pH [9], скорость [17], объемная температура жидкости [18], температура поверхности теплопередачи, структура поверхности [19] и шероховатость [20, 21].

Общий процесс загрязнения обычно считается чистым результатом двух одновременных подпроцессов: процесса осаждения и процесса удаления, как показано на рисунке 2.Как показано на Рисунке 3, рост этих отложений приводит к снижению теплопередачи теплообменника со временем. Эта проблема влияет на энергопотребление промышленных процессов и в конечном итоге вызывает промышленный сбой из-за отказа теплообменника, как показано на рисунке 4.

Рисунок 2.

Общий процесс загрязнения [22].

Рисунок 3.

Устойчивость к обрастанию в зависимости от времени [22].

Рис. 4.

Сильное скопление отложений на трубопроводах теплообменника [24, 23].

5. Коррозия

Характеристики окружающей среды, такие как почва, атмосфера, вода или водные растворы, обычно разрушают обычные металлы и сплавы. Разрушение этих металлов известно как коррозия. Приятно то, что коррозия происходит из-за электрохимического механизма. Преждевременные отказы в различном оборудовании вызваны коррозией в большинстве промышленных процессов и инженерных операций, что приводит к нежелательным проблемам. Сюда входят дорогостоящие поломки, внеплановый останов и увеличение затрат на техническое обслуживание.

Этот простой усугубляется в таких областях, как химическая промышленность, нефтепереработка, морские и наземные электростанции, производство бумаги, кондиционирование воздуха, холодильники, производство продуктов питания и спиртных напитков. Таким образом, общая информация и механизм коррозии вызовут большой интерес у общественности и промышленности [24]. На процесс коррозии влияют различные параметры, как показано на рисунке 5. Следовательно, эти критерии следует учитывать при проектировании теплообменников.

Рисунок 5.

Фактор, влияющий на коррозию [25].

6. Затраты из-за обрастания

Помимо высокой стоимости загрязнения теплообменника, было сообщено об очень небольшом количестве работ по точному определению причин экономических штрафов из-за загрязнения. Следовательно, они объясняют стоимость разницей в конструкции и эксплуатации теплообменника. Тем не менее, надежное знание экономики обрастания желательно для оценки экономической эффективности различных стратегий смягчения [26, 27]. Общие затраты, связанные с обрастанием, включают следующее:

  1. Капитальные затраты

    Избыточная площадь поверхности, необходимая для преодоления тяжелых условий загрязнения, затраты на более прочный фундамент, обеспечение дополнительных площадей и увеличение затрат на транспортировку и установку.

  2. Затраты на энергию

    Затраты на дополнительное топливо, необходимое, если загрязнение приводит к дополнительному сжиганию топлива в теплообменном оборудовании, чтобы преодолеть эффект загрязнения.

  3. Затраты на техническое обслуживание

    Затраты на удаление отложений обрастания, затраты на химикаты или другие эксплуатационные расходы на противообрастающие устройства.

  4. Себестоимость производственных потерь

    Плановые или внеплановые остановки производства из-за загрязнения теплообменников могут привести к большим производственным потерям.Эти потери часто считаются основной причиной засорения, и их очень трудно оценить.

  5. Дополнительные затраты на охрану окружающей среды

    Затраты на утилизацию большого количества химикатов / добавок, используемых для уменьшения загрязнения.

В разных странах сообщается об огромных затратах на загрязнение. Steinhagen et al. сообщил о затратах на обрастание с точки зрения ВНП для некоторых стран, как представлено в таблице 1.

Страна Затраты на обрастание
млн долларов США
ВНП (1984)
млрд долларов США
Затраты на обрастание
% ВНП
США 3860–7000
8000–10 000
3634 0.12–0,22
0,28–0,35
Япония 3062 1225 0,25
Западная Германия Великобритания 1533 613 700 –930 285 0,20–0,33
Австралия 260 173 0,15
Новая Зеландия 35 0.15
Всего индустриального мира 26,850 13 429 0,20

Таблица 1.

Расчетные затраты на загрязнение, понесенные в некоторых странах (оценка 1992 г.) [28].

7. Текущие усилия по решению проблем, связанных с отложениями отложений и коррозией.

Много работ было выполнено для уменьшения образования отложений и контроля коррозии. В последние годы было разработано множество методов борьбы с загрязнением и коррозией [29].Эти методы можно классифицировать как химические средства (ингибиторы), механические средства, изменение фаз раствора, электромагнитные поля, электростатические поля, акустические поля, ультрафиолетовый свет, радиационная или каталитическая обработка, обработка поверхности, зеленые добавки, волокно в виде суспензии, В прошлом хромат был успешным химическим агентом для защиты от коррозии и контроля роста кристаллов, пока он не был запрещен. Введен полифосфатный ингибитор коррозии вместо добавок на основе хроматов.Этот ингибитор имеет тенденцию к разложению загрязняющих веществ в воде с высокой кальциевой жесткостью. Knudsen et al. исследовали загрязнение воды с высоким содержанием кальция, содержащей ингибитор фосфатной коррозии. Четыре различных сополимера использовались для ингибирования осаждения фосфата кальция, который включает акриловую кислоту / малеиновый ангидрид (AA / MA), акриловую кислоту / гидроксипропилакрилат (AA / HPA), акриловую кислоту / сульфоновую кислоту (AA / SA) и сульфированный стирол / малеиновый ангидрид (SS / MA). Исследования проводились путем варьирования pH, температуры поверхности и скорости.В сообщенном исследовании говорится, что как AA / HPA, так и (AA / SA) были очень эффективны в ингибировании осаждения фосфата кальция и коррозии.

С другой стороны, каталитический материал, состоящий из цинка и турмалина, был исследован для уменьшения загрязнения и коррозии. Тиджинг и др. сообщили, что материал катализатора потенциально снижает образование отложений карбоната кальция [30]. Teng et al. сообщили об аналогичном открытии каталитического материала по уменьшению воздействия сульфата кальция [31]. Более того, Tijing et al.дальнейшее расширение исследований за счет использования того же материала катализатора для уменьшения коррозии труб из углеродистой стали [31].

В прошлом большинство используемых методов, химикатов / добавок для предотвращения загрязнения и уменьшения коррозии были опасными для окружающей среды. Итак, настало время применять методы экологически чистых технологий и химические подходы, благоприятные для окружающей среды [9, 10, 11].

8. Снижение загрязнения с помощью зеленой технологии (каталитическое смягчение и зеленая добавка)

Физическая очистка воды (PWT) — хорошая альтернатива безопасному и эффективному методу смягчения нехимического загрязнения.Примеры PWT включают постоянные магниты [32], устройства с соленоидными катушками [33], зеленые добавки [34], а также каталитические материалы и сплавы [35].

Чтобы уменьшить образование накипи на поверхностях теплопередачи, часто используются химические добавки, но химические вещества дороги и представляют опасность для окружающей среды и здоровья. Снижение образования накипи от дегидратов сульфата кальция на поверхностях теплообменников с помощью волокон из натуральной древесной массы было проведено Кази [36] и другими в Университете Малайи. Экспериментальная работа была спроектирована и проведена для изучения использования волокна из натуральной древесной массы в качестве средства уменьшения загрязнения, как показано в Таблице 2 и на Рисунке 6.

Таблица 2.

Экспериментальная установка для уменьшения загрязнения путем включения зеленых добавок [36, 37].

Рисунок 6.

Принципиальная схема экспериментального контура потока [37, 36].

На рисунке 7 показана зависимость сопротивления обрастанию от времени для раствора сульфата кальция с различной концентрацией волокон 0,25% (1), 0,15% (2), 0,05% (3) и 0,02% кривой (4) в минеральном растворе. , Результаты показывают, что волокна в растворе замедляют засорение нагретых поверхностей, и это замедление пропорционально концентрации волокна в растворе.Индукционный период также увеличился.

Рис. 7.

Устойчивость к обрастанию как функция времени для волокна эвкалипта в перенасыщенном растворе сульфата кальция [38, 37].

9. Очистка теплообменника

Для поддержания или восстановления эффективности теплообменника часто бывает необходимо очистить теплообменники. Методы очистки можно разделить на две группы: онлайн-очистка и автономная очистка [38]. В некоторых приложениях очистку можно выполнять в режиме онлайн, чтобы поддерживать приемлемую производительность без прерывания работы.В остальных случаях необходимо использовать автономную очистку.

9.1. Оперативная очистка

Оперативная очистка обычно использует механический метод, предназначенный только для стороны трубы и не требующий разборки. Преимущества онлайн-очистки — это непрерывная работа теплообменника с надеждой на то, что не будет простоев, связанных с очисткой. Однако это приводит к дополнительным затратам на установку нового теплообменника или к большим затратам на модернизацию, и нет гарантии, что все трубы будут достаточно очищены.

  1. Циркуляция шариков из губчатой ​​резины [39]

    Этот метод позволяет предотвратить накопление твердых частиц, образование биопленки и осаждение продуктов коррозии и накипи. Это применимо только для потока внутри трубок.

  2. Две фазы обработки сульфатом железа

    Первая фаза включает первоначальное нанесение защитной пленки. Вторая фаза включает в себя уход за пленкой, которая в противном случае была бы разрушена сдвигающим эффектом потока.

  3. Хлорирование, используемое для борьбы с биообрастанием [40]

  4. Ингибиторы образования солей [10, 41, 42]

  5. Магнитные устройства [10, 43, 44]

  6. Звуковая технология [45]

    Излучатели звука высокой и низкой частоты (рожки) используются для устранения проблем загрязнения теплообменников. Использование звука гораздо менее эффективно для липких и вязких отложений, которые обычно связаны с зашлаковыванием.

  7. Химическая очистка в режиме онлайн [46]

    Впрыск химических растворов в технологические потоки для целей очистки.

  8. Использование излучения [47]

    Радиационная стерилизация воды с микробами, использование ультрафиолетового света и гамма-лучей рассматривались давно.

9.2. Автономная очистка

Альтернативой онлайн-очистке является остановка работы и очистка теплообменника. Автономную очистку можно разделить на автономную химическую очистку или механическую очистку. Метод очистки предпочтителен без необходимости демонтажа теплообменников, но обычно необходим доступ к внутренним поверхностям.Было бы разумно рассмотреть возможность установки «резервного» теплообменника, тем самым давая возможность очистить загрязненный теплообменник, в то же время поддерживая производство.

9.2.1. Автономная механическая очистка
  1. Сверление труб и установка штанг [28]

    К вращающемуся валу могут применяться устройства, включая сверла, режущие и полировальные инструменты и щетки, которые могут быть изготовлены из различных материалов, например, стали или нейлона, латуни в зависимости от от материала трубки и характера отложений.

  2. Очистка взрывчатыми веществами

    Используется для контролируемых взрывов, при которых энергия для удаления отложений передается ударной волной в воздухе, прилегающей к очищаемой поверхности, или общей вибрацией труб, вызванной взрывом. Это относительно новое нововведение в очистке котельных. Можно начинать процесс очистки, пока конструкция еще горячая.

  3. Термический удар [48]

    Особенно быстрые изменения температуры вызывают растрескивание слоя загрязнения с возможностью отслаивания.Этот прием похож на пропитку паром. Промывка водой уносит вытесненный материал, и ее повторяют до получения чистых поверхностей.

9.2.2. Автономная химическая очистка
  1. Ингибитор фтористоводородной, соляной, лимонной, серной кислоты или EDTA (химическое чистящее средство) для очистки от оксидов железа, отложений кальция / магния (загрязнение) и т.д. [49].

    Ингибитор фтористоводородная кислота на сегодняшний день является наиболее эффективным средством, но ее нельзя использовать, если отложения содержат более 1% (мас. / Об.) Кальция.

  2. Хлорированные или ароматические растворители с последующей промывкой подходят для тяжелых органических отложений, например смол и полимеров (загрязняющих веществ) [50].

  3. Щелочные растворы перманганата калия [51] или паровоздушного коксоудаления [52] подходят для очистки от отложений углерода (загрязняющих веществ).

10. Заключение

Загрязнение и коррозия являются основными нерешенными проблемами в эксплуатации теплообменников. Хотя проблемы с отложениями обрастания и их влияние на экономику вызывают серьезную озабоченность, все же заинтересованные органы не осведомлены об этом.Кроме того, последствия коррозии многочисленны и разнообразны, и их влияние на эффективную, надежную и безопасную работу оборудования или конструкций часто бывает более серьезным, чем простая потеря массы металла. Таким образом, настоящий документ будет способствовать продвижению заинтересованных организаций в разных странах, серьезности этой проблемы и применению возможных подходов к смягчению последствий.

Для промышленности правильный метод очистки и контроль играют важную роль в снижении производственных затрат.Себестоимость продукции значительно возрастает из-за использования химикатов, работ по техническому обслуживанию и простоев и потерь воды. Следовательно, соответствующие органы должны понимать важность борьбы с коррозией, очистки загрязнения и обеспечивать соблюдение определенного стандарта процедуры очистки в промышленности.

Благодарности

Авторы выражают благодарность за грант на высокоэффективные исследования UM.C / 625/1 / HIR / MOHE / ENG / 45, UMRG RP012A-13AET, Университетский фонд исследований для аспирантов (PPP) (e.грамм. PG109-2015A), Ливерпульский университет Джона Мура, Соединенное Королевство и Малайский университет, Малайзия за поддержку в проведении этой исследовательской работы.

.

Оставить комментарий

avatar
  Подписаться  
Уведомление о