Рассчитать толщину утеплителя: Калькулятор расчет толщины теплоизоляции — XPS Корпорации ТЕХНОНИКОЛЬ

Как рассчитать толщину утеплителя для пола, потолка, кровли и стен

Комфортное проживание в доме предусматривает создание условий для поддержания оптимальной температуры воздуха особенно зимой. В строительстве дома очень важно грамотно подобрать утеплитель и рассчитать его толщину. Любой строительный материал будь то кирпич, бетон или пеноблок имеет свою теплопроводность и теплосопротивление. Под теплопроводностью понимают способность стройматериала проводить тепло. Определяется данная величина в лабораторных условиях, а полученные данные приводятся производителем на упаковке либо в специальных таблицах.  Теплосопротивление – величина обратная теплопроводности. Тот материал, который отлично проводит тепло, соответственно, имеет низкое сопротивление теплу.

Для строительства и утепления дома выбирают материал, имеющий низкую теплопроводность и высокое сопротивление. Чтобы определить теплосопротивление стройматериала, достаточно знать его толщину и коэффициент теплопроводности.

Расчет толщины утеплителя стен

Представим, что дом имеет стены, выполненные из пенобетона плотностью 300 (0,3 м), коэффициент теплопроводности материала составляет 0,29. Делим 0,3 на 0,29 и получает 1,03.

Как рассчитать толщину утеплителя для стен, позволяющую обеспечить комфортное проживание в доме? Для этого необходимо знать минимальное значение теплосопротивления в городе или области, где расположено утепляемое строение. Далее от этого значения нужно отнять полученное 1,03, в результате станет известно сопротивление теплу, которым должен обладать утеплитель.

Если стены состоят из нескольких материалов, следует просуммировать их показатели теплосопротивления.

Толщина утеплителя стен рассчитывается с учетом сопротивления теплопередаче используемого материала (R). Для нахождения этого параметра следует применить нормы «Тепловой защиты зданий» СП50.13330.2012. Величина ГОСП (градусосутки отопительного периода) вычисляется по формуле:

При этом tB отражает температуру внутри помещения. Согласно установленным нормам она должна варьировать в пределах +20-22°С. Средняя температура воздуха – tот, число суток отопительного периода в календарном году – zот. Эти значения приведены в «Строительной климатологии» СНиП 23-01-99. Особое внимание следует уделить продолжительности и температуре воздуха в том периоде, когда среднесуточная t≤ 8

0С.

После того как теплосопротивление будет определено следует узнать какой должна быть толщина утеплителя потолка, стен, пола, кровли дома.

Каждый материал «многослойного пирога» конструкции имеет свое тепловое сопротивление R  и рассчитывается по формуле:

RТР = R+ R+ R… Rn,

Где под n понимают число слоев, при этом тепловое сопротивление определенного материала равняется отношению его толщины (δ

s) к теплопроводности (λS).

R = δSS

Толщина утеплителя стен из газобетона и кирпича

К примеру, в возведении конструкции используется газобетон D600 толщиной 30 см, в роли теплоизоляции выступает базальтовая вата плотностью 80-125 кг/м3, в качестве отделочного слоя – кирпич пустотелый плотностью 1000 кг/м3, толщиной 12 см. Коэффициенты теплопроводности приведенных выше материалов указываются в сертификатах, также их можно увидеть в  СП50.13330.2012 в приложении С. Итак теплопроводность бетона составила 0,26 Вт/м*

0С, утеплителя — 0,045 Вт/м*0С, кирпича — 0,52 Вт/м*0С. Определяем R для каждого из используемых материалов.

Зная толщину газобетона находим его теплосопротивление RГ = δ = 0,3/0,26 = 1,15 м2*0С/Вт, теплосопротивление кирпича —  RК = δSК = 0,12/0,52 = 0,23 м2*0С/В. Зная, что стена состоит из 3-х слоев

RТР= RГ + RУ + RК,

находим теплосопротивление утеплителя

RУ = RТР— RГ — RК.

Представим, что строительство происходит в регионе, где R

ТР(220С)  — 3,45 м2*0С/Вт. Вычисляем RУ = 3,45 — 1,15 – 0,23 = 2,07 м2*0С/Вт.

Теперь мы знаем, каким сопротивлением должна обладать базальтовая вата. Толщина утеплителя для стен будет определяться по формуле:

δS = RУ х λ = 2,07 х 0,045 = 0,09 м или 9 см.

Если представить, что RТР(180С) = 3,15 м2*0С/Вт, то RУ = 1,77 м2*0С/Вт, а δS = 0,08 м или 8 см.

Толщина утеплителя для кровли

Расчет данного параметра производится по аналогии с определением толщины утеплителя стен дома. Для термоизоляции мансардных помещений лучше использовать материал теплопроводностью 0,04 Вт/м°С. Для чердаков толщина торфоизолирующего слоя не имеет большого значения.

Чаще всего для утепления скатов крыш используют высокоэффективные рулонные, матные или плитные теплоизоляции, для чердачных крыш – засыпные материалы.

Толщина утеплителя для потолка рассчитывается по приведенному выше алгоритму. От того насколько грамотно будет определены параметры изоляционного материала зависит температура в доме в зимнее время.  Опытные строители советуют увеличивать толщину утеплителя кровли до 50% относительно проектной. Если используются засыпные или сминаемые материалы, время от времени их необходимо разрыхлять.

Толщина утеплителя в каркасном  доме

В роли теплоизоляции может выступать стекловата, каменная вата, эковата, сыпучие материалы. Расчет толщины утеплителя в каркасном доме более простой, потому как его конструкция предусматривает наличие самого утеплителя и наружной и внешней оббивки, как правило, выполненных из фанеры и практически не влияющих на степень термозащиты.

Например, внутренняя часть стены  — фанера толщиной 6 мм, наружная – плита OSB  толщиной 9 мм, в роли утеплителя выступает каменная вата. Строительство дома происходит в Москве.

Теплосопротивление стен дома в Москве и области в среднем должно составлять R=3,20 м2*0C/Вт. Теплопроводность утеплителя представлена в специальных таблицах либо в сертификате на товар. Для каменной ваты оно составляет λут = 0,045 Вт/м*0С.

Толщина утеплителя для каркасного дома определяется по формуле:

δут = R х λут = 3,20 х 0,045 = 0,14 м.

Плиты каменной ваты выпускаются толщиной 10 см и 5 см. В данном случае потребуется укладка минеральной ваты в два слоя.

Толщина утеплителя для пола по грунту

Прежде чем приступить к расчетам следует знать, на какой глубине располагается пол помещения относительно уровня земли. Также следует иметь представление о средней температуре грунта зимой на этой глубине. Данные можно взять из таблицы.

Сначала необходимо определить ГСОП, затем вычислить сопротивление теплопередаче, определить толщину слоев пола (к примеру, армированный бетон, цементная стяжка по утеплителю, напольное покрытие). Далее определяем сопротивление каждого из слоев, поделив толщину на коэффициент теплопроводности и суммировать полученные значения.

Таким образом, мы узнаем теплосопротивление всех слоев пола, кроме утеплителя. Чтобы найти этот показатель, из нормативного теплосопротивления отнимем общее термическое сопротивление слоев пола за исключением коэффициента теплопроводности изоляционного материала. Толщина утеплителя для пола вычисляется путем умножения минимального теплосопротивления утеплителя на коэффициент теплопроводности выбранного изоляционного материала.

Толщина утеплителя в таблице. Правила расчета

Правильный расчет теплоизоляции повысит комфортность дома и уменьшит затраты на обогрев. При строительстве не обойтись без утеплителя, толщина которого определяется климатическими условиями региона и применяемыми материалами. Для утепления используют пенопласт, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.

Как рассчитать утепление самостоятельно

Чтобы рассчитать, какая должна быть у утеплителя толщина, необходимо знать величину минимального термосопротивления. Она зависит от особенностей климата. При ее расчете учитывается продолжительность отопительного периода и разность внутренней и наружной (средней за это же время) температур. Так, для Москвы сопротивление передаче тепла для наружных стен жилого здания должно быть не меньше 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.

Термосопротивление стены определяется как сумма сопротивления всех слоев конструкции, несущих и утепляющих. Поэтому толщина теплоизоляции зависит от материала, из которого выполнена стена. Для кирпичных и бетонных стен требуется больше утеплителя, для деревянных и пеноблочных меньше. Обратите внимание, какой толщины бывает выбранный для несущих конструкций материал, и какая у него теплопроводность. Чем тоньше несущие конструкции, тем больше должна быть толщина утеплителя.

Если требуется утеплитель большой толщины, лучше утеплять дом снаружи. Это обеспечит экономию внутреннего пространства. Кроме того, наружное утепление позволяет избежать накопления влаги внутри помещения.

Теплопроводность

Способность материала пропускать тепло определяется его теплопроводностью. Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Повышенная влажность воздуха увеличивает теплопроводность. Обратная к теплопроводности величина называется термосопротивлением. Для его расчета используется величина теплопроводности в сухом состоянии, которая указывается в паспорте используемого материала. Можно также найти ее в таблицах.

Приходится, однако, учитывать, что в углах, местах соединения несущих конструкций и других особенных элементах строения теплопроводность выше, чем на ровной поверхности стен. Могут возникнуть “мостики холода”, через которые из дома будет уходить тепло. Стены в этих местах будут потеть. Для предотвращения этого величину термосопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимой.

Пример расчет

Нетрудно произвести с помощью простейшего калькулятора расчет толщины термоизоляции. Для этого вначале рассчитывают сопротивление передаче тепла для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала. Например, у пенобетона плотностью 300 коэффициент теплопроводности 0,29. При толщине блоков 0,3 метра величина термосопротивления:

0,3/0,29=1,03.

Рассчитанное значение вычитается из минимально допустимого. Для условий Москвы утепляющие слои должны иметь сопротивление не меньше чем:

3,28-1,03=2,25

Затем, умножая коэффициент теплопроводности утеплителя на требуемое термосопротивление, получаем необходимую толщину слоя. Например, у минеральной ваты с коэффициентом теплопроводности 0,045 толщина должна быть не меньше чем:

0,045*2,25=0,1 м

Кроме термосопротивления учитывают расположение точки росы. Точкой росы называется место в стене, в котором температура может понизиться настолько, что выпадет конденсат – роса. Если это место оказывается на внутренней поверхности стены, она запотевает и может начаться гнилостный процесс. Чем холоднее на улице, тем ближе к помещению смещается точка росы. Чем теплее и влажнее помещение, тем выше температура в точке росы.

Толщина утеплителя в каркасном доме

В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.

Необходимая толщина определяется по тем же формулам, что и при традиционном строительстве. Дополнительные слои многослойной стены дают примерно 10% от его величины. Толщина стены каркасного дома меньше, чем при традиционной технологии, и точка росы может оказаться ближе к внутренней поверхности. Поэтому излишне экономить на толщине утеплителя не стоит.

Как рассчитать толщину утепления крыши и чердака

Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.

Как рассчитать толщину утепления пола

Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать утепление пола. Если цоколь и фундамент не утеплены, считается, что температура в подполе равна наружной, и толщина утеплителя рассчитывается также, как для наружных стен. Если же некоторое утепление цоколя сделано, его сопротивление вычитают из величины минимально необходимого термосопротивления для региона строительства.

Расчет толщины пенопласта

Популярность пенопласта определяется дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пенопласт почти не пропускает пара, поэтому его нельзя использовать для внутреннего утепления. Он располагается снаружи или в середине стены.

Теплопроводность пенопласта, как и других материалов, зависит от плотности. Например, при плотности 20 кг/м3 коэффициент теплопроводности около 0,035. Поэтому толщина пенопласта 0,05 м обеспечит термосопротивление на уровне 1,5.

Правила и примеры расчета толщины утеплителя

Теплый дом — мечта каждого владельца, для достижения этой цели строятся толстые стены, проводится отопление, устраивается качественная теплоизоляция. Чтобы утепление было рациональным необходимо правильно подобрать материал и грамотно рассчитать его толщину.

Какие данные нужны для расчета толщины утеплителя?

Размер слоя изоляции зависит от теплового сопротивления материала. Этот показатель является величиной, обратной теплопроводности. Каждый материал — дерево, металл, кирпич, пенопласт или минвата обладают определенной способностью передавать тепловую энергию. Коэффициент теплопроводности высчитывается в ходе лабораторных испытаний, а для потребителей указывается на упаковке.

Если материал приобретается без маркировки, можно найти сводную таблицу показателей в интернете.

 

Название материала

 

Теплопроводность, Вт/м*К

 

Бетон

 

1,51

 

Кирпич силикатный

 

0,7

 

Пенобетон

 

0,29

 

Дерево

 

0,18

 

ДСП

 

0,15

 

Минеральная вата

 

0,07-0,048

 

Экструдированный пенополистирол

 

0,036

 

Пенополиуретан

 

0,041-0,02

 

Пенополистирол

 

0,05-0,038

 

Пеностекло

 

0,11

Теплосопротивление материала ® является постоянной величиной, его определяют как отношение разности температур на краях утеплителя к силе проходящего через материал теплового протока. Формула расчета коэффициента: R=d/k, где d — толщина материала, k — теплопроводность. Чем выше полученное значение, тем эффективней теплоизоляция.

Почему важно правильно рассчитать показатели утепления?

Теплоизоляция устанавливается для сокращения потерь энергии через стены, пол и крышу дома. Недостаточная толщина утеплителя приведет к перемещению точки росы внутрь здания. Это означает появление конденсата, сырости и грибка на стенах дома. Избыточный слой теплоизоляции не дает существенного изменения температурных показателей, но требует значительных финансовых затрат, поэтому является нерациональным. При этом нарушается циркуляция воздуха и естественная вентиляция между комнатами дома и атмосферой. Для экономии средств с одновременным обеспечением оптимальных условий проживания требуется точный расчет толщины утеплителя.

Расчет теплоизоляционного слоя: формулы и примеры

Чтобы иметь возможность точно рассчитать величину утепления, необходимо найти коэффициент сопротивления теплопередачи всех материалов стены или другого участка дома. Он зависит от климатических показателей местности, поэтому вычисляется индивидуально по формуле:

ГСОП=(tв-tот)xzот

tв — показатель температуры внутри помещения, обычно составляет 18-22ºC;

tот — значение средней температуры;

zот — длительность отопительного сезона, сутки.

Значения для подсчета можно найти в СНиП 23-01-99.

При вычислении теплового сопротивления конструкции, необходимо сложить показатели каждого слоя: R=R1+R2+R3 и т. д. Исходя из средних показателей для частных и многоэтажных домов определены примерные значения коэффициентов:

  • стены — не менее 3,5;
  • потолок — от 6.

Толщина утеплителя зависит от материала постройки и его величины, чем меньше теплосопротивление стены или кровли, тем больше должен быть слой изоляции.

Пример: стена из силикатного кирпича толщиной в 0,5 м, которая утепляется пенопластом.

Rст.=0,5/0,7=0,71 — тепловое сопротивление стены

R- Rст.=3,5-0,71=2,79 — величина для пенопласта

Имея все данные, можно рассчитать необходимый слой утеплителя по формуле: d=Rxk

Для пенопласта теплопроводность k=0,038

d=2,79×0,038=0,10 м — потребуются плиты пенопласта толщиной в 10 см

По такому алгоритму легко подсчитать оптимальную величину теплоизоляции для всех участков дома, кроме пола. При вычислениях, касающихся утеплителя основания, необходимо обратиться к таблице температуры грунта в регионе проживания. Именно из нее берутся данные для вычисления ГСОП, а далее ведется подсчет сопротивления каждого слоя и искомая величина утеплителя.

Популярные способы утепления дома

Выполнить теплоизоляцию здания можно на этапе возведения или после его окончания. Среди популярных методов:

  • Монолитная стена существенной толщины (не менее 40 см) из керамического кирпича или дерева.
  • Возведение ограждающих конструкций путем колодезной кладки — создание полости для утеплителя между двумя частями стены.
  • Монтаж наружной теплоизоляции в виде многослойной конструкции из утеплителя, обрешетки, влагозащитной пленки и декоративной отделки.

По готовым формулам произвести расчет оптимальной толщины утеплителя можно без помощи специалиста. При вычислении следует округлять число в большую сторону, небольшой запас величины слоя теплоизолятора будет полезен при временных падениях температуры ниже среднего показателя.

Расчет толщины утеплителя для кровли: методика, формула расчета, примеры

Пример расчета толщины утеплителя

Давайте проанализируем утепление крыши в городах с самыми высокими и самыми низкими требованиями к сопротивлению теплопередачи покрытия. В нашей таблице это Новосибирск (5,59) и Грозный (3,73).

Возьмем для примера минеральную вату со средним коэффициентом теплопроводности 0,035 Вт/(м · °С). Подставив это значение в формулу, получим толщину утеплителя 0,190 м для Новосибирска и 0,125 м для Грозного. Если для сравнения подсчитать требуемую толщину самого эффективного утеплителя на строительном рынке – полиизоцианурата (PIR), чей коэффициент теплопроводности составляет всего 0,022 Вт/(м · °С), то для Новосибирска мы получим значение 0,119 м, а для Грозного – всего 0,079 м.

Более тонкий расчет

Справочное значение сопротивления теплопередаче, в строгом смысле, относится не к слою утеплителя, а к конструкции целиком. Свой вклад в сопротивление утечке тепла вносят все слои кровельного «пирога». Некоторыми из них можно пренебречь, а некоторыми – не стоит.

Так, финишное покрытие кровли можно не принимать в расчет, так как оно отделено от остальной конструкции вентзазором. А вот к отделочному материалу потолка нужно присмотреться повнимательней. Потолок часто зашивают древесными или древесно-стружечными материалами, которые имеют неплохие теплоизоляционные свойства. Их можно тоже включить в расчеты.

αут = αмат.1 + αмат.2

Рассмотрим случай, когда потолок мансарды подшит древесно-стружечной плитой толщиной 15 мм. Коэффициент теплопроводности этого материала, согласно справочным данным равен 0,15 Вт/(м · °С).

Подставим эти данные в формулу и найдем значение R. Так мы найдем вклад этого слоя в общее сопротивление теплопотерям.

0,015 = (R – 0,16) · 0,15
R = 0,26 м2 · °С/Вт

Теперь повторим наши расчеты для Новосибирска и Грозного, но с учетом теплоизолирующих свойств обшивки.

αут = (5,59 – 0,26 – 0,16) · 0,035 = 0,181 м (Новосибирск)
αут = (3,73 – 0,26 – 0,16) · 0,035 = 0,116 м (Грозный).

Результаты показывают, что обшивка потолка мансарды древесно-стружечной плитой уменьшила расчетную толщину утеплителя меньше чем на 1 сантиметр. В большинстве случаев этой величиной можно пренебречь.

В один слой или в несколько?

Допустим, необходимая толщина слоя минеральной ваты по расчетам составила 20 см. В продаже есть плиты толщиной 20 см и толщиной 10 см. Как лучше поступить? Утеплить крышу в один слой, или в два — более тонким материалом?

Многослойное утепление должно быть более эффективным за счет того, что вышележащие плиты перекрывают стыки нижележащих и препятствуют появлению «мостиков холода». В кровельной конструкции должно быть как минимум два слоя теплоизоляции, чтобы перекрыть поперечный стык плит.

Однако специалисты НИИМосстрой утверждают, что уменьшение количества слоёв утеплителя не так уж сильно влияет на показатели теплоизоляции зданий, как может показаться.

Гораздо сильнее на качество теплоизоляции влияет аккуратность монтажа. В экспериментах, проведенных специалистами НИИМосстрой, наличие зазоров толщиной от 2 до 5 мм между плитами утеплителя существенно ухудшает теплоизоляционные свойства материала — как при однослойном, так и при многослойном монтаже.

Чтобы не запутаться в коэффициентах, нормативах, климатических зонах и прочих премудростях, лучше доверить расчеты профессионалам. Равно как и монтаж. Крыши не прощают ошибок и заставляют расплачиваться за легкомыслие нервами, деньгами и хорошим настроением.

Расчет толщины утеплителя для стен

Каждый, кто строит собственный дом, хочет, чтобы в нем было тепло. Добиться это можно несколькими способами: построить толстые стены, сделать хорошее утепление или хорошо отапливать дом.

На практике все эти способы используют вместе, но с экономической точки зрения, больший приоритет имеет утепление дома, а точнее увеличение толщины утеплителя.

Как же рассчитать необходимую толщину стен и утеплителя, чтобы дом был не только крепким, но теплым.

Наш расчет будет состоять из двух основных этапов:

  1. Нахождения сопротивлением теплопередаче стен, которое необходимо для дальнейших вычислении.
  2. Подбор необходимой толщины утеплителя в зависимости от конструкции и материала стен.

В начале, предлагаем посмотреть небольшое видео, в котором эксперт подробно рассказывает для чего нужно закладывать утеплитель в наружные стены кирпичного дома и какой вид утеплителя при этом использовать.

Сопротивлением теплопередаче стен

Для нахождения этого параметра используем СП 50.13330.2012 «Тепловая защита зданий» который можно скачать на нашем сайте (ссылка).

В пункте 5 «Тепловая защита зданий» представлены несколько формул, которые помогут нам рассчитать толщину утеплителя и стен. Для того чтобы это сделать существует параметр, называемый сопротивлением теплопередаче и обозначаемый буквой R. Он зависит от необходимой температуры внутри помещения и климатических условий данного города или района.

В общем случает он рассчитывается по формуле RТР = a х ГСОП + b.

Согласно таблице 3, значения коэффициентов a и b для стен жилых зданий равняется 0,00035 и 1,4 соответственно.

Осталось только найти величину ГСОП. Расшифровывается она как градусо-сутки отопительного периода. С этим значением придется немного повозится.

Формула для расчета ГСОП = (tВtОТ) х zОТ.

В данной формуле tВ — это температура, которая должна быть внутри помещения. По нормам она равняется 20-220С.

Значение параметров tОТи zОТ означают среднюю температуру наружного воздуха и количество суток отопительного периода в году. Узнать их можно в СНиП 23-01-99 «Строительная климатология». (ссылка).

Если посмотрите на данный СНиП, то увидите большую таблицу в самом начале, где для каждого города или района приведены климатические параметры.

Нас будет интересовать колонка, в которой написано «Продолжительность и средняя температура воздуха периода со средней суточной температурой воздуха ≤ 80С».

Пример расчета параметра R

ТР

Для того, чтобы все стало более понятным, давайте рассчитаем сопротивлением теплопередаче стен (RТР) для дома построенного в г. Казань.

Для этого у нас есть две формулы:

RТР = a х ГСОП + b,

ГСОП = (tВ-tОТ) х zОТ

Сначала рассчитаем ГСОП. Для этого ищем г. Казань в правой колонке СНиП 23-01-99.

Находим по таблице, что средняя температура tОТ = — 5,20С, а продолжительность zОТ = 215сут/год.

Теперь нужно определится, какая температура воздуха внутри помещения для вас комфортна. Как было написано выше оптимальным считается tВ = 20-220С. Если вы любите более прохладную или более теплую температуру, то при расчете ГСОП для значение tВ может быть другим.

Итак, подсчитаем ГСОП для температуры tВ = 180С и tВ = 220С.

ГСОП18 = (180С-(-5,20С) х 215 суток/год = 4988.

ГСОП22 = (220С-(-5,20С) х 215 суток/год = 5848

Теперь найдем сопротивление теплопередаче. Как мы уже знаем коэффициенты a и b для стен жилых зданий, согласно таблице 3 из СП 50.13330.2012 равняются 0,00035 и 1,4.

RТР(180С) = 0,00035 х 4988 + 1,4 = 3,15 м2*0С/Вт, для 180С внутри помещения.

RТР(220С) = 0,00035 х 5848 + 1,4 = 3,45 м2*0С/Вт, для 220С.

Таким сопротивление, должна обладать стена вместе с утеплителем, для того чтобы в доме были минимальные теплопотери.

Итак, необходимые начальные данные мы получили. Теперь перейдём ко второму этапу, к определению толщины утеплителя.

Расчета толщины утеплителя

Надеемся вам хватило желания дочитать предыдущий раздел нашей статьи. Теперь попробуем рассчитать толщину утеплителя в зависимости от материала и толщины стен.

Каждый материал, входящий в многослойный пирог стены, обладает собственным тепловым сопротивлением R. Так вот, наша задача, состоит в том, чтобы сумма всех сопротивлений материалов, входящих в конструкцию стены, равнялась тепловому сопротивлению RТР,которое мы рассчитывали в предыдущейглаве, т.е.:

RТР = R1 + R2 + R3 Rn, где n количество слоев.

Тепловое сопротивление отдельного материала R равняется отношению толщины слоя (δs) к теплопроводности (λS).

R = δSS

Что бы дальше не путать вас формулами, рассмотрим три примера.

Примеры расчета толщины утеплителя для стен из кирпича и газобетона

Пример 1. Стена из газобетонных блоков D600 толщиной 30 см, утепленная снаружи каменной ватой плотностью 80-125 кг/м3 , а снаружи обложена керамическим пустотелым кирпичом плотностью 1000 кг/м3. Строительство велось в г.Казань.

Для дальнейшего нахождения толщины утеплителя, нам понадобятся значения теплопроводности материалов λS. Эти данные должны присутствовать в сертификате к материалам.

Если по каким-либо причинам их нет, то посмотреть их можно в Приложение С к СП 50.13330.2012, который мы использовали ранее.

λ = 0,14 Вт/м*0С — теплопроводность газобетона;

λ = 0,045 Вт/м*0С – теплопроводность утеплителя;

λ = 0,52 Вт/м*0С – теплопроводность кирпича.

Далее вычисляем значение R для каждого материала, зная, что толщина слоя газобетона δ = 30 см, а наружная кладка в полкирпича равняется δ = 12 см.

RГ = δ = 0,3/0,14 = 2,14 м2*0С/Вт — тепловое сопротивление газобетона;

RК = δ = 0,12/0,52 = 0,23 м2*0С/В — тепловое сопротивление кирпича.

Т.к. наша стена состоит из трех слоев, то верно будет уравнение:

RТР= RГ + RУ + RК,

тогда RУ = RТР— RГ — RК

В предидущей главе мы находили значение RТР(220С) для г. Казань. Используем его для наших вычислений.

RУ = 3,45 — 2,14 – 0,23 = 1,08 м2*0С/Вт.

Таким образом мы нашли, каким тепловым сопротивлением должен обладать утеплитель. Для нахождения толщины утеплителя воспользуемся формулой:

δS = RУ х λ = 1,08 х 0,045 = 0,05 м.

Мы получили, что для заданных условий достаточно утеплителя толщиной 5 см.

Если мы возьмём значение RТР(180С) = 3,15 м2*0С/Вт, то получим:

RУ = 3,15 — 2,14 – 0,23 = 0,78 м2*0С/Вт.

δS = RУ х λSУ = 0,78 х 0,045 = 0,035 м

Как видите, толщина утеплителя изменилась всего на полтора сантиметра.

Пример 2. Рассмотрим пример, когда вместо газобетонных блоков, уложен силикатный кирпич плотностью 1800 кг/м3. Толщина кладки при этом 38 см.

По аналогии с предыдущими вычислениями находим значения теплопроводности по таблице:

λSК1 = 0,87 Вт/м*0С — теплопроводность силикатного кирпича плотностью 1800 кг/м3;

λ = 0,045 Вт/м*0С – теплопроводность утеплителя;

λSК2 = 0,52 Вт/м*0С – теплопроводность кирпича плотностью 1000 кг/м3.

Далее находим значения R:

RК1 = δSК1SК1 = 0,38/0,87 = 0,44 м2*0С/Вт — тепловое сопротивление кирпича 1800 кг/м3;

RК2 = δSК2SК2 = 0,12/0,52 = 0,23 м2*0С/В — тепловое сопротивление кирпича 1000 кг/м3.

Находим тепловое сопротивление утеплителя:

RУ = 3,45 – 0,44 – 0,23 = 2,78 м2*0С/Вт.

Теперь вычисляем толщину утеплителя:

δS = RУ х λ = 2,78 х 0,045 = 0,12 м.

Т.е. для данных условий достаточно толщины утеплителя 12 см.

Пример 3. В качестве наглядного примера, говорящем о важности утепления, рассмотрим стену состоящую только газобетона D600.

Зная теплопроводность газобетонных блоков, λ = 0,14 Вт/м*0С, можем сразу вычислить необходимую толщину стен т.к. стена однородна.

δS = RТР х λ = 3,45 х 0,14 = 0,5 м

Мы получаем, чтобы соблюдать все нормы СНиП, мы должны выложить стену толщиной 0,5 м.

В таком случае можно пойти двумя путями, сделать стену сразу необходимой толщины или построить стену потоньше и дополнительно утеплить.

Первый вариант нам кажется более надежным и менее затратным, потому что работ по монтажу утеплителя нет. Второй вариант больше подходит для уже построенных домов.

Все эти примеры, показывают, как зависит толщина утепление от материала стен. По аналогии с ними вы можете проделать расчёты для любого типа материала.

Видео «Утепление стен»

В заключении, предлагаем вам посмотреть пару видеороликов, которое будет полезно при выборе толщины утеплителя для стен дома построенного из пенобетона и газобетона.

Как выбрать толщину утеплителя для фасада вашего дома+ видео

Утепление стен дома или другого объекта, проводимое несвоевременно отнимает значительную часть средств хозяина. Для того чтобы они не были потрачены зря, нужно правильно рассчитать количество утепляющего материала (толщина утеплителя). Его недостаток приведёт к тому, что потребуется дополнение утепления или перерасход топлива, а избыток материала к ненужным тратам, которые могут собраться в круглую сумму в зависимости от используемых материалов. Поэтому согласно логике должен возникнуть вопрос: «Как рассчитать толщину утеплителя правильно?».

Информационная основа и базовые опорные показатели

В первую очередь для правильного расчёта утепления, каждый должен обратить внимание на два главных фактора играющих основную роль:

  • Первый – климатические условия, которые выдвигают требования к используемому материалу.
  • Второй – тип используемого утеплителя для фасада или другой части объекта.

В зависимости от его характеристик, будет определяться количество отражённого, сохранённого и поглощённого тепла.
Отправной точкой в расчётах утепления нужно считать коэффициенты теплосопротивления и теплопроводности. Это табличные величины, которые имеют конкретное значение. Коэффициент теплопроводности относится к физическим данным строительных конструктивных и утепляющих материалов стен. Это параметр, который указывается производителем в сопровождающей технической документации. Он определяется опытным путём на предприятии, что на практике облегчает расчет толщины утеплителя.

полезно в работе

Теплосопротивление – это климатически зависимый показатель. Для разных категорий помещений он отличается, и в целях систематизации и стандартизации, упрощающей вычислительные работы, он выведен на основании статистических температурных показателей, которые присущи тому или иному региону.

Он фиксируется в соответствующих государственных нормах. В связи с переходом на европейские стандарты, этот показатель утепления значительно повысился, что в свою очередь выдвигает новые требования к зданиям и их конструктивным элементам вроде фасада.

Типы и виды утепляющих материалов

Утепления требуют все конструкции в доме без исключения не только стена фасада, но и кровля, пол. Для них также выделены собственные показатели теплосопротивления. В соответствии со всеми перечисленными выше показателями происходит расчёт нормы расхода утепляющих материалов.
При использовании твердотельных утеплителей расчёт количества значительно упрощается по сравнению с жидкими пенообразующими составами для обработки стен. В первом случае необходимо рассчитать укрываемую площадь в соответствии с полученной толщиной утеплителя, вычисленного перемножением коэффициентов. Жидкие же в процессе нанесения расширяются, и рассчитать их количество можно лишь в соответствии с инструкцией, приложенной производителем.

Такие материалы чаще используются для утепления кровельных конструкций, но для стен фасада, потолка и пола используются твердые типы материала. Также их применяют в каркасном строительстве. Чаще всего ими заполняются пустоты, которые имеет каркасная конструкция или сэндвич-панели.

Стоит учесть, что в качестве утепляющих материалов могут быть использованы и привычные кирпич или бетон, но требуемое количество для должного утепления несравнимо со строительными нормами, и их использование может быть нецелесообразным. Поэтому с каждым годом выпускаются все более новые материалы, которые уже при небольшой толщине образуют желаемый эффект, например, керамический наполнитель или популярный сейчас полистирол. Количество их в стандартной ситуации не превышает 5-10 см, что в сравнении с бетоном – невообразимая разница.

Также существуют и гранулированные материалы. Их чаще всего используют для утепления горизонтальных поверхностей вроде потолка (чердака), пола и крайне редко они могут быть использованы для фасада. Толщина утеплителя (его насыпного слоя) рассчитывается аналогично, а показатели фиксируются на упаковке производителем.

Особенности планирования и конструкции

Как правило, в строительстве здания и его фасада, используется не один строительный материал, а несколько, поэтому теплосопротивление является совокупным показателем набора материалов. Соответственно для вычисления количества конкретного вида утеплителя необходимо извлечь расчётную теплопроводность уже имеющихся стен в доме, чтобы получить для каждого компонента собственный количественный показатель.

Проводя эту операцию в домашних условиях можно пренебречь незначительным преувеличением размера утеплителя, но, ни в коем случае нельзя допускать снижения его количества. Иначе теплосопротивление будет недостаточным, температура стен фасада и внутри помещения не будет соответствовать планируемым показателям, что приведёт к образованию конденсата на поверхности стен.

Немаловажны при этом назначение помещения и его конструкционные особенности вроде углублённости или возвышением над землёй. В зависимости от этих факторов будут меняться табличные значения коэффициентов и как следствие этого – толщина утеплителя.

Пример расчета толщины теплоизоляции — ДомПрофКомплект

Как рассчитать толщину теплоизоляции?

Необходимая толщина теплоизоляции – это теплосопротивление (R). Теплосопротивление является величиной постоянной, которая рассчитывается для каждого региона в отдельности. За средний норматив возьмем следующие величины:

 

Теплосопротивление стен — 3,5 (м2*К/Вт)

Теплосопротивление потолка — 6 (м2*К/Вт)

Теплосопротивление стен — 4,6 (м2*К/Вт)

 

       При расчете теплоизоляции стен (пола, потолка), состоящих из нескольких слоев – общее теплосопротивление равно сумме показателей теплосопротивления каждого слоя:

 

R= R1+R2+R3

 

       Итак, толщина теплоизоляционного слоя (или теплосопротивление) расчитывается по формуле:

 

R = p/k

 

где р – толщина слоя (м),

     к – коэффициент теплопроводности материала (Вт/м*к)

 

       В таблице 1 приведены коэффициенты теплопроводности некоторых строительных и теплоизоляционных материалов.

 

Таблица 1. Коэффициент теплопроводности строительных материалов

 

 

Материал

Коэффициент

теплопроводности (Вт/м*к)

Минеральная вата

0,045 – 0,07

Пенополистирол (пенопласт)

0,031 – 0,041

Стекловата

0,033 – 0,05

Эковата (целлюлозный утеплитель)

0,038 – 0,045

Опилки

0,07 – 0,93

ДСП, ОСП

0,15

Дуб

0,20

Сосна

0,16

Кирпич пустотелый

0,35 – 0,41

Кирпич красный глиняный

0,56

Керамзит

0,16

Железобетон

2,00

 

 Пример расчета толщины теплоизоляции

 

 

Рисунок 1. Расчет толщины теплоизоляции

 

       В счет примера возьмем кирпичную стену в полтора кирпича и сделаем расчет необходимого слоя теплоизоляции из минеральной ваты (рис. 1).

     1.  Нам необходимо теплосопротивление стены не менее 3,5 (м2*К/Вт). Следовательно, мы изначально должны узнать теплосопротивление данной стены. Толщина стены в полтора кирпича = 0,38 м. Коэффициент теплопроводности кирпича = 0,56 (Вт/м*к), итак по формуле:

 

R= p/k

R(к)= 0,38/0,56

R(к)= 0,68 (м2*К/Вт)

 

     2.  Что бы достичь необходимого показателя теплосопротивления в 3,5 (м2*К/Вт):

 

R(м) = R — R(к)

R(м)= 3,5 – 0,68

R(м)= 2,85 (м2*К/Вт)

 

     3.  Исходя из основной формулы, мы делаем расчет толщины теплоизоляции, в нашем случае минеральной ваты:

 

p(м)= Rk

p(м)= 2,85 * 0,045

p(м)= 0,128 (м)

 

       По данному расчету толщины теплоизоляции на кирпичную стену в полтора кирпича, необходимо минеральная вата толщиной 130 мм. Если учесть толщину отделочных внутренних и наружных работ, минвата, для удобства монтажа может укладываться, толщиной в 100 мм.

Оценка толщины изоляции, оптимальная толщина

Стандартизированная система оценки изоляции обеспечивает согласованность с изоляционными материалами, оцениваемыми по значениям R и U. R-значение является мерой теплового сопротивления, представляет сопротивление потоку тепла. Чем выше значение R, тем больше сопротивление и изоляционные свойства. U-значения прямо противоположны и представляют количество тепла, уходящего через материал. Чем ниже значение U, тем ниже скорость теплового потока и тем выше качество изоляции.
Он выражается как толщина материала, деленная на теплопроводность. Для теплового сопротивления всего сечения материала вместо единицы сопротивления разделите единицу теплового сопротивления на площадь материала. Если у вас есть единичное тепловое сопротивление стены, разделите его на площадь поперечного сечения и глубину стены, чтобы вычислить тепловое сопротивление. Единичная теплопроводность материала обозначается как C и является обратной величиной единичного теплового сопротивления.Это также можно назвать единичной поверхностной проводимостью, обычно обозначаемой h.


Оценка толщины для трубы: Определите минимальную толщину изоляции, необходимую для трубы, по которой проходит пар, при температуре 180 o C. Размер трубы составляет 400 мм NB, а максимально допустимая температура наружной стены изоляции составляет 50 o C. Теплопроводность изоляционного материала для диапазона температур трубы может быть принята равной 0,04 Вт / мК. Потери тепла от пара на метр длины трубы должны быть ограничены до 80 Вт / м.
Для радиальной теплопередачи за счет теплопроводности через цилиндрическую стенку скорость теплопередачи выражается следующим уравнением

T1 = 50 o C
T2 = 180 o C
r1 400 мм NB = 0,2032 м
k = 0,04 Вт / м · К
N = длина цилиндра
Q / N = Тепловые потери на единицу длины трубы
Q / N = 80 Вт / м
Следовательно, подставляя указанные числа в уравнение радиальной скорости теплопередачи сверху,
80 = 2pi 0,04 (180-50) ln (r 2 /0.2032)
ln (r 2 / 0,2032) = 2pi 0,04 (180-50) / 80 = 0,4084
Следовательно, r 2 = r 1 e 0,4084
r 2 = 0,2032 1,5044 = 0,3057 м
Следовательно, толщина изоляции = r 2 r 1
толщина = 305,7 203,2 = 102,5 мм

Следует взять некоторый запас на толщину изоляции, потому что, если скорость кондуктивной теплопередачи окажется выше, чем скорость конвективной теплопередачи за пределами изоляционной стены, температура внешней изоляционной стены будет стремительно расти до более высоких значений. чем 500 o C.Следовательно, скорость кондуктивной теплопередачи должна быть ограничена более низкими значениями, чем оценки, использованные в этом примере задачи. Цель этого примера задачи — продемонстрировать расчеты радиальной теплопроводности, а практические расчеты толщины изоляции также требуют учета конвективной теплопередачи на внешней стороне изоляционной стены.


Оптимальная толщина для трубы: Экономическая толщина изоляции зависит от первоначальной стоимости (затрат на изоляцию) и затрат на техническое обслуживание изоляции, а также годовой стоимости потерь тепла, которая зависит от затрат на производство пара и теплопроводности отставание.Как правило, более толстая изоляция означает более высокие эксплуатационные расходы и более низкие затраты на потерю тепла.
Затраты на изоляцию : Стоимость изоляционного материала на метр длины равна
= пи * [(R2) 2 (R1) 2 ] * C1
Где С1 — стоимость утеплителя в рупиях за кубометр.
Эксплуатационные расходы : Потери тепла через изоляцию трубы на метр длины определяются как Q = 2 * pi * k * [(T1-T2) / log (R2 / R1)]
Где
T1 — температура внутренней поверхности изоляции.
T2 — температура внешней поверхности изоляции.
R1 и R2 — это внутренний и внешний радиусы изоляции.
K — теплопроводность изоляционного материала.
Это, умноженное на стоимость производства единицы энергии, дает эксплуатационные расходы.
Оптимальная толщина : На графике отображается самая низкая точка, которая дает экономичную толщину изоляции.

Как рассчитать значения изоляции?

R-стоимость

R-значение или коэффициент теплопроводности указывает, насколько хорошо определенный материал сохраняет тепло.Чем выше значение R, тем лучше изолирует материал. Для расчета R-значения используется следующая формула:

Значение R = толщина изоляции / значение

Пример: 10 см изоляционного материала с 0,05 Вт / мК дает значение R 2 м 2 K / Вт .

Чем лучше изоляционный материал (нижний ƛ), тем тоньше должен быть слой изоляции для достижения того же результата с точки зрения теплоизоляции.

Значение U

Значение U или коэффициент теплопередачи противоположно значению R:

U = 1 / R.
Значение R, равное 2, соответствует значению U 1/2 = 0,5.

Если R-значение материала неизвестно, U-значение может быть рассчитано с использованием ƛ-значения. Для этих расчетов используется следующая формула:

Значение U = значение ƛ / толщина изоляции

Значение лямбда выражается в Вт / мК, а толщина изоляции выражается в м.Соотношение этих двух цифр (коэффициент теплопередачи) выражается в Вт / м 2 K, что означает количество Вт (Вт) на квадратный метр (/ м 2 ) при разнице температур, равной 1. степень Кельвина (K). Применительно к значению U w (в данном случае коэффициент теплопроводности стеклянной конструкции) эта цифра показывает, сколько тепла теряется между двумя сторонами стеклянной конструкции в секунду, на 1 м 2 и на градус разницы температур.

К-значение

Значение К или уровень К используется для измерения общего уровня изоляции здания.K-уровень рассчитывается на основе изоляции различных компонентов (U-значения) и компактности дома (отношение тепловых потерь защищенного объема / площади поверхности). Чем компактнее дом, тем легче достичь желаемого уровня К. Таунхаус легче утеплить, чем отдельно стоящую виллу. Правительство устанавливает стандарты для K-level. Тройное остекление и алюминиевые профили с термическим разделением — это прочная основа для достижения максимально низкого уровня K, что означает лучшую изоляцию здания.

Экономическая толщина изоляции

Изоляция экономической толщины

5.4 Экономическая толщина изоляции (ETI)

Изоляция любой системы требует капитальных затрат. Отсюда самое важное фактором в любой системе изоляции является анализ теплоизоляции с относительно стоимости. Эффективность изоляции подчиняется закону уменьшения возвращается. Следовательно, существует определенный экономический предел количества изоляции, что оправдано.Увеличенная толщина неэкономична и не может можно рекуперировать за счет небольшой экономии тепла. Это предельное значение называется как экономичная толщина утеплителя. Наглядный случай приведен в Рисунок 5.3. В каждой отрасли разная стоимость топлива и эффективность котла.

Эти значения можно использовать для расчета экономической толщины изоляции.

Это показывает, что толщина для данного набора обстоятельств приводит к самая низкая общая стоимость изоляции и теплопотери вместе взятых по сравнению с заданным промежуток времени.На следующем рисунке 5.4 показан принцип экономичная толщина утеплителя.

Простейший метод определения того, следует ли использовать 1 «или 2» или 3-дюймовая изоляция производится путем сравнения стоимости потерь энергии со стоимостью изоляции трубы. Толщина утеплителя, при которой общая стоимость минимальная называется экономической толщиной. См. Рис. 5.4 Кривая, представляющая общая стоимость снижается на начальном этапе и после достижения экономической толщины соответствует минимальной стоимости, она увеличивается.

Определение экономической толщины требует внимания к следующие факторы.

  1. Стоимость топлива
  2. Часы работы в год
  3. Теплосодержание топлива
  4. КПД котла
  5. Температура рабочей поверхности
  6. Диаметр трубы / толщина поверхности
  7. Ориентировочная стоимость утепления.
  8. Средняя экспозиция при температуре окружающего воздуха

Порядок расчета экономической толщины изоляции

Чтобы объяснить концепцию экономической толщины изоляции, мы будем используйте пример.(См. Таблицу 5.3) Рассмотрим паропровод на 8 бар. Диаметр 6 дюймов и длина 50 метров. Оценим стоимость потерь энергии когда мы используем изоляцию размером 1, 2 и 3 дюйма, чтобы определить наиболее экономичную толщину.

Пошаговая процедура приведена ниже.

  1. Определите температуру поверхности неизолированной трубы путем измерения.
  2. Обратите внимание на такие размеры, как диаметр, длина и площадь поверхности. рассматриваемого участка трубы.
  3. Примите среднюю температуру окружающей среды. Здесь мы взяли 30oC.
  4. Так как мы делаем расчеты для коммерчески доступных толщина изоляции, потребуется несколько расчетов методом проб и ошибок для определения температуры поверхности после нанесения изоляции. К Начнем с того, что примите значение от 55 до 65 C, что является безопасным, сенсорная температура.
  5. Выберите изоляционный материал с известной теплопроводностью. значения в среднем диапазоне температур изоляции.Здесь средняя температура составляет 111 ° C, а значение k = 0,044 Вт / м2 ° C для минеральной ваты.
  6. Расчет коэффициентов поверхностной теплопередачи неизолированных и изолированных поверхностей, используя уравнения, обсужденные ранее. Рассчитать тепловую сопротивление и толщина утеплителя.
  7. Выберите r2 так, чтобы эквивалентная толщина изоляции трубы равна толщине изоляции, оцененной на шаге 6. Отсюда значение, рассчитайте радиальную толщину изоляции трубы = r2-r1
  8. Отрегулируйте желаемые значения температуры поверхности так, чтобы толщина изоляции близко к стандартному значению 1 дюйм (25.4 мм).
  9. Оценить площадь поверхности трубы с различной изоляцией толщину и рассчитайте общие потери тепла с поверхностей, используя коэффициент теплопередачи, разница температур между поверхностью трубы и эмбиент.
  10. Оцените стоимость потерь энергии по 3 сценариям. Рассчитать Чистая приведенная стоимость будущих затрат на электроэнергию во время изоляции срок службы обычно 5 лет.
  11. Узнать общую стоимость установки изоляции на трубу (материал + трудозатраты)
  12. Рассчитайте общую стоимость затрат на электроэнергию и изоляцию для 3 ситуаций.
  13. Толщина изоляции, соответствующая наименьшей общей стоимости, будет быть экономической толщиной утеплителя.

Обратите внимание, что общая стоимость ниже при использовании 2-дюймовой изоляции, следовательно, экономичность толщина утеплителя.

Microsoft Word — file_1.doc

% PDF-1.6 % 1 0 объект > эндобдж 6 0 obj > эндобдж 2 0 obj > / Шрифт> >> / Поля [] >> эндобдж 3 0 obj > эндобдж 4 0 obj > транслировать application / pdf

  • dzezelj
  • Microsoft Word — файл_1.doc
  • 2013-06-26T21: 14: 15 + 02: 00PScript5.dll Версия 5.2.22013-07-09T21: 31: 58 + 02: 002013-07-09T21: 31: 58 + 02: 00Acrobat Distiller 9.0.0 (Windows) uuid: b58f42e9-da91-43ab-847e-31feef02a575uuid: b0deba8b-41c4-4d88-a521-ca6d78b02e15 конечный поток эндобдж 5 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > / Шрифт> / ProcSet [/ PDF / Text] / XObject> >> / Повернуть 0 / Тип / Страница / Аннотации [48 0 R] >> эндобдж 21 0 объект > / ExtGState> / Шрифт> / Шаблон> / ProcSet [/ PDF / Text] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 22 0 объект > / Шрифт> / ProcSet [/ PDF / Text] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 23 0 объект > / Шрифт> / ProcSet [/ PDF / Text] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 24 0 объект > / Шрифт> / ProcSet [/ PDF / Text] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 25 0 объект > / Шрифт> / ProcSet [/ PDF / Text] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 26 0 объект > / Шрифт> / ProcSet [/ PDF / Text] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 27 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageC] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 28 0 объект > / ExtGState> / Шрифт> / ProcSet [/ PDF / Text / ImageC / ImageI] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 29 0 объект > / Шрифт> / ProcSet [/ PDF / Text] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 30 0 объект > / Шрифт> / ProcSet [/ PDF / Text] / XObject> >> / Повернуть 0 / Тип / Страница >> эндобдж 31 0 объект > эндобдж 32 0 объект > транслировать HWr ~ a / yF-mpRFPD

    Как оценить оптимальную толщину изоляции

    В предыдущем посте я рассказал, как оценить толщину изоляции как для плоской, так и для цилиндрической поверхности.В этом посте я хочу рассказать, как оценить оптимальную толщину изоляции.

    Общая годовая стоимость изоляции представляет собой сумму стоимости потерянной тепловой энергии и фиксированных затрат. График зависимости стоимости от толщины изоляции определит наиболее экономичную толщину изоляции. Для расчета толщины изоляции можно использовать безразмерный коэффициент в зависимости от отношения толщины изоляции к диаметру трубы в следующем уравнении:

    Где:

    t = наработка в часах в год

    C ч = годовая стоимость потерь тепла ($ / млн британских тепловых единиц)

    C i = установленная стоимость изоляции за кубический фут

    f = доля установленной стоимости, амортизируемая ежегодно

    D = внешний диаметр трубы (дюйм)

    K = теплопроводность изоляционного материала (БТЕ / ч.фут. o F)

    ∆t o = разница между температурой поверхности и температурой окружающего воздуха (F)

    h = комбинированный пленочный коэффициент конвекции и излучения в воздушной пленке на изоляторе (БТЕ / ч.фут 2 .F)

    Чтобы получить h, мы использовали следующее уравнение

    Где:

    τ 1 = безразмерный коэффициент в зависимости от поверхности (см. Таблицу 1)

    τ 2 = безразмерный коэффициент (см. Диаграмму 1)

    а = 1.2 БТЕ / фут 2 .F.hr

    b = 0,0048 БТЕ / фут 2 .F.hr

    Неизвестная температура поверхности может быть найдена параллельно с оптимальной толщиной изоляции методом проб и ошибок. Подход, используемый для поиска оптимальной толщины изоляции, заключается в построении графика зависимости ∆t o от X (толщины изоляции) из рисунка ниже и ∆t o от X (толщины изоляции) из уравнения выше и нахождения точки пересечения.

    Процедуры

    Рекомендуемые процедуры для определения оптимальной толщины изоляции следующие:

    1. Сделайте примерное предположение о температуре поверхности и выберите две другие точки, скажем, на 25 градусов выше и ниже этого значения.
    2. Найдите соответствующую толщину изоляции для каждой из трех точек двумя способами: во-первых, используя диаграмму 1, диаграмму 2 и диаграмму 3 выше, а во-вторых, используя уравнение 1.
    3. Постройте эти точки с ∆t o для оси X и толщиной изоляции для оси Y и соедините их двумя плавными кривыми. Пересечение двух кривых указывает оптимальную толщину.

    Пример

    Допустим, у нас есть вертикальная труба со следующими данными.

    Наружный диаметр: 4 дюйма

    Температура воздуха: 85 F

    Температура жидкости: 650 F

    Теплопроводность изоляционного материала: 0,05 Btu / hr.ft.F (при 400 F)

    Оцените оптимальную толщину изоляции.

    Ответ

    Как упоминалось выше, чтобы найти оптимальную толщину изоляции, нам нужно построить график между ∆t o и X из диаграммы 1 и диаграммы 2, и ∆t o и X из уравнения 2 и диаграммы 3.Пересечение оптимальной толщины утеплителя.

    Я составляю полную таблицу, которую нам нужно заполнить, чтобы получить график. Полная таблица представлена ​​ниже.

    Полная таблица

    Это только мой подход. Я использую 8 шагов для составления таблиц и построения графиков. Приступим.

    1 — Заполните все необходимые данные и сделайте приблизительное предположение о температуре поверхности

    Составьте таблицу и заполните все данные, которые у нас есть, такие как температура окружающего воздуха, теплопроводность изоляционного материала и внешний диаметр трубы.Кроме того, сделайте приблизительное предположение о температуре поверхности. Я использовал 160 F как среднее значение, 135 F (160-25) как верхнее значение и 185 (160 + 25) как указанное выше значение. Из этих данных мы можем получить ∆t o (разница между температурой поверхности и температурой окружающего воздуха).

    2 — Найдите функцию поверхности (φ) из диаграммы 1

    На основании диаграммы ниже мы можем получить поверхностную функцию.

    Дополните стол функцией поверхности.

    3 — Найдите толщину изоляции (X) для каждой функции поверхности (φ)

    На основании приведенной ниже таблицы мы получаем толщину изоляции.

    Дополните таблицу толщиной изоляции.

    4 — Найти τ 1 и τ 2

    τ 1 — функция поверхности. Для цилиндрической вертикальной поверхности τ 1 равно 1,187.

    τ 2 можно легко найти с помощью диаграммы 1. Это функция от ∆t o. См. Шаг 2 для процедуры.

    Заполните таблицу значениями τ 1 , τ 2, a и b.

    5 — Рассчитать h

    h рассчитывается с использованием уравнения 1. Заполните таблицу, указав h.

    6 — Рассчитать τ

    τ рассчитывается с использованием уравнения 2. Заполните таблицу, указав τ .

    7 — Найдите X / D (отношение толщины изоляции к диаметру трубы) и X

    X / D является функцией τ. Используйте диаграмму 3, чтобы найти X / D и вычислить X. Заполните таблицу.

    8 — Сделать участок

    График ∆t o и толщину изоляции, которую мы нашли на шагах 3 и 7. Соедините их двумя плавными кривыми.

    Из рисунка выше мы обнаружили, что на пересечении двух кривых ∆t o составляет 58 o F, а оптимальная толщина составляет 2,1 дюйма.

    Артикул:

    Эванс, Ф. Л., Справочник по проектированию оборудования для нефтеперерабатывающих и химических заводов, Vol.1, 2 nd Ed., Gulf Publishing Co., 1979.

    Как рассчитать толщину изоляции котла

    Теплоизоляция вашего котла — отличный способ гарантировать, что тепло, выделяемое в процессе кипячения, не уйдет через металлическую футеровку внутри котла. Существует множество типов изоляции котла, от изоляционной рубашки котла, изоляция которой уже вшита в подогнанный лист, который оборачивается вокруг котла, до традиционного пухового материала, обвязанного вокруг котла ремнем, о чем многие люди могут помнить из детство.Если вы хотите получить максимальную отдачу от теплоизоляции котла, вам следует следовать нескольким простым правилам, чтобы определить идеальную толщину изоляции котла.

    Шаг 1. Определите размер вашего котла

    Первое, что необходимо сделать, это определить размер вашего котла. Это важно, если учесть, что каждый квадратный дюйм вашего бойлера теряет тепло из-за конвекции. Размер вашего котла также понадобится при расчете толщины изоляционного материала.Вам нужно будет рассчитать не только высоту, но и ширину металла, покрывающего ваш котел. Если у вас достаточно толстая металлическая облицовка, то изоляционный материал не должен быть такой толщины. Тонкая металлическая футеровка большого котла, вероятно, потребует большей толщины изоляции.

    Шаг 2. Узнайте, сколько материала вам понадобится.

    Изоляционный материал не стоит больших затрат, и вы можете купить готовые куртки, обеспечивающие подходящую изоляцию для вашего котла.Эти кожухи котла имеют толщину около 7,5 см или 3 дюйма, и их достаточно для изоляции большинства современных котлов. Вы должны рассчитать, достаточно ли этого для вашего котла или потребуется еще один слой. В резервуарах, в которых используется солнечная система отопления, или в резервуарах с двумя змеевиками, толщина изоляции должна составлять не менее 3 дюймов пены.

    Шаг 3 — Измерьте толщину изоляционного материала

    Если вы уже приобрели изоляционный материал для своего дома, накройте им котел, а затем измерьте толщину натянутого материала.Важно делать это в таком порядке, так как затягивание материала вокруг котла может вызвать небольшое истончение изоляции. Если материал действительно станет тоньше, вы сможете обернуть его еще одним слоем, чтобы полностью изолировать котел. Использование куртки должно означать, что материал не истончается, но вы должны проверить, чтобы убедиться, что нет проблем.

    Шаг 4 — Расчет других факторов

    При определении толщины необходимого изоляционного материала важно рассчитать другие факторы, которые могут привести к выходу тепла из котла.Если ваша система отопления находится в холодном помещении или на чердаке без радиатора, то холод может забрать больше тепла из вашего котла. Установленный поблизости кондиционер также может охлаждать котел, вызывая потерю тепла. Пока вы изолируете систему отопления, вы также должны использовать изоляционный материал вокруг труб и резервуара для воды, чтобы предотвратить потерю тепла из этих областей.

    Профессиональный калькулятор толщины изоляции

    : Amazon.com: Appstore для Android

    Подробнее о продукте

    Дата первого размещения на Amazon: 2 июня 2015 г.

    Разработано: Armacell GmbH

    Описание продукта

    ArmWin® — это новое профессиональное приложение Armacell для технических расчетов, которое помогает инженерам-механикам и подрядчикам рассчитать надлежащую толщину, которая будет указана для продуктов семейства Armaflex®.Установка надлежащей толщины эластомерной изоляции является ключом к долговременной работе механических систем отопления, вентиляции и кондиционирования, сантехники и холодильных систем. Теперь пользователи могут определять эти критические толщины с помощью простого в использовании онлайн-приложения.

    Технические характеристики

    Размер: 17,1 МБ

    Версия: 1.0

    Разработано: Armacell GmbH

    • Точный доступ (например, GPS) местоположение
    • Доступ к информации о сетях
    • Доступ к информации о сетях Wi-Fi
    • Открытые сетевые сокеты
    • Чтение из внешнего хранилища
    • Доступ только для чтения к состоянию устройства
    • Доступ к функции вибрации
    • Запись во внешнее хранилище

    Минимальная операционная система: Android 4.0,3

    Приблизительное время загрузки: менее 3 минут

    Отзывы клиентов

    5 звезд (0%) 0%
    4 звезды (0%) 0%
    3 звезды (0%) 0%
    2 звезды (0%) 0%
    1 звезда (0%) 0%
    Как рассчитываются рейтинги?

    Чтобы рассчитать общий рейтинг и процентную разбивку по звездам, мы не используем простое среднее значение.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *