Расход цементного раствора на 1 м3 кладки: Расход цемента на 1м3 и 1м2 кладки разного вида кирпича, расход растворов

Расход цемента на 1м3 и 1м2 кладки разного вида кирпича, расход растворов

При планировании строительства кирпичных стен следует предварительно рассчитать количество стройматериалов и расход цемента на кладку кирпича – это позволяет сэкономить значительные средства. Будучи гигроскопичным, цементный порошок со временем теряет свои физические свойства, поэтому не стоит покупать его с большим запасом. Промежуточный расчет объема раствора
необходим для его рационального использования в течение рабочей смены или для выполнения определенного объема кладки.

Разновидности растворов и их применяемость

Связующим звеном между кирпичными блоками является смесь вяжущего компонента с наполнителем и водой. Наиболее распространены 4 вида растворов.

  • Цементно-песчаный. Он разводится водой, его пропорции зависят от марки цемента, способа кладки. При застывании этот вариант наиболее прочен, но при отступлении от технологии склонен к образованию трещин;
  • Известковый – в нем цемент заменен негашеной известью; пластичен, но вымывается дождями, поэтому пригоден лишь для монтажа внутренних стен;
  • Смешанный – цемент и песок разбавляются жидкой гашеной известью (известковым молочком). Комбинация сочетает лучшие качества двух первых вариантов;
  • С пластификатором – к цементу и песку (фракция 2 мм) примешивают полимерную добавку для повышения пластичности смеси. Проще такой раствор сделать из сухой строительной смеси, добавив воду согласно инструкции производителя.

Несмотря на состав, требования к качеству смеси практически одинаковы. Все ингредиенты очищают от комков, песок просеивают, жидкую известь процеживают. Для приготовления раствора сначала тщательно смешивают порошковые составляющие, затем медленно вливают холодную жидкость (20оС) и тщательно перемешивают, чтобы не произошло схватывание. Процесс ускоряется с помощью бетоносмесителя или перфоратора с насадкой в виде венчика.


Расход раствора на куб кладки кирпича

Сколько готовить раствора для кладки стены? Это определяется несколькими условиями:

  • мастерством каменщика;
  • структурой кирпичного блока – изделия с пустотами берут больше растворной смеси;
  • тип кирпича – гиперпрессованный и лицевой силикатный меньше впитывает раствор, чем керамический или рядовой силикатный с шероховатой поверхностью;
  • толщиной стены.

Средний расход раствора на 1 м3 кладки кирпича при стандартной толщине шва (12 мм) – примерно 0,23 м3. Более точную информацию дает таблица 1.

Таблица 1

Наименование работТип кирпичаНормативный расход (м3) при толщине стены, кирпичей
0,511,52
Наружные и внутренние стены,простое оформлениеКерамический обычный, силикатный одинарный полнотелый0,2210,2340,240,245
Пустотелый0,2230,2360,2420,247
Модульный0,2050,2160,2220,227
Среднее архитектурное оформлениеКерамический обычный, силикатный одинарный полнотелый0,2370,2410,240,245

Расход цемента для кладки кирпича

Состав смеси для возведения кирпичной стены варьируется в зависимости от качества исходных компонентов, погодных условий, этажности здания. Чтобы правильно смешивать ингредиенты, следует знать: 10-литровое ведро вмещает 14 кг цемента или 12 кг песка.

  1. Цементный раствор гибок в отношении пропорций. Он характеризуется степенью прочности: чем она меньше, тем ниже требуемая марка цемента и меньше его процент (1 часть на 2,5 – 6 частей песка). Для цемента М400 характерно соотношение 1 : 3, для М500 – 1 : 4. Объем воды (в среднем 0,5 – 0,7 л на 1 кг цемента) зависит от желаемой густоты смеси, типа кирпича, температуры воздуха – в летнюю жару раствор должен быть более жидким. Чтобы увеличить его пластичность, опытные каменщики добавляют в воду немного стирального порошка или моющего средства для посуды.На 1 куб готового раствора 1 : 4 необходимо 410 кг цемента М500 и 1,14 м3 песка. Зная, что на 1 кубометр обычной стены в один кирпич из силикатного блока 250 х 120 х 65 уходит 0,24 м3 раствора, расход цемента на куб кладки кирпича определяют так: 0,24 х 410 = 98 кг.Соответственно, при использовании цемента М400 (пропорция 1 : 3) кубометр смеси содержит 490 кг цемента, а на 1 м3 кладки его расходуется 117 кг.
  2. Цементно-известковый раствор годен к применению в течение 5 часов, а летом при +25о – не более часа, поэтому для него тоже желателен расчет. На 1 куб смеси требуется 190 кг цемента М400 – М500, 1,5м3 песка, 106 кг гидратной извести и 475 л воды. Для кубометра кладки понадобится в среднем 46 кг цемента.

Расход цемента на кладку кирпича при облицовке

В этом случае застройщика интересует, сколько израсходуется вяжущей смеси на квадратный метр стены. Это зависит от водопоглощения строительного материала, сезона выполнения работ, пустотности и пористости блоков. Нормы заложены в СНиП 82-02-95, но реальные цифры всегда больше, поэтому следует покупать готовый раствор или цемент с запасом.

Чтобы сэкономить на расходных материалах, следует отметить 2 фактора:

  1. чем больше габариты кирпича, тем меньше уйдет раствора;
  2. чем выше % пустот и пор, тем расход смеси будет выше.

С этой точки зрения оптимальным является применение керамического или силикатного двойного кирпича достаточной марки прочности. Такой выбор позволит достичь экономии 20% растворной смеси. В таблице 2 приведены сравнительные данные по расходу раствора на квадратный метр стены.

Вид кирпичаТолщина стеныКоличество раствора, м3/м2
Обычный керамический или силикатный2500,062
Пустотелый3800,095
2500,050
3800,076

Расход цемента на 1 м2 кладки считают исходя из его пропорционального содержания. Если смесь составлена из расчета1 : 3, то на квадратный метр стены толщиной 380 мм из полнотелого кирпича нужно: 0,095 х 490 = 47 кг цемента.

Правильное составление раствора и выбор оптимальных габаритов камня позволяет на кладку кирпича выдерживать расход цемента в нормативных пределах.

Расход цемента на 1 м2 (1 куб, 1 м3) кладки кирпича

Расход цемента на 1 м2 кладки кирпича – очень важное значение, которое обязательно нужно высчитывать до начала проведения работ. Цементный раствор в кирпичной кладке служит для скрепления отдельных блоков в единую монолитную конструкцию. Расход смеси может варьироваться в достаточно ощутимых пределах и зависит от массы факторов, начиная от рецепта самого цементного раствора и заканчивая профессионализмом мастера.

Определить, сколько надо цемента на 1 куб кирпичной кладки на весь процесс строительства, нужно для того, чтобы правильно рассчитать объемы строительных материалов. Цемент относится к категории сухих смесей, которые не хранятся долго.

Поэтому желательно точно знать нужное количество мешков смеси, чтобы избежать лишних затрат. С другой же стороны, если раствора не хватит, в процессе работы придется ехать и докупать, что потребует временных затрат и застопорит всю работу.

Для кирпичной кладки чаще всего используют именно цементный раствор (с разными добавками или без них), так как другие смеси не обеспечивают нужных характеристик прочности, надежности, долговечности. Расчет цемента на кладку кирпича обычно предполагает определение нужного объема смеси для 1 куба кладки.

Виды растворов для кирпичной кладки

Для кладки из кирпича используют разные виды смесей. Вяжущим чаще всего выступает цемент, к нему добавляют различные компоненты, присадки. Перед тем, как рассчитывать объем строительных материалов, определяются с типом раствора.

Основные типы смесей для кладки из кирпича:
  • Обыкновенный (так называемый «холодный») раствор – готовится из песка и цемента, воды. Это классический рецепт смеси, которая после застывания обеспечивает хорошую прочность и достаточную несущую способность стены. Пропорции компонентов могут быть разными – многое зависит от марки используемого цемента и марки бетона, который нужно получить. Чаще всего берут цемент М400/М500 и готовят в пропорции 1 к 4.
  • Смесь портландцемента и извести – в данном случае удается сэкономить на цементе, но не качестве кладки, которая получается влагостойкой, достаточно прочной. Часто в раствор дополнительно вводят сухие компоненты, позволяющие повысить показатели вязкости, водо/морозостойкости.
  • Известковый раствор – негашеная известь тут выступает в роли отвердителя и используется вместо цемента. Основной плюс раствора – пластичность состава, которая сохраняется достаточно долго. Главный минус – известь сильно впитывает влагу, поэтому с ней нельзя применять многие утеплители и со временем это свойство может стать причиной вымывания состава из кладки под воздействием осадков, внешних негативных факторов.
  • Раствор с пластификатором – к песку и цементу добавляют специальные полимерные добавки, способствующие повышению пластичности смеси. Такой раствор обычно смешивают в сухом виде, а потом добавляют воду в соответствии с инструкцией.

Вне зависимости от того, какой состав был выбран и каков расход кладочного раствора, требования ко всем смесям практически неизменны. Все компоненты должны быть тщательно очищены от примесей, грязи и комков, а жидкую известь обязательно процеживают.

Приготовление раствора: аккуратное и тщательное смешивание всех порошков составляющих, медленное добавление воды температуры +20 градусов, перемешивание до достижения однородной консистенции. Вручную перемешивают дольше, в бетономешалке – значительно быстрее. Можно использовать перфоратор со специальной насадкой.

Если выбор был остановлен на цементно-известковом растворе, тут также стоит учитывать некоторые нюансы: к работе смесь годна около 5 часов, но летом при температуре +25 градусов лучше использовать быстрее (в некоторых случаях уже через час раствор может стать непригодным). На 1 куб смеси берут 190 килограммов цемента марки М400/М500, 1.5 м3 песка, 160 килограммов гидратной извести и около 470 литров воды. Таким образом, на кубометр кладки уходит около 46 килограммов цемента.

Но в современном строительстве более предпочтительным является кладочный цементный раствор. Перед его приготовлением тщательно изучается технология, ведь даже минимальные отклонения от нормы могут сделать смесь слишком хрупкой, уязвимой ко влаге, распространению трещин и т. д.

Факторы, влияющие на расход

Чтобы определить расход цемента на 1 куб кирпичной кладки, необходимо учесть все факторы, напрямую влияющие на объемы используемого раствора. Для этого используют специальные калькуляторы, таблицы, где обычно указывают расход на 1м2 и не учитывают всех нюансов, о которых нельзя забывать.

Что влияет на расход кладочного раствора:
  • Толщина стен здания – тут обычно учитывают местоположение и требования к несущим способностям стены. Перегородки и здания с минимальной нагрузкой обычно возводят толщиной в 1 кирпич. Строительство гаражей, хозстроений и других конструкций, предполагающих необходимость выдерживать крышу и обладать определенной прочностью, осуществляется из стен толщиной в полтора кирпича. Больше всего раствора уходит на возведение толстых стен.
  • Тип кирпича, который используется в строительстве – так, расход цемента на кирпичную кладку из материала без пустот будет намного меньше, чем при возведении здания из пустотных блоков.
  • Толщина межрядных швов – чем больше, тем и расход больше.
  • Связующее в растворе – чтобы снизить расход цемента для кладки кирпича, в смесь вводят известь, глину.
  • Профессионализм мастера – несмотря на то, что для самой кладки и приготовления раствора из цемента нужно не так уж много особых знаний и навыков, при отсутствии опыта расход раствора может быть слишком большим. Часть смеси порой теряют, швы получаются очень толстыми и т.д. Чтобы этого избежать, стоит привлечь к выполнению работ опытных мастеров или хотя бы посмотреть предварительно, как это делают профессионалы.

При облицовке расход цемента на куб кладки кирпича считают в квадратных метрах стены. Тут многое зависит от уровня водопоглощения материала, пустотности и пористости, сезона выполнения работ.

Выполняя расчет раствора на 1 м2 кладки, нужно помнить, что чем больше пор и пустот в строительном материале, тем больше уйдет смеси. Но чем больше по размеру кирпич, тем меньший будет расход. Наиболее экономным по расходу кладочного раствора считается керамический/силикатный двойной кирпич – на работы тратится до 20% меньше раствора.

Расход раствора на 1 куб

Строительные правила предполагают определенный показатель расхода цемента на 1 м3 кладки кирпича. Исходя из них, можно выполнить хотя бы примерные расчеты, которые потом корректируются в соответствии с вышеперечисленными факторами.

Расход цемента на кладку по ГОСТу:
  • При кладке в половину кирпича – расход составляет 0.189 м3
  • При кладке в кирпич – 0.221 кубометра
  • В полтора блока – 0.234 м3
  • В два кирпича – 0.24 м3
  • В 2 с половиной кирпича – 0.245 м3

Нормы гласят, что на один полнотелый кирпич тратится около 0.0006305 кубических метров раствора. Получается, что на квадратный метр кладки стены в 1 кирпич уходит 75 литров раствора. Блоки кладутся по другим нормативам.

Если используются в работе пустотелые блоки, расход цемента при кладке кирпича оказывается на 15-20% выше указанных значений. Для расчета нужного объема достаточно подсчитать площадь кладки и умножить на нормативные затраты материала. Обычно цемент для кладки считают, исходя из кубометров раствора и рецепта смеси (сколько цемента уходит на 1м3 раствора).

Расход цемента

Расход цемента на метр квадратный кирпича зависит от того, какой марки используется сухая смесь и бетон какой марки нужно получить в итоге. Цемент обычно используют в 1.5-2 марки выше, чем нужная марка бетонного раствора. При проведении расчетов лучше округлять в большую сторону и добавлять около 5-10% на непредвиденные работы, нюансы, факторы.

Расход цемента в соответствии с пропорциями составляющих раствора:
  • Если готовят смесь 1 к 3, для определения объема цемента нужно поделить 1 м3 на 4 (именно столько тратится сухой смеси). Выходит 0.25 м3 цемента на один куб.
  • Когда используется смесь 1 к 4, цемента уходит 0.2 м3.
  • В растворе, где связующим выступает и известь в том числе (обычно вводят треть), пропорции смеси выглядят так: часть цемента, 0.3 части извести, 3 части песка. Тогда нужно 1 м3 делить на 4.3 – выходит 0.232 м3.

Аналогичным образом выполняют расчеты для определения, сколько уйдет цемента на 1 м3 раствора, и при иных пропорциях. Но нужно помнить, что цемент не считают в кубометрах, поэтому данную величину нужно перевести в массу.

Для этого понадобится показатель нормы удельного веса материала (плотности). Тут многое зависит от марки, степени уплотнения цемента. Средний показатель составляет около 1300 кг/м3.

Расход цемента на 1 куб раствора:
  • В смеси 1 к 3: 0.25 м3 х 1300 кг/м3 – получается 325 килограммов. Именно столько нужно цемента для замеса 1 м3 раствора по данной пропорции. Для определения объема цемента на 1 куб кладки число умножается на норматив расхода раствора для кладки. Если кладется одинарная стена, получается: 325 х 0.221 = 71.823 килограммов = 72 (если округлить) = 75 (если добавить погрешность). Получается, что в смеси 1 к 3 используется 75 килограммов цемента на 1м3 раствора.
  • В растворе 1 к 4 расчеты такие: 0.2 м3 х 1300 кг/м3 = 260 килограммов, 260 кг х 0.221 = 57.46 = 58 = 60 килограммов сухого цемента нужно на кубический метр кладки.

Чтобы расчеты было выполнять удобнее, можно использовать квадратный метр и считать, сколько нужно цемента на 1 м2 кладки.

Расчеты с раствором 1 к 3:
  • Для кладки в половину кирпича понадобится: 51 кирпич х 0.0006305 = 0,0321 м3 раствора. 0.0321 м3 / 4 = 0.008025 м3 цемента х 1300 кг/м3 = 10.43 = 11 килограммов цемента.
  • Для кладки в кирпич – 102 штуки х 0.0006305 м3 = 0.0643 / 4 = 0.0161 м3 х 1300 кг/м3 = 20.9 = 21 килограмм цемента потребуется для кладки квадратного метра стены толщиной в один кирпич.
  • Для полторы кирпича – 153 штуки х 0.0006305 = 0.0965 м3 / 4 = 0.0241 м3 х 1300/м3 = 31. 35 = 32 килограмма цемента на кладку квадратного метра стены толщиной в полтора кирпича.

Для выполнения дальнейших расчетов можно воспользоваться той же формулой либо просто умножить значение для стены толщиной в один кирпич на нужное число (если толщина в 2 кирпича, то на 2, если в 3, то на 3 и т.д.). Исходные значения для расчетов взяты из положений ГОСТа и СНиП.

Нормы расхода

Узнать, сколько нужно цемента на 1м2 кладки, можно из строительных норм и правил. В данном случае речь идет об одинарном полнотелом кирпиче. Правда, в строительстве часто используют другие материалы, в связи с чем объем может меняться. И тут приходится учитывать особенности материала.

Расход на кладку из пустотелого кирпича:
  • Толщина стены в половину кирпича – 0.223 м3
  • В кирпич – 0.235 м3
  • В полтора кирпича – 0.242 м3
  • Толщина стены в два кирпича – 0.247 м3
Расход на полуторный кирпич высотой в 88 миллиметров (вместо стандартных 65):
  • Половинная кладка – 0. 160 м3
  • Одинарная кладка – 0.2 м3
  • Полуторная кладка – 0.216 м3
  • Двойная стена – 0.222 м3
  • Два с половиной кирпича – 0.227 м3

Для расчета объема раствора на 1м3 кладки, необходимо высчитать затраты смеси на кирпич, а потом подсчитать все в соответствии с выше представленным алгоритмом.

Советы по расчету

Несмотря на то, что определить расход цемента на 1 куб раствора не так уж и сложно, неопытные мастера все равно умудряются совершать ошибки. Поэтому предварительно нужно изучить все нюансы, важные факторы и учесть несколько советов от профессионалов.

О чем нужно помнить при выполнении расчетов:
  • Плотность цемента и песка разная, поэтому расчеты в ведрах будут неверными: так, в обыкновенное десятилитровое ведро входит 14 килограммов цемента и 12 килограммов песка. Для верного составления пропорции количество цемента в ведре не должно доходить до верха.
  • Для получения одинаковых швов с идентичной толщиной и плотностью нужно готовить раствор одной густоты. Поэтому воду нельзя наливать «на глаз», а тоже нужно отмерять. Обычно воды используют около 0.5-0.7 к объему цемента.
  • Летом смесь должна быть более жидкой, так как вода испаряется быстрее и раствор застывает скорее. Зимой смесь делают более густой.
  • Для максимальной экономии можно выбрать крупный беспустотный кирпич. Ведь в пустотелые кирпичи попадает много раствора и он расходуется быстрее.

Верно выполнив расчеты и определив, сколько надо цемента на 1 куб кладки кирпича, а также объемы других компонентов, мастеру не составит труда самостоятельно приготовить раствор для кладки кирпича. Несмотря на то, что в Москве и регионах можно заказать любой объем бетона с нужными характеристиками, для данного вида работ целесообразнее готовить смесь своими руками, что позволяет существенно сэкономить.

Расход раствора на куб (1м3) кладки кирпича

С помощью раствора осуществляется связка кирпичей в кладке. В строительстве для возведения стен используется несколько видов растворных смесей разной прочности и пластичности, их выбирают в зависимости от назначения здания. В состав любого раствора входит вяжущее вещество (цемент или известь), а также мелкий заполнитель. Обычно это песок, реже глина.

При строительстве дома или хозяйственных построек возникает необходимость подсчёта строительных материалов. Несомненно в кладке стен наибольший процент затрат составляет кирпич, но в некоторых случаях, когда люди покупают готовые строительные смеси, возникает потребность подсчёта количества раствора на кубический метр (1м3) кладки кирпича, ведь это тоже денежные затраты. Следует заметить, что указанные ниже показатели расхода строительной смеси примерные, ведь при выполнении черновой кладки обычным рядовым кирпичом сложно придерживаться одинаковой толщины шва.

Расход раствора на куб кладки в 1 кирпич

В случае использования обычного глиняного кирпича со стандартными размерами 25×12×6,5 сантиметров, для кладки стен толщиной в один кирпич понадобится 0,22 куба раствора, если кладка выполняется в пол кирпича – количество строительной смеси уменьшится до 0,19 куба.

В случае, когда необходимо возвести стену, толщиной в полтора кирпича с размером 38 сантиметров на куб кладки понадобится 0,235 куба раствора, для несущих ограждений толщиной 51 сантиметр– 0,24 куба.

Расход раствора 1м3 кладки в 1,5 кирпича

Теперь рассмотрим расход растворной смеси при использовании полуторного кирпича с габаритными размерами:25 сантиметров длина,12 сантиметров – ширина и 8,8 сантиметра– высота.

При возведении стены шириной в пол кирпича необходимо приготовить 1,6 м3 раствора, если стена укладывается по длине кирпича – 0,2 м3 раствора. В случае возведения несущих стен размерами 51 и 64 сантиметра, норма расхода растворной смеси составит 0,22 и 0,227 м3 соответственно.

Следует заметить, что при использовании двойного кирпича, расход цемента будет ещё меньшим. В таком случае не только уменьшается количество и длина швов в пределах стены, но и снижаются тепловые потери. Что касается использования кирпича с пустотами, то на этот материал при аналогичных размерах пойдёт немного больше раствора. Для уменьшения затрат в рядах кладки устраивают специальные сетки, которые выполняют и другую функцию – повышение прочности возводимого здания. 

Расход цемента на 1 куб кладки полуторного и одинарного кипича

От того, насколько качественно уложен кирпич, зависят такие характеристики строения как прочность, долговечность. Для приготовления раствора цемент смешивают с песком в определенных пропорциях. Сухие ингредиенты разбавляют водой до образования пластичной массы. Расход цемента на куб кирпичной кладки является одним из основных пунктов при составлении сметы.

Оглавление:

  1. Пропорции ингредиентов
  2. Факторы, влияющие на объем затраченной смеси
  3. Правила расчета количества раствора

Соотношение компонентов смеси

При строительстве дома до трех этажей используют силикатный или керамический камень с пределом прочности на сжатие М75 или М100. Теоретически, чтобы кладка из кирпича стала цельной конструкцией, скрепляющий состав должен быть такой же марки. Правила придерживаются, когда возводят несущие стены, цоколь или фундамент. Перегородки выкладывают с помощью более низких марок с добавлением извести для улучшения адгезии.

Соотношение вяжущего вещества и наполнителя определяет физические свойства смеси. К портландцементу М400 добавляют песок в пропорции 1/4, а М500 – 1/5. Таким способом готовят состав М100. То есть, рассчитать его сопротивление сжатию можно разделив марку цемента на количество частей песка. Пропорции раствора определяются отношением показателей прочности компонента и готовой смеси.

ПортландцементМарка раствора
255075100
М3001/121/61/41/3
М4001/161/81,5/81/4
М5001/201/101,5/101/5

Более мелкие частицы цемента заполняют пространство между песчинками. Поэтому кубический метр строительного раствора готовят, смешивая куб песка с остальными ингредиентами. Для удобства расчета необходимо знать удельный вес сыпучих компонентов:

  • кубометр речного песка = 1500 кг или 30 мешков по 50 кг;
  • кубометр сухого цемента = 1300 кг или 26 мешков по 50 кг.

Чтобы кладка из кирпича имела равномерные швы, воду добавляют порциями до образования пластичной массы. Количество жидкости обычно совпадет с объемом вяжущего вещества, но в значительной степени зависит от влажности ингредиентов. В сырую погоду воды добавляют меньше, чтобы не снизить прочность. Подвижность улучшает добавка пластификатора или моющего средства, которые замедляют схватывание. Твердение начинается через 1,5–2 часа, поэтому замес необходимо использовать за это время.

От чего зависит расход цемента

На количество скрепляющего состава для стен из кирпича влияет несколько факторов:

  • Высота строения и климатические условия региона определяют размеры несущих конструкций. Чем толще кирпичная кладка, тем больше замесов понадобится для ее возведения.
  • Количество проемов уменьшает площадь стен и относительный расход на куб кладки.
  • Толщина стыковочных швов не должна превышать 12 мм.
  • Размер искусственного камня: 250х120х65 мм (1НФ одинарный), 250х120х88 мм (1,4НФ полуторный), 250х120х140 мм (2,1НФ двойной).
  • Тип и конфигурация камня. Пустотелая структура частично заполняется скрепляющим составом.
  • Качество цемента. Материал должен поставляться в герметичной упаковке, иметь сертификат соответствия и храниться под навесом.

Способ кладки (ложковая, цепная или крестовидная перевязка швов) не влияет на расход раствора.

Количество песчано-цементной смеси определяют по объему несущих стен и внутренних перегородок без учета проемов. 1 куб кладки кирпича при толщине швов 12 мм потребует:

Тип кирпича (1НФ)

Расход раствора (кубометр) для кладки в:

полкирпича

одинполтора

два

керамический0,2210,2340,240,245
силикатный0,2210,2340,240,245
пустотелый0,2230,2360,2420,247

Представленные значения являются нормативом для профессиональных каменщиков. Кирпичная кладка с идеальными швами редко получается при индивидуальном строительстве, поэтому в смете необходимо добавить 20 % к табличным величинам.

Расчет расхода на кубический метр кладки

Количество вяжущего вещества на единицу объема кирпичной конструкции в основном зависит от выбранных пропорций. Расчет определяет:

  • Соотношение ингредиентов. Если используют портландцемент М400, то силикатный кирпич марки М100 требует соблюдения пропорций сухих компонентов 1/4. Чем выше прочность исходного материала, тем меньше вяжущего вещества добавляют.
  • Расход смеси для возведения кубометра конструкции. При строительстве в 2 кирпича 1НФ необходимо приготовить 0,3 куба с учетом 20 % запаса. Полуторный формат камня потребует на 3 % меньше объема.
  • Расход цемента для приготовления замеса. Объем вяжущего компонента для состава с прочностью М100 в кубометрах: 0,3/4 = 0,075.
  • Количество цемента в килограммах на кубический метр стены. Учитывая среднюю плотность сухого ингредиента – 1300 кг/м3, его масса будет равна: 1300*0,075=97,5 кг или примерно 2 мешка по 50 кг.

Результаты расчета весового содержания цемента в скрепляющем составе для 1 м3 кирпичной конструкции сведены в таблицу (в кг):

ПортландцементМарка смеси
255075100
М30032,565,097,5130,0
М40024,3848,7573,5897,5
М50019,539,058,4778,0

Расход песка на 1 куб кладки вычисляют по отношению, которое соответствует марке. Отмеряя компоненты, следует учитывать их влажность.

Рассчитать общее количество материалов для строительства дома можно с помощью графической части рабочего проекта. Вычисляют площадь ограждающих и внутренних конструкций без проемов. Умножают на соответствующую толщину. Полученный результат и предварительный расчет на кубический метр кладки позволяет определить массу вяжущего вещества, чтобы возвести цоколь, наружные стены, внутренние перегородки дома.

При высокой скорости строительства и больших объемах работ, можно узнать усредненный расход портландцемента на 1 м3 смеси в кг:

ПортландцементМарка раствора
255075100
М300120540360
М40090180270360
М500160220280

Если при замесе составляющие отмеряют ведрами, следует учитывать, что 10-литровая емкость вмещает приблизительно 14 кг цемента или 12 кг песка.

Кирпичная кладка – надежный способ возведения долговечных построек. Уязвимым местом в такой конструкции являются швы между отдельными элементами, поэтому при приготовлении раствора следует соблюдать пропорции и технологию замеса.

Расход цемента на 1 м2 кладки кирпича: нормы и факторы

Цементный раствор выполняет важнейшую роль в строительстве – скреплении различных блоков между собой. Построить кирпичную стену без цемента крайне проблематично, зато с клеевым раствором строительство происходит быстро, а результат оказывается долговечным и прочным. Понимая важность раствора, приходится заблаговременно подготавливать все необходимые материалы для его приготовления. Чтобы подсчитать количество требующихся материалов и сумму затрат, важно знать расход цемента на 1 куб кирпичной кладки.

Какие растворы применяются для кирпичной кладки

Для кладки кирпича раствор может приготовляться в разных пропорциях, с добавлением различных присадок и компонентов смеси. До начала каких-либо работ важно определиться с типом кладочного раствора.

Важнейшую роль в строительстве выполняет цементный раствор

В современном строительстве преимущественно используются следующие смеси:

  • обычный «холодный раствор». В составе присутствует цемент, песок и вода. Наиболее простой, классический способ приготовления крепкой смеси сегодня используется повсеместно. После застывания цементного раствора стена приобретает достаточную прочность и несущие способности. Этот раствор можно приготовить в различной пропорции, всё зависит от желаемой марки конечного раствора и марки сухого цемента. Преимущественно используется цемент М400-500 и готовят его 1 к 4;
  • раствор цемента с известью. Используется одновременно портландцемент и известь. Благодаря комбинированию состава удаётся существенно сэкономить на цементе, а строение получается прочным и с достаточным уровнем влагостойкости. По необходимости в состав добавляются дополнительные сухие компоненты для повышения морозостойкости, водонепроницаемости и вязкости;
  • известковая смесь. В смесь в качестве отвердителя вносят негашеную известь вместо цемента. Преимуществом раствора является высокая пластичность состава на протяжении длительного времени. Главный недостаток, предотвращающий активное использование смеси – материал впитывает влагу, что делает недоступным применение ряда утеплителей и приводит к риску разрушения стены в долговременной перспективе.

Важно! Перед тем как сделать раствор, важно изучить технологию приготовления смеси, так как любые отклонения в технологии сделают строение хрупким, уязвимым к появлению трещин и подверженным разрушению.

Важно изучить технологию приготовления смеси, перед тем как сделать раствор

Основные факторы, влияющие на расход раствора при кладке кирпича

Удобный и полезный инструмент – калькулятор цементного раствора, позволяет быстро просчитать количество раствора на 1 м2 кладки, но он не всегда учитывает все переменные, влияющие на расход. Есть масса факторов, от которых изменяется количество раствора на 1м3 кладки кирпича.

От чего зависит расход кладочного раствора на 1 м3 кладки:

  • толщина строения. Здесь важно учесть роль, несущие способности стены и местоположение. В перегородках обычно используется толщина в 1 кирпич, как и в строения под невысокой нагрузкой. Для постройки гаража, хозяйственных строений и остальных сооружений, которые должны выдерживать крышу и иметь достаточную прочность идеальным выбором является стена в 1,5 кирпича. Наибольший расход кладочного раствора наступает при постройке толстых стен;
  • толщина швов между рядами. Основное правило: чем толще шов, тем больше расход;
  • тип кирпича. Расход раствора на 1 м2 кладки кирпича без пустот будет значительно меньше, чем при использовании пустотелых блоков. Дополнительно играет роль и размер кирпича: есть полуторные, двойные и одинарные варианты. Наибольший расход наступает при использовании одинарного кирпича, а наименьший – двойного. Если планируется использовать куски кирпича, расход окажется большей всего;
В состав вносят глину или известь для снижения расхода цемента на куб раствора
  • тип связующего компонента. Для снижения расхода цемента на куб раствора в состав вносят глину или известь;
  • наличие профессиональных навыков. Кладка не является сложной работой с технической точки зрения, но при отсутствии должного опыта, наступает сильный перерасход раствора. Часть смеси теряется, падая в грунт и становясь непригодной к использованию, а также малоопытные строители часто делают слишком толстые швы.

Расход раствора на куб кладки кирпича

В законодательстве существуют нормы расхода раствора на 1 м3 кладки по ГОСТу. Рассмотрим рекомендуемые государством значения объема раствора на 1 м3 кладки для построения различной толщины стен в кирпичах:

  • половинной расход составит 0,189 м3;
  • 1 – 0,221 м3;
  • 1,5 – 0,234 м3;
  • 2 – 0,24 м3;
  • 2,5– 0,245 м3.

Согласно нормам, на 1 полнотелый кирпич уходит объём 0,0006305 м3 раствора. Если ещё немного развить мысль, на 1 м2 стеновой кладки в 1 кирпич будет необходимо 75 л смеси. Кладка блоков выполняется согласно иным нормативам.

Расход раствора на куб кладки кирпича

Расход при использовании пустотелых кирпичей оказывается на 10-20% выше, чем описанные значения. Чтобы рассчитать требуемый объём, достаточно выполнить подсчёт площади и умножить на затраты материала. Чтобы получить количество затрачиваемых ресурсов, считается расход материалов на 1 м3 раствора.

Расход цемента для кладки кирпича

Расход цемента на 1 м2 кладки кирпича напрямую зависит от марки конечного раствора и изначальной марки сухой смеси. В любом случае рекомендуем покупать цемент с запасом, так как нередко в ходе работ появляются непредвиденные затраты раствора. Если в ходе замеров или расчётов использовалось округление в меньшую сторону, стоит учесть большую погрешность конечной суммы.

Расход цемента на куб кладки кирпича рассчитывается элементарно, но он зависит от пропорции приготовления раствора:

  • если смесь 1 к 3, чтобы понять количество затрат цемента, достаточно разделить 1 м3 на 4 (такова часть сухой смеси). Получается 0,25 м3 цемента на куб;
  • для приготовления смеси 1 к 4 доля цемента составит 0,2 м3;
  • если в качестве связующего вещества используется треть извести, то есть смесь получается 1 часть цемента, 0,3 части извести и 3 части песка, делим 1 на 4,3 и получается 0,232 м3.
От пропорции приготовления раствора зависит расход цемента на куб кладки кирпича

Аналогично расчёты, сколько цемента на 1 куб кладки кирпича, ведутся и при иных пропорциях приготовления смеси. В кубических метрах цемент не рассчитывается, нам придётся перевести объём в вес, но для этого потребуется знание нормы удельного веса (плотности). Важное влияние оказывает марка цемента и степени уплотнения (лежавший, затвердевший или свежий цемент), возьмём усреднённое число – 1300 кг/м3.

На основании полученного значения рассчитываем:

  • количество материалов в смеси 1 к 3: 0,25 м3 * 1300 кг/м3 = 325 кг, столько цемента потребуется для приготовления 1 м3 раствора. Чтобы посчитать, сколько необходимо цемента на 1 куб кладки, умножаем число на норматив затрат раствора для кладки. Для примера используем расход на одинарную стену: 325 * 0,221 = 71,825 кг, округляем до 72 кг и добавляем погрешность – 75 кг. Столько цемента необходимо на 1 куб кладки при использовании пропорции 1 к 3;
  • чтобы приготовить раствор 1 к 4, потребуется меньше цемента. Рассчитываем по тому же алгоритму: 0,2 * 1300 = 260 кг, теперь 260 * 0,221 = 57,46, с округлением – 58, приплюсовываем погрешность – 60 кг сухого цемента.

Для удобства расчётов обычно используется понятие квадратного метра кладки. Для подсчёта расхода раствора на 1 м2 можем использовать простую формулу.

Понятие квадратного метра кладки используется для удобства расчётов

Не будем прибегать к расчётам количества кирпичей, лучше изучим нормы законодательства и рассчитаем затраты ресурсов на 1 м2:

  • в пол кирпича – 51 шт * 0,0006305 = 0,0321 м3 смеси на 1 м2 кладки. Определяем количество цемента 0,0321 / 4 = 0,008025 м3 и умножаем на 1300 = 10,43 кг цемента на 1 м2 стелы в 0,5 кирпича;
  • в кирпич – 102 шт * 0,0006305 = 0,0643 м3, затем 0,0643 / 4 = 0,0161 м3, теперь множим на 1300 кг/м3 и получаем 20,9 кг цемента на 1 м2;
  • в 1,5 кирпича – 153 шт * 0,0006305 = 0,0965 м3 / 4 = 0,0241 м3 * 1300 кг/м3 = 31,35 кг/м2;
  • в 2 кирпича – 204 шт * 0,0006305 = 0,1286 м3 / 4 = 0,03215 м3 * 1300 кг/м3 = 41,8 кг/м2.

Перечисленные расчёты представлены для раствора, приготовленного в пропорции 1 к 3.

Нормы расхода строительной смеси при кладке разных видов кирпича

Норма расхода раствора на 1м2 кладки определена для полнотелого одинарного кирпича, но нередко в ходе строительства используются кирпичи отличающейся конструкции и материала.

На пустотелые кирпичи уходит:

  • в 0,5 кирпича – 0,223 м3;
  • в 1 кирпич – 0,235 м3;
  • в 1,5 кирпича – 0,242 м3;
  • в 2 кирпича – 0,247 м3.
Калькулятор цементного раствора-удобный и полезный инструмент

Расход смеси на полуторный кирпич (высотой 88 мм вместо 65 мм) имеет меньшие значения. Расход для стен:

  • половинной, расход составит 0,160 м3;
  • одинарной – 0,2 м3;
  • полуторной – 0,216 м3;
  • двойной – 0,222 м3;
  • толщиной два с половиной кирпича – 0,227 м3.

Чтобы рассчитать количество раствора на 1 м2 кладки, придётся определить затраты смеси на 1 кирпич, а дальше следовать по простому алгоритму, описанному в конце предыдущей главы.

Советы по расчету цементного раствора при кладке кирпича

Уже было рассчитано, сколько раствора в 1 м3 кладки кирпича, но даже с этими знаниями неопытные строители совершают ошибки.

Есть ещё некоторые советы, которые предотвратят ошибки во время строительства:

  • плотность песка и цемента разная, это означает, что ведро цемента и ведро песка весят по-разному. В обычное 10-литровое ведро вмещается 12 кг песка, в него же помещается 14 кг цемента. Чтобы правильно составить пропорцию, нужно класть немного неполное ведро цемента;
  • чтобы всё количество раствора на кирпичную кладку приобрело одинаковую густоту, стоит отмерять количество жидкости для замеса, иначе толщина швов каждый раз будет отличаться. Среднее значение количества воды – 0,5-0,7 к цементу;
  • летом лучше приготовлять более жидкую смесь, иначе она начнёт застывать преждевременно. Зимой стоит делать густой раствор;
  • для экономии раствора лучше использовать крупный кирпич без пустот. Внутрь пустотелых кирпичей помещается значительное количество кладочной смеси.

Зная значение затрат материалов на строительство, можно сэкономить деньги. Делая «на глазок» практически всегда либо остаются излишки, которые просто пропадают, либо недостаёт материала и приходится дополнительно заказывать небольшое количество цемент, тратя лишние деньги на доставку.

Расход цемента на 1 м3 раствора для разных работ (примеры)

Универсальной нормы расхода цемента на 1 м3 раствора не существует. В первую очередь затраты сырья зависят от цели приготовления смеси – кирпичная кладка, штукатурные работы, заливка фундамента или стяжки пола. Для каждого вида работ соотношения связующего и заполнителей отличаются.

Также на расход песка и связующего влияют добавки, изменяющие свойства готового (твердого) материала (влаго- и морозостойкость) либо раствора (пластичность, скорость отвердевания).

От чего зависит расход

Приготовление раствора для конкретной задачи требует соблюдения пропорций и «правильной» технологии замеса. Пропорции отличаются даже для тяжелых бетонов разных марок, не говоря о штукатурке или кладочном растворе.

При этом знать справочные пропорции недостаточно – нужно понимать принципы смешивания, их зависимость от характеристик отдельных компонентов.

Здесь имеет смысл уточнить термины. Бетон – твердый камнеподобный материал на основе цемента, песка, щебня, воды. Бетонная смесь – сухой полуфабрикат для разведения водой. Цементно-песчаная смесь (ЦПС) – разновидность бетонной смеси, где отсутствует крупный заполнитель (щебень). ЦПС, разведенная водой, называется цементно-песчаным раствором.

Основные факторы, влияющие на расход

В первую очередь расход зависит от прочности (марки) бетона или раствора. Марку выбирают, исходя из вида планируемых работ.

Зная марку бетона и имеющегося сырья, можно определить нужные пропорции по справочным таблицам.

Из таблицы видно, что пропорции смеси для бетона М100 для портландцемента М500 – 1:5,8:8,1, а для бетона М300 – 1:2,4:4,3. Соответственно, чем прочнее бетонная смесь, тем выше норма расхода цемента.

Марочная прочность достигается только при условии соблюдения соотношений прочих компонентов смеси, изолированно увеличивать долю связующего бессмысленно. Кроме того, более прочный бетон часто требует введения добавок.

Кроме марки бетона на расход цемента влияет:

  • марка цемента – из таблицы выше видно, что М500 на куб раствора уходит меньше, чем М400. При этом, чем прочнее связующее, тем выше марка бетона. Однако на деле на «выходную» прочность влияет также качество и тип заполнителя;
  • Знать плотность связующего для определения пропорций не обязательно – эта величина автоматически учитывается при выборе марки сырья. Плотность пригодится лишь тем, кому нужно вручную перевести объемный расход в массовый и наоборот.

  • фактическая прочность – за 3 месяца хранения связующее может потерять до пятой части марочной прочности;
  • количество заполнителя – цементное «тесто» должно полностью обволакивать частицы песка и щебня. Если «теста» будет слишком мало, смесь будет неоднородной. Поэтому на практике замешивать бетон М100–М200 из связующего М500 не вполне целесообразно;
  • качество заполнителя – наличие пыли, органической грязи, глины (для песка) или лещадных зерен (для щебня) приведет к увеличению расхода связующего для компенсации потерь прочности смеси.

Вывод: расход прежде всего, зависит от проектной прочности бетона (раствора). Не стоит также игнорировать фактическую прочность связующего и качество заполнителей.

Разновидности и марки цемента

Присвоение цементу марок позволило упростить расчет расхода. Для разных марок есть готовые таблицы с пропорциями смесей. Стандартами предусмотрен выпуск связующего М100–М900. Но на практике сфера применения низких марок (100 и 200) ограничена штукатурными и кладочными растворами с невысокой прочностью и морозостойкостью.

Разновидности портландцемента:

  • обычный;
  • быстротвердеющий;
  • особо быстротвердеющий;
  • с минеральными добавками;
  • шлакопортландцемент;
  • сульфатостойкий;
  • пуццолановый;
  • гидрофобный.

В частном строительстве обычно применяют обычный портландцемент, реже – с минеральными добавками.

Основные сферы использования марок:

  • М300 – монтажные и отделочные работы, стяжка пола, растворы для кирпичной кладки. Для бетона марку почти не применяют;
  • М400 – аналогично М300 плюс растворы для фундаментной кладки и (при наличии добавок) – бетона и железобетонных изделий. Не подходит для штукатурных работ;
  • М500 – дорожное строительство (тротуары), лестницы, сооружения, устойчивые к влаге, массивные опалубочные плиты и фундаменты. Одна из самых покупаемых марок;
  • М600 – высокопрочные бетоны для военных сооружений и восстановительных работ, где необходима высокая скорость отвердевания и прочность. Для обычных монолитов и ЖБИ используют при планируемых высоких нагрузках;
  • М700 – возведение сооружений, работающих в условиях значительных нагрузок (высотные здания, мосты) и влажности. Марку применяют для реставрационных и декоративных работ.

Основных «частных» сфер применения бетонных или цементных смесей четыре:

  • фундаменты и перекрытия;
  • кирпичная или блочная кладка;
  • стяжка пола;
  • штукатурные (отделочные) работы.

Исходя из вида работ, к раствору предъявляют разные требования. Максимальный расход связующего приходится на растворы для стяжек и прочные (М300 и выше) бетоны для оснований зданий – несмотря на использование крупного щебня или гравия. Минимальных затрат связующего требуют кладочные растворы и бетоны ниже М250.

В СНиПах есть рекомендации по расходу для приготовления 1 куба раствора смесей в зависимости от «выходной» марки. Общепринятые единицы расхода – кг на кубометр бетонной смеси (кг/м3).

Теоретически из цемента М500 можно (но нежелательно) замешивать и более низкие марки бетона.

Расход цемента для фундамента

Связующее – самый дорогой компонент смеси для заливки бетонного основания. Именно расход цемента прямо определяет смету для фундамента – затраты на заполнители невелики.

Расчет можно выполнить разными способами:

  • при помощи различных калькуляторов – относительно точный способ узнать, сколько необходимо цемента: при разработке калькуляторов могут приниматься некоторые допущения;
  • вручную при помощи справочных таблиц пропорций смеси – расчет сложнее, но точность выше.

Из таблиц можно взять и готовый расход – наполнители здесь почти не учитываются, зато примерные затраты можно узнать буквально в 2 шага:

Шаг 1. Выбрать марку раствора «на выходе». Для заливки основания обычно используют бетон М200–М300. М100 подойдет для одноэтажных легких зданий, а хозпостройка с деревянными стенами выдержит основание из М50.

Шаг 2. Выбрать марку цемента. Для бетона универсальных вариантов два – М400 и М500.

Теперь, когда марки выбраны, несложно ответить на главный вопрос.

Сколько кг цемента в 1 м3 раствора

Справочные данные позволяют узнать расход сразу – из таблицы выше видно, что на 1 м3 бетонного раствора М150 нужно 235 кг связующего марки 400. Соответственно, в 1 м3 бетона около 5 мешков цемента.

Если закуплен «пятисотый» цемент, можно взять норму расхода для М400 и вычесть 30–40 кг. Это «допущение» подтверждает следующая таблица:

Более подробно про пропорции бетона для фундамента: в ведрах и лопатах.

Расход цемента для кладки

Ходовые марки кладочных растворов – 25–100. «Универсальный» вариант – марка 75 с пропорцией Ц:П равной примерно 1:4.

Этих данных достаточно, чтобы узнать, сколько цемента потребуется для кладки – в одном кубе раствора 1/5 (0,2) м3 связующего. Песка нужно 4/5 (0,8) м3. Для расчета нужно принять усредненные плотности:

  • цемента – 1400 кг/м3;
  • песка – 1600 кг/м3.

Зная плотность и объем, рассчитывают массу в кг:

  • 0,2*1400 = 280;
  • 0,8*1600 = 1280.

Пример: рассчитать расход на стену толщиной в полтора кирпича. Размер здания – 10 на 14 м, высота стен – 3 м. Алгоритм расчета следующий:

  1. Определить расход по таблице – 0,234 м3 раствора на 1 куб. м кладки.
  2. Рассчитать массу цемента на м3 кладки 0,221*280 = 65,5 кг.
  3. Посчитать объем кладки – периметр стен*высоту*толщину. Объем равен (10+10+14+14)*3*0,38 = 55 м3.
  4. Узнать общий расход на стены: 55*65,5 = 3603 кг (72 мешков по 50 кг).

В кладочные смеси часто вводят известь, органические и неорганические добавки. Приготовление такого раствора потребует меньшего количества цемента на 1 куб.

Подробнее про растворы для кладки кирпича.

Расход цемента для стяжки

Принцип расчета аналогичен предыдущим. В первую очередь нужно выбрать смесь, исходя из требований к покрытию, временных рамок и метода укладки (мокрая, полусухая, сухая).

Выбрав тип смеси, подсчитывают, сколько нужно песка и цемента, действуя по плану:

Узнать объем работ. Пример: комната площадью 15 м2, толщина стяжки – 35 мм. Объем составит 12*0,03 = 0,53 м3.

Выбрать из табличных нормативов, сколько «пятисотого» цемента надо на 1 куб смеси М200 – это 410 кг.

Посчитать, сколько цемента надо для всей стяжки пола. Зная затраты на куб, получают общую массу 410*0,53= 217 кг – потребуется 5 мешков.

Рассчитать затраты песка на стяжку нужного объема. Согласно таблице пропорции Ц:П равны 1:3, объем песка равен 0,53*0,75 = 0,4 м3. Зная плотность заполнителя (1600 кг/м3), легко узнать массу: 0,4*1600 = 640 кг.

Расход цемента для штукатурки

Марочный диапазон смесей для штукатурных работ широк – в ходу растворы 25–150 – как и в случае с бетоном цифра обозначает прочность в кгс/см2.
Требуемая выходная прочность зависит от:

  • состава и качества основания под штукатурку;
  • режима эксплуатации – внешние/внутренние работы;
  • цели покрытия – укрепление стен, защита от воздействий окружающей среды, устранение сырости или конденсата.

Пример: рассчитать расход на штукатурное покрытие стены площадью 80 м2. Толщина слоя – 2,8 см.

Чаще всего для штукатурных работ используют смесь 1:4. Как видно из таблицы это соответствует двум ходовым маркам – 75 и 100. Пример актуален для обеих, с учетом марки связующего (400 и 500).

Алгоритм расчета такой:

  1. Начать следует с расчета объема (в кубах) цемента и заполнителя на 1 кв. м покрытия. Чтобы покрыть квадратный метр стены, понадобится 1*0,028 = 0,028 м3 цементно-песчаной смеси. Учитывая, что цемент составит 1/5 часть, а песок 4/5, подсчитывают, что на 1 кв. метр стены уйдет 0,022 куба песка и 0,006 куба связующего.
  2. Узнать затраты компонентов в м3 на всю площадь, соответственно: 0,022*80 =1,76 куба песка, 0,006*80 = 0,48 куба цементного сырья.
  3. Принять значения плотности: связующего – 1300 кг/м3, заполнителя – 1600 кг/м3.
  4. Посчитать массу 0,48* 1300 = 624 кг. Аналогично масса песчаного заполнителя – 1,76*1600 = 2816 кг.

Все расчеты очень просты. Главное здесь – выбрать тип и марку раствора «на выходе», а также марку цементного сырья. Дальнейшие вычисления с привлечением справочной информации займут не больше 10 минут.

Поделиться

Твитнуть

Запинить

Нравится

Класс

WhatsApp

Viber

Телеграмка

Правильный расчет расхода раствора на 1 м3 кладки из кирпича

Содержание

При планировании строительства кирпичных стен следует предварительно рассчитать количество стройматериалов и расход цемента на кладку кирпича – это позволяет сэкономить значительные средства. Будучи гигроскопичным, цементный порошок со временем теряет свои физические свойства, поэтому не стоит покупать его с большим запасом. Промежуточный расчет объема раствора
необходим для его рационального использования в течение рабочей смены или для выполнения определенного объема кладки.

Блок: 1/2 | Кол-во символов: 494
Источник: http://WallsGrow.ru/rashod-cementa-i-rastvora-na-kladku-kirpicha.html

Виды раствора для кладки

Чтобы раствор был одинакового качества, необходимо делать его в одинаковых пропорциях. Для этого нужно рассчитать объемы требуемых материалов, исходя из марки цемента и вяжущего вещества.

Марка строительной смеси определяет ее прочность, то есть способность выдерживать нагрузки. Чтобы каждый замес был одного качества, все его компоненты следует отмерять в равных дозах. В этих целях можно воспользоваться любой подходящей тарой или весами. Кладочные смеси бывают:

  1. Тощие. Эти смеси неудобны по причине своей рыхлости, отличаются большим количеством песка, не способны обеспечить прочность кладке.
  2. Нормальные. Они приготовлены с соблюдением пропорций и имеют достаточное количество как вяжущего компонента, так и заполнителя.
  3. Жирные. Отличаются переизбытком вяжущего составляющего, поэтому использование такого раствора для кладки приведет к ее растрескиванию.

Насыщенность кладочной смеси профессионалы определяют следующим образом: если при перемешивании раствор не прилипает к лопате, и свободно “сползает” с нее, значит, он тощий. Если раствор на лопате задерживается отдельными небольшими кусками, то он нормальный. Когда при перемешивании он полностью обволакивает лопату, значит, этот состав жирный.

Блок: 2/4 | Кол-во символов: 1233
Источник: http://o-cemente.info/raschet-rashoda-betona/rashod-rastvora-na-kub-kladki.html

Разновидности растворов и их применяемость

Связующим звеном между кирпичными блоками является смесь вяжущего компонента с наполнителем и водой. Наиболее распространены 4 вида растворов.

  • Цементно-песчаный. Он разводится водой, его пропорции зависят от марки цемента, способа кладки. При застывании этот вариант наиболее прочен, но при отступлении от технологии склонен к образованию трещин;
  • Известковый – в нем цемент заменен негашеной известью; пластичен, но вымывается дождями, поэтому пригоден лишь для монтажа внутренних стен;
  • Смешанный – цемент и песок разбавляются жидкой гашеной известью (известковым молочком). Комбинация сочетает лучшие качества двух первых вариантов;
  • С пластификатором – к цементу и песку (фракция 2 мм) примешивают полимерную добавку для повышения пластичности смеси. Проще такой раствор сделать из сухой строительной смеси, добавив воду согласно инструкции производителя.

Несмотря на состав, требования к качеству смеси практически одинаковы. Все ингредиенты очищают от комков, песок просеивают, жидкую известь процеживают. Для приготовления раствора сначала тщательно смешивают порошковые составляющие, затем медленно вливают холодную жидкость (20оС) и тщательно перемешивают, чтобы не произошло схватывание. Процесс ускоряется с помощью бетоносмесителя или перфоратора с насадкой в виде венчика.

Расход раствора на куб кладки кирпича

Сколько готовить раствора для кладки стены? Это определяется несколькими условиями:

  • мастерством каменщика;
  • структурой кирпичного блока — изделия с пустотами берут больше растворной смеси;
  • тип кирпича – гиперпрессованный и лицевой силикатный меньше впитывает раствор, чем керамический или рядовой силикатный с шероховатой поверхностью;
  • толщиной стены.

Средний расход раствора на 1 м3 кладки кирпича при стандартной толщине шва (12 мм) — примерно 0,23 м3. Более точную информацию дает таблица 1.

Таблица 1

Наименование работТип кирпичаНормативный расход (м3) при толщине стены, кирпичей
0,511,52
Наружные и внутренние стены,простое оформлениеКерамический обычный, силикатный одинарный полнотелый0,2210,2340,240,245
Пустотелый0,2230,2360,2420,247
Модульный0,2050,2160,2220,227
Среднее архитектурное оформлениеКерамический обычный, силикатный одинарный полнотелый0,2370,2410,240,245

Расход цемента для кладки кирпича

Состав смеси для возведения кирпичной стены варьируется в зависимости от качества исходных компонентов, погодных условий, этажности здания. Чтобы правильно смешивать ингредиенты, следует знать: 10-литровое ведро вмещает 14 кг цемента или 12 кг песка.

  1. Цементный раствор гибок в отношении пропорций. Он характеризуется степенью прочности: чем она меньше, тем ниже требуемая марка цемента и меньше его процент (1 часть на 2,5 — 6 частей песка). Для цемента М400 характерно соотношение 1 : 3, для М500 – 1 : 4. Объем воды (в среднем 0,5 – 0,7 л на 1 кг цемента) зависит от желаемой густоты смеси, типа кирпича, температуры воздуха — в летнюю жару раствор должен быть более жидким. Чтобы увеличить его пластичность, опытные каменщики добавляют в воду немного стирального порошка или моющего средства для посуды.На 1 куб готового раствора 1 : 4 необходимо 410 кг цемента М500 и 1,14 м3 песка. Зная, что на 1 кубометр обычной стены в один кирпич из силикатного блока 250 х 120 х 65 уходит 0,24 м3 раствора, расход цемента на куб кладки кирпича определяют так: 0,24 х 410 = 98 кг.Соответственно, при использовании цемента М400 (пропорция 1 : 3) кубометр смеси содержит 490 кг цемента, а на 1 м3 кладки его расходуется 117 кг.
  2. Цементно-известковый раствор годен к применению в течение 5 часов, а летом при +25о – не более часа, поэтому для него тоже желателен расчет. На 1 куб смеси требуется 190 кг цемента М400 – М500, 1,5м3 песка, 106 кг гидратной извести и 475 л воды. Для кубометра кладки понадобится в среднем 46 кг цемента.

Расход цемента на кладку кирпича при облицовке

В этом случае застройщика интересует, сколько израсходуется вяжущей смеси на квадратный метр стены. Это зависит от водопоглощения строительного материала, сезона выполнения работ, пустотности и пористости блоков. Нормы заложены в СНиП , но реальные цифры всегда больше, поэтому следует покупать готовый раствор или цемент с запасом.

Чтобы сэкономить на расходных материалах, следует отметить 2 фактора:

  1. чем больше габариты кирпича, тем меньше уйдет раствора;
  2. чем выше % пустот и пор, тем расход смеси будет выше.

С этой точки зрения оптимальным является применение керамического или силикатного двойного кирпича достаточной марки прочности. Такой выбор позволит достичь экономии 20% растворной смеси. В таблице 2 приведены сравнительные данные по расходу раствора на квадратный метр стены.

Вид кирпичаТолщина стеныКоличество раствора, м3/м2
Обычный керамический или силикатный2500,062
Пустотелый3800,095
2500,050
3800,076

Расход цемента на 1 м2 кладки считают исходя из его пропорционального содержания. Если смесь составлена из расчета1 : 3, то на квадратный метр стены толщиной 380 мм из полнотелого кирпича нужно: 0,095 х 490 = 47 кг цемента.

Правильное составление раствора и выбор оптимальных габаритов камня позволяет на кладку кирпича выдерживать расход цемента в нормативных пределах.

Блок: 2/2 | Кол-во символов: 5105
Источник: http://WallsGrow.ru/rashod-cementa-i-rastvora-na-kladku-kirpicha.html

Основные факторы, влияющие на расход раствора при кладке кирпича

Удобный и полезный инструмент — калькулятор цементного раствора, позволяет быстро просчитать количество раствора на 1 м2 кладки, но он не всегда учитывает все переменные, влияющие на расход. Есть масса факторов, от которых изменяется количество раствора на 1м3 кладки кирпича.

От чего зависит расход кладочного раствора на 1 м3 кладки:

  • толщина строения. Здесь важно учесть роль, несущие способности стены и местоположение. В перегородках обычно используется толщина в 1 кирпич, как и в строения под невысокой нагрузкой. Для постройки гаража, хозяйственных строений и остальных сооружений, которые должны выдерживать крышу и иметь достаточную прочность идеальным выбором является стена в 1,5 кирпича. Наибольший расход кладочного раствора наступает при постройке толстых стен;
  • толщина швов между рядами. Основное правило: чем толще шов, тем больше расход;
  • тип кирпича. Расход раствора на 1 м2 кладки кирпича без пустот будет значительно меньше, чем при использовании пустотелых блоков. Дополнительно играет роль и размер кирпича: есть полуторные, двойные и одинарные варианты. Наибольший расход наступает при использовании одинарного кирпича, а наименьший – двойного. Если планируется использовать куски кирпича, расход окажется большей всего;

В состав вносят глину или известь для снижения расхода цемента на куб раствора

  • тип связующего компонента. Для снижения расхода цемента на куб раствора в состав вносят глину или известь;
  • наличие профессиональных навыков. Кладка не является сложной работой с технической точки зрения, но при отсутствии должного опыта, наступает сильный перерасход раствора. Часть смеси теряется, падая в грунт и становясь непригодной к использованию, а также малоопытные строители часто делают слишком толстые швы.

Блок: 3/7 | Кол-во символов: 1804
Источник: https://pobetony.expert/raschet/skolko-rastvora-na-1-m3-kladki-kirpicha

Расход цемента

После расчета нужного количества смеси осталось узнать, сколько и какой марки следует приобрести цемента. При этом всегда лучше покупать цемент «с запасом» — на случай непредвиденного расхода или большой погрешности в расчетах.

Если всего требуется 20,0 м3 смеси, а пропорция раствора составляет 1:3, то полученное значение нужно разделить на 4. Получится 5,0 м3 цемента. Однако цемент не измеряется в кубометрах, придется перевести его в килограммы. Для этого знать нужно плотность отвердителя, которая у разных марок может сильно отличаться. В среднем значение примерно равно 1300 кг/м3. С учетом знания этого показателя осталось произвести несложные вычисления: умножить плотность на объем. Таким образом, получится 5,0*1300 = 6500 кг, или около 130 мешков при учете того, что вес каждого мешка равен 50 кг.

Блок: 4/5 | Кол-во символов: 827
Источник: https://kirpichguru.ru/raschety/rashod-rastvora-na-1-m3-kladki-iz-kirpicha.html

Расход на один кубометр

Существуют стандарты, которые определили расход раствора на 1м3 кладки. Для полнотелого кирпича со стандартными размерами (250х120х65) требуются следующий объем расхода раствора на куб кладки кирпича:

  • для половинного (120×120×65) будет 0,189 м3;
  • для одинарного (250×120×65) будет 0,221 м3;
  • для полуторного (380×120×65) будет 0,234 м3;
  • для двойного (510×120×65) будет 0,240 м3;
  • для двойного с половиной (640×120×65) будет 0,245 м3.

Таким образом, один полнотелый кирпич требует около 0,0006305 м3 раствора. Следовательно, на 1 м2 кладки кирпича шириной 120 мм потребуется около 75 литров смеси.

Для модулированных кирпичей (250х120х88) расход получится несколько меньше:

  • для половинного (120х120х88) будет 0,160 м³;
  • для одинарного (250х120х88) будет 0,20 м3;
  • для полуторного (380х120х88) будет 0,216 м3;
  • для двойного (510х120х88) будет 0,222 м3;
  • для двойного с половиной (640х120х88) будет 0,227 м3.

Для пустотелых кирпичей расходы раствора на 1м2 кладки будут больше.

Для расчета раствора необходимо рассчитать общий метраж площади строительства и  ее умножить на расход на 1 метр кубический.

Блок: 3/5 | Кол-во символов: 1121
Источник: https://kirpichguru.ru/raschety/rashod-rastvora-na-1-m3-kladki-iz-kirpicha.html

Раствор на куб кладки

Для кладки кирпича нужно рассчитать не только объемы требуемых материалов, но также и количество кирпича, который необходимо приобрести для строительства.

Неопытные в строительном деле застройщики часто допускают одну ошибку: производя расчет они не учитывают “пустотность” песка. Между песчинками есть свободное пространство, которое при смешивании заполняется более мелкими частицами цемента. Поэтому чтобы приготовить куб раствора, в котором соотношение частей 1:3, требуется взять 1 куб песка и 1/3 куба цемента. Тогда даже с учетом воды объем на выходе будет равен исходному объему песка.

Расход смеси на куб кладки кирпича варьируется в зависимости от толщины кладочного шва, марки состава, толщины стены. Если используемый в работе кирпич имеет внутри камней полости (щелевые или цилиндрические), то расход кладочной смеси увеличится минимум на 13%. Традиционно в строительстве укладка кирпича ведется в несколько рядов в толщину, поэтому площадь скрепляемых поверхностей увеличивается, что ведет к увеличению раствора.

Чтобы выяснить расход компонентов раствора произведем требуемый расчет. Будем исходить из следующих показателей: в 1 кубе – 1 тыс. л. В пересчете на объем 1 мешок цемента весом 50 кг равен 36 л.

  • 50:36=1,888 кг;
  • на 1 м3 кладки, для смеси в пропорции 1:4 получаем: 1000/4*1,888=7. То есть, потребуется 7 мешков цемента и 28 – песка;
  • на 1 м3 кладки, для состава пропорции 1:/3*1,888=9. В этом случае нам потребуется 9 мешков цемента, а песка в 3 раза больше.

Блок: 4/4 | Кол-во символов: 1507
Источник: http://o-cemente.info/raschet-rashoda-betona/rashod-rastvora-na-kub-kladki.html

Советы по расчету цементного раствора при кладке кирпича

Уже было рассчитано, сколько раствора в 1 м3 кладки кирпича, но даже с этими знаниями неопытные строители совершают ошибки.

Есть ещё некоторые советы, которые предотвратят ошибки во время строительства:

  • плотность песка и цемента разная, это означает, что ведро цемента и ведро песка весят по-разному. В обычное 10-литровое ведро вмещается 12 кг песка, в него же помещается 14 кг цемента. Чтобы правильно составить пропорцию, нужно класть немного неполное ведро цемента;
  • чтобы всё количество раствора на кирпичную кладку приобрело одинаковую густоту, стоит отмерять количество жидкости для замеса, иначе толщина швов каждый раз будет отличаться. Среднее значение количества воды – 0,5-0,7 к цементу;
  • летом лучше приготовлять более жидкую смесь, иначе она начнёт застывать преждевременно. Зимой стоит делать густой раствор;
  • для экономии раствора лучше использовать крупный кирпич без пустот. Внутрь пустотелых кирпичей помещается значительное количество кладочной смеси.

Зная значение затрат материалов на строительство, можно сэкономить деньги. Делая «на глазок» практически всегда либо остаются излишки, которые просто пропадают, либо недостаёт материала и приходится дополнительно заказывать небольшое количество цемент, тратя лишние деньги на доставку.

Блок: 7/7 | Кол-во символов: 1313
Источник: https://pobetony.expert/raschet/skolko-rastvora-na-1-m3-kladki-kirpicha

Кол-во блоков: 8 | Общее кол-во символов: 13404
Количество использованных доноров: 4
Информация по каждому донору:
  1. https://pobetony.expert/raschet/skolko-rastvora-na-1-m3-kladki-kirpicha: использовано 2 блоков из 7, кол-во символов 3117 (23%)
  2. https://kirpichguru.ru/raschety/rashod-rastvora-na-1-m3-kladki-iz-kirpicha.html: использовано 2 блоков из 5, кол-во символов 1948 (15%)
  3. http://o-cemente.info/raschet-rashoda-betona/rashod-rastvora-na-kub-kladki.html: использовано 2 блоков из 4, кол-во символов 2740 (20%)
  4. http://WallsGrow.ru/rashod-cementa-i-rastvora-na-kladku-kirpicha.html: использовано 2 блоков из 2, кол-во символов 5599 (42%)

Цементный раствор | Оценка цемента, песка и воды в строительном растворе | Типы строительных растворов и их применение

Цементный раствор — один из самых распространенных и дешевых вяжущих материалов, используемых в строительной индустрии. Цемент Раствор в основном представляет собой смесь цемента, песка и воды . Он используется в различных аспектах строительных работ, таких как кладка, кирпичная кладка, штукатурка, полы и т. Д. Есть два типа: сухой раствор и влажный раствор .

Сухой раствор в основном состоит только из песка и цемента.Чтобы рассчитать количество песка и цемента для сухого раствора, следует выбрать стандартную пропорцию смеси из различных доступных соотношений смеси. (1: 1, 1: 2, 1: 3, 1: 4, 1: 6, 1: 8)

Цемент

+ вода (и добавки) → цементная паста

+ мелкий заполнитель → раствор

+ крупный заполнитель → бетон

Смешивание цементно-песчаного раствора (Источник: YouTube / SkillTrain)

Оценка воды, цемента и Количество песка для цементного раствора

Предположим, что стандартное количество 1 м 3 цементного раствора и пропорция смеси CM 1: 6 (1 часть цемента и 6 частей Песок).Количество можно рассчитать двумя способами: по весу и по весу. по объему. Рассмотрим объем метод для расчета количества цемента и песка.

Сухое количество раствора эквивалентно количеству влажного раствора в 1,2–1,3 раза. Это связано с тем, что в заполнителях и цементе присутствуют пустоты. Фактическое значение зависит от степени пустотности используемых ингредиентов.

Следовательно, примем количество сухой цементной смеси равным 1 × 1.3 = 1,3 м 3 .

Базовый Формула для расчета объема ингредиента выглядит следующим образом:

Объем сухого ингредиента = Объем сухой ступки x (Части по объему ингредиента / Общие части ингредиента)

= 1,3 x (Части по объему ингредиента / Общие части ингредиента)

Количество цемента в цементном растворе

Здесь для смеси 1: 6 общее количество ингредиентов в растворе составляет 6 + 1 = 7.

Следовательно, объем цемент в растворе = Объем сухого раствора x (Части цемента / Общие части ингредиента)

= (1.3 × 1) / 7 = 0,185 м 3
Поскольку цемент доступен в мешках, объем 1 мешка для цемента (50 кг) составляет 0,0347 м 3 .

0,185 м 3 = (1,3 × 1) / (7 × 0,0347) = 5,35 мешка

Количество песка

Объем песка = Объем сухого раствора x (Части песка / Всего частей ингредиента)

= (1,3 × 6) /7=1,14 м 3 песка или мелкого заполнителя

Количество воды

Для влажного раствора рекомендуемое водоцементное соотношение варьируется от 0.4 до 0,6. Кроме того, потребность в воде зависит от любой добавки, добавляемой в строительный раствор для улучшения его удобоукладываемости. Добавки должны быть добавлены в соответствии со спецификациями поставщиков. Следовательно, требуется вода

= 5,35 мешка x 0,0347 = 0,11 м 3 вода

= 0,11 x 1000 л = 111 литров воды

Помимо этого, также требуются трудозатраты для дозирования и перемешивания цемента. ступка.

Оценка стоимости строительных материалов:

Объем влажного раствора = 1 м 3

Объем сухого раствора = 1.3 м 3

Соотношение смеси = 1: 6

Количество цемента = 5,35 мешка

Количество песка = 1,14 м 3

Мешки 350
Sl. № Материал Кол-во Единица Ставка Кол-во
1. рупий.1872,5
2. Песок 1,14 м 3 рупий. 1250 рупий. 1,425
Итого рупий. 3297,5

Оценка трудозатрат на Цементный раствор

1 Mazdoor = 0,27 дня

1 Бхишти = 0,07 дня

рупий. 400
Sl.№ Рабочая сила Кол-во дней Заработная плата в день Сумма
1. Mazdoor 0,27 рупий. 108
2. Бхишти 0,07 рупий. 350 рупий. 24,5
Итого рупий.132,5

Общая оценка цементного раствора

Сумма материальных и трудовых затрат = 3297,5 + 132,5 = 3430 / —

Предположим 1,5% за расходов на воду = (1,5 / 100) x 3430 = 51,45 / —

Предположим 10% от прибыли подрядчика = (10/100) x 3430 = 343 / —

Итого Стоимость = 3430 + 51,45 + 343 = 3,824,45 / —

Типы цементных растворов на основе Область применения

Раствор типа N

Обычно используется для внутренней и внешней штукатурки парапетных стен, наружных стен и внутренних стен.Также он лучше всего подходит для напольного покрытия. Время начальной и окончательной схватывания составляет 2 часа и 24 часа соответственно. Имеет меньшую прочность на сжатие по сравнению с другими типами растворов. Его прочность на сжатие составляет от 5 до 7 МПа (700-900 фунтов на кв. Дюйм).

Цементный раствор, используемый для полов (Источник Youtube-UltraTech Cement)

Раствор типа S

Этот тип раствора можно использовать только для несущие наружные стены, внутренние стены и парапетные стены. Время Диапазон настройки от 1.5-24 мин / час. Прочность на сжатие колеблется от 1800-2800 фунтов на квадратный дюйм (от 13 до 20 МПа). Лучше всего подходит для таких подконструкций, как кладка фундамента, подпорные стены, канализация, люки и т. д.

Цементный раствор, используемый для штукатурных работ (Источник YouTube-Петр Камински)

Раствор типа M

Он состоит из наибольшего количества портландцемента. цемент с прочностью на сжатие в диапазоне 1800-3000 фунтов на квадратный дюйм (13-21 МПа). Это выдерживает большие нагрузки и может использоваться для проезжей части, тяжелого фундамента, удержания стена и т. д.

Цементный раствор, используемый для кладки кирпича (Источник YouTube-Слава Храмцов)

Добавки, используемые в цементном растворе

Пластификаторы

Требование правильной удобоукладываемости — основная суть хорошего бетона. Добавление дополнительной воды увеличивает удобоукладываемость бетона, но приводит к раку и расслоению бетона. Чтобы преодолеть это, используются пластификаторов (также известные как редукторы воды ). Они придают пластифицирующий эффект влажному бетону и повышают удобоукладываемость бетона без использования избытка воды.Пластифицированный бетон улучшает желаемое качество пластичного бетона и, естественно, увеличивает прочность бетона. Пластификаторы обычно используются в количестве от 0,1% до 0,4% от веса цемента, что приводит к уменьшению количества воды для затворения на от 5% до 15% .

Суперпластификаторы

Суперпластификаторы пластификаторы улучшены и более усиленные химические добавки с высокоэффективным пластифицирующим действием на мокрый бетон. Суперпластификаторы химически отличаются от обычных пластификаторы.Это позволяет уменьшить количество воды до на 30% , не влияя на удобоукладываемость раствора. Он также имеет дополнительные преимущества, такие как самовыравнивание, самоуплотнение и высокая прочный и высокоэффективный бетон.

Поливинилацетат (ПВС)

Добавки связующего типа в основном представляют собой воду эмульсии различных органических материалов, смешанные с цементом или строительным раствором затирку и нанесите на старую поверхность перед заделкой строительным раствором или конкретный. В качестве добавок используются полимеры, такие как поливинилхлорид и поливинилацетат .Основная функция этого добавка для увеличения прочности сцепления между старым и новым бетоном поверхности. Их добавляют в пропорции 5%. до 20% от массы цемента. Эти добавки эффективны только на чистом и звуковые поверхности.

Гидроизоляционные добавки в цементный раствор

В состав бетон, чтобы сделать конструкцию водонепроницаемой. Обычно это достигается либо водоотталкивающий агент , либо пор наполнитель . В материалах водоотталкивающего типа, таких как сода , калийное мыло, кальциевое мыло, растительные масла, жиры, воски и уголь. остатки дегтя .Они действуют как водоотталкивающие средства, что делает бетон непроницаемый. В материалах типа заполнения пор, таких как силикат натрия , сульфаты алюминия и цинка, а также алюминий и Используется хлорид кальция . Эти материалы являются химически активными порами. наполнители. На рынке также используются химически неактивные наполнители пор, такие как наполнители для грунта , мел и тальк . В кроме того, они также помогают ускорить схватывание бетона.

Как это:

Нравится Загрузка …

Сопутствующие товары

Как рассчитать раствор для стены из блоков | Home Guides

Автор: SF Gate Contributor Обновлено 28 января 2021 г.

Оценка количества раствора, необходимого для строительства стены, — это навык, который строители приобретают за годы практики.Для среднестатистического мастера, не имеющего предыдущего опыта, требуется альтернатива подходу «посмотри и угадай», потому что слишком мало раствора приводит к задержкам, а слишком много — к потере времени и денег. Для оценки требуемого объема можно использовать простой математический процесс, а результаты можно рассчитать на обратной стороне конверта.

  1. Вычислите длину и высоту стены

  2. Определите длину и высоту стены, затем округлите каждое значение до следующего целого фута.Например, если стена будет иметь длину 34,5 фута и высоту 5,75 фута, округлите размеры до 35 футов и 6 футов.

  3. Найдите площадь

  4. Умножьте длину стены на высоту стены, чтобы получить площадь поверхности. Например, стена длиной 35 футов и высотой 6 футов имеет площадь 210 квадратных футов, потому что 35 умножить на 6 равно 210.

  5. Определите количество кирпичей

  6. Умножьте площадь стены на 1.125, чтобы определить количество стандартных твердых блоков, необходимых для стены — стандартные блоки имеют номинальную высоту 8 дюймов, ширину 16 дюймов и глубину 8 дюймов, если раствор вокруг них включен в размеры. Например, для стены площадью 210 квадратных футов требуется 237 блоков, потому что 210, умноженное на 1,125, равняется 236,25.

  7. Рассчитайте количество блоков, которые может скрепить каждый мешок с раствором

  8. Разделите количество блоков в стене на количество блоков, которые каждый мешок с раствором может склеить, если используются сплошные блоки.Это значение указано производителем и указано на упаковке. В результате получается необходимое количество мешков с раствором. Например, если стена будет содержать 237 блоков, и каждый мешок будет связывать 20 блоков, тогда потребуется 12 мешков с раствором, потому что 237, разделенное на 20, равно 11,85.

  9. Определите, сколько кубических ярдов раствора необходимо

  10. Умножьте площадь стены на 0,02 — отраслевой стандартный коэффициент для расчета объемов раствора для блочных стен — если стена построена из двойного открытого конца скрепляющие балочные блоки.Результат — необходимый объем раствора, выраженный в кубических ярдах. Чтобы завершить пример, стена с площадью поверхности 210 квадратных футов потребует 4,2 кубических ярда раствора, потому что 210, умноженное на 0,02, равняется 4,2.

  11. Наконечник

    Закажите немного больше, чем необходимо для выполнения работы, чтобы компенсировать потери и ошибки. Стоит спросить своего поставщика, можете ли вы получить мешки с раствором на основе принципа «использовать или вернуть», затем заказать больше, чем вам нужно, и вернуть то, что не использовалось.

    Существуют онлайн-калькуляторы, которые помогут вам рассчитать площадь вашей стены, а также сколько раствора вам понадобится.

    Предупреждение

    Не смешивайте весь раствор одновременно. Если вы это сделаете, большая его часть установится до того, как вы закончите работу. Если стена представляет собой двустенную полую стену, удвойте требуемый объем раствора.

Как рассчитать количество раствора для кладки блоков

Инженеры, руководители участков и геодезисты всегда сталкиваются с проблемой как можно точнее указать количество материалов, необходимых для выполнения определенного элемента работы.В этой статье мы расскажем, как можно оценить количество раствора (цемента и песка), необходимого для укладки блоков на квадратный метр стены.

Известно, что на квадратный метр стены нужно около 10 блоков.

Простое доказательство;
Площадь стены = 1 м 2
Плоская площадь одного стандартного блока (Нигерия) = 450 мм x 225 мм = 0,101 м 2
Следовательно, необходимое количество блоков (без учета раствора) = 1 / 0,101 = 9.99 (скажем, 10 блоков)

Теперь, как мы оценим количество раствора, необходимого для укладки блоков? Прежде всего, давайте посмотрим на размеры типичного 9-дюймового блока с отверстиями (самого популярного блока для строительства в Нигерии).

Из изображения выше мы можем сказать, что площадь поперечного сечения блока, на который наносится горизонтальный раствор, составляет;

A b = (0,45 x 0,225) — 2 (0,15 x 0,125) = 0,0637 м 2

Теперь предположим, что раствор будет иметь толщину 25 мм (1 дюйм)

Типичное расположение блоков в стене площадью один квадратный метр показано ниже;

Таким образом, мы можем оценить объем раствора, необходимый для строительства одного квадратного метра (1 м 2 ) стены, следующим образом:

Вертикальный раствор = 8 x (0.025 x 0,225 x 0,275) = 0,0123 м 3
Горизонтальный раствор = 10 x (0,0637 x 0,025) = 0,0159 м 3
Всего = 0,0282 м 3

Следовательно, объем раствора, необходимый для укладки одного квадратного метра (1 м 2 ) 9-дюймового блока (с отверстием), для всех практических целей можно принять равным 0,03 м 3 .

Чтобы пойти дальше, предположим, что у нас есть 150 м 2 стены, и мы хотим оценить количество цемента и песка, необходимое для укладки блоков.

Требуемый объем раствора = 0,03 x 150 = 4,5 м 3

Типичное соотношение смеси для раствора (кладки блоков) 1: 6

Требуемый цемент
Требуемое количество цемента = 1/7 x 1440 кг / м 3 = 205,71 кг
С учетом усадки между свежим и влажным бетоном = 1,54 x 205,71 = 316,79 кг
Количество цемента в мешках = 316,79 / 50 = 6,33 мешка

Для 4,5м 3 раствора;
Обеспечить = 4.5 x 6,33 = 29 мешков с цементом + допустимые отходы.

Песок
Требуемое количество песка = 6/7 x 1600 кг / м 3 = 1371,428 кг
С учетом усадки между свежим и влажным бетоном = 1,54 x 1371,428 = 2112 кг

Для 4,5м 3 раствора;
Предоставить = 4,5 x 2112 = 9504 кг острого песка + допустимые отходы.

Следовательно, вам понадобится около 10 тонн острого песка и 29 мешков цемента для укладки 150 м. 2 9-дюймовой блочной стены.

Спасибо, что посетили Structville сегодня, и благословит Бог.

Соотношение цемента и песка для кирпичной кладки. Как рассчитать

Важно знать идеальное соотношение цементно-песчаной смеси, иначе вы не сможете достичь желаемой производительности. Самая важная часть конструкции — кирпичная кладка — выполняется из кирпича и цементного раствора. В зависимости от требований используются разные соотношения для цементного раствора для кирпичной кладки.

Что такое кирпичная кладка и как она классифицируется?

Кирпичная кладка — это когда стены возводятся путем соединения кирпича с помощью цементного раствора. Эти кирпичи являются основным строительным элементом в помещении, который передает нагрузку от крыши на землю. В строительной отрасли кирпичи разного качества и толщины склеиваются вертикальными поперечными швами. При этом требуется расход цемента на кладку лота.

В зависимости от качества кирпича кладка подразделяется на три категории.

  • Кирпичная кладка первого класса , идеально подходит для несущих стен, так как минимальная прочность на раздавливание используемых кирпичей составляет 105 кг на квадратный метр. Соотношение цементного песка для кирпичной кладки составляет от 1: 3 до 1: 6.

В кирпичной кладке первого класса используется богатый раствор и кирпич лучшего качества, не имеющий трещин и сколов.

  • Кирпичная кладка второго сорта , она имеет минимальную прочность на раздавливание 70 кг на квадратный метр, что не подходит для здания более двух этажей.
  • Кирпичная кладка 3-го класса , используется для возведения временного строения. Иногда специалисты используют цементный раствор, но при кирпичной кладке третьего класса допустимо применение и глиняный раствор.

Формула для расчета простой кирпичной кладки

При работе с первоклассным кирпичом следует учитывать, что для стен толщиной 9 дюймов соотношение цемента и песка для кирпичной кладки должно быть 1: 6, а для стены — 4.При толщине 5 дюймов соотношение можно сделать 1: 4.

Примечание: Чтобы получить соотношение цемента и песка для штукатурки стен при строительстве, проверьте здесь.

Вот простая и эффективная формула расчета кирпичной кладки , которая поможет вам понять, сколько кирпичей потребуется на 1 кубометр кирпичной кладки. Мы можем разделить расчет на три части, чтобы узнать необходимое количество цемента, песка и кирпичей.

При том, что толщина составляет 230 мм на 1 куб. М кирпичной кладки и соотношение цементного раствора для кирпичной кладки составляет 1: 5.Поместив эти значения в формулу, мы сможем узнать, как рассчитать расход цемента для кирпичной кладки и как определить необходимое количество кирпичей и количество песка.

  • Для расчета количества кирпичей

Например, размер кирпича 200 мм x 100 мм x 100 мм

После преобразования в метры это будет 0,2 м x 1 м x 1 м

Следовательно, общий объем кирпича составляет 0,2x,1x,1 = 0,002 кубометра

Следовательно,

Для расчета количества кирпичей на 1кум

Формула: 1cum / 0.002cum = 500 номеров кирпичей

  • Для расчета количества цемента

Соотношение цементного раствора 1: 5

Сумма 1 + 5 = 6

Таким образом, общее количество сухого раствора, необходимого для кладки 1 каменного кирпича, составляет 30 куб.

Итак,

Требуемый цемент (0,30 × 1) / 6 = 0,05 куб.м

После преобразования в кг = 0,05 × 1440 = 72 кг

При переводе кг в количество мешков = 72/50 = 1,44 мешка.

  • Для расчета количества песка

При соотношении песка и цемента 1: 5

Итак, требуется песок (.30 × 5) /6 = 25cum

В пересчете на кг = 0,25 × 1440 = 360 кг.

Если вам нужен калькулятор затрат на строительство , то взгляните на него здесь.

С помощью этой простой формулы легко оценить количество цемента , необходимое для кирпичной кладки . Помните, в зависимости от класса кирпичной кладки соотношение песчано-цементного раствора может меняться общий расчет. Кроме того, однородная смесь песка, цемента и воды является секретом рецепта более прочной связи между кирпичами.Следовательно, следует использовать только необходимое количество воды, и смесь должна быть приготовлена ​​с помощью механической смеси, чтобы обеспечить прочность кирпичной кладки.

Оцените количество раствора для стены CHB

КАК ОЦЕНИТЬ КОЛИЧЕСТВО ЦЕМЕНТА И ПЕСКА ДЛЯ СМЕСИ РАСТВОРА:

  1. Определите начальную площадь стены:
  2. Бетонные пустотелые блоки (ББК) различаются по размеру.В местных магазинах бытовой техники обычно есть 3 коммерчески доступных CHB разной толщины — 4 дюйма (10 см), 6 дюймов (15 см) и 8 дюймов (20 см).


  3. Определить указанный вид смеси:
  4. То же самое и с бетоном, прочность раствора на сжатие зависит от смеси и пропорций вашего материала.


    ПОДРОБНЕЕ: Быстро рассчитайте и оцените строительные материалы с помощью Microsoft Excel

  5. Определить площадь стены:

  6. Определите площадь вашей стены.Формула для квадратной стены: длина * высота.

    Площадь квадратной стены = длина * высота

    Обязательно примите во внимание информацию, которую часто упускают из виду, которая влияет на площадь вашей стены — например, глубину балки или подземный фундамент CHB.


  7. В зависимости от указанного типа смеси, толщины и размера CHB умножьте вашу площадь на соответствующие значения из таблицы пропорций раствора:

ОБРАЗЕЦ ПРОБЛЕМА 1

Вычислите количество цемента и песка, необходимое для растворной смеси класса «B» для стандартной 4-дюймовой стены CHB, которая имеет высоту 3 метра и длину 2 метра.


РЕШЕНИЕ

  1. Определите размер и толщину используемого CHB:

  2. Заданная толщина CHB = 4 ”


  3. Определить указанный вид смеси:

  4. Указанная строительная смесь = Класс «В»


  5. Определить площадь стены:

  6. Площадь квадратной стены = длина * высота
    = 2 м * 3 м
    = 6 м 2


  7. В зависимости от указанного типа смеси, толщины и размера CHB умножьте вашу площадь на соответствующие значения из таблицы пропорций раствора:

  8. Количество цементных мешков = Площадь * Множитель цемента для смеси класса «B»
    = 6 м 2 * 0.522
    = 3,132 мешка ~ 4 мешка

    Количество песка = Площадь * множитель песка для смеси класса «B»
    = 6 м 2 * 0,0435
    = 0,261 м 3



Насколько полезна эта статья? Дайте нам знать, подписавшись на нас в Facebook и поделившись этой статьей с хэштегом #veriaconcyclopedia

ПРОИЗВОДИТЕЛЬНОСТЬ И МОДУЛЬНАЯ КООРДИНАЦИЯ В СТРОИТЕЛЬСТВЕ БЕТОННОЙ КЛАДКИ

ВВЕДЕНИЕ

При строительстве каменной кладки под производительностью обычно понимают количество бетонных блоков, размещаемых за единицу времени.На эту производительность влияют многие факторы, некоторые из которых могут контролироваться каменщиком, а другие — вне его контроля.

ПРОИЗВОДИТЕЛЬНОСТЬ

В идеале показатели производительности бетонной кладки должны составляться специалистами по оценке кладки на основе записей выполненных работ. Опубликованные показатели производительности, такие как показанные на Рисунке 1 и в Таблице 1, следует использовать только в качестве руководства.

В следующих разделах обсуждаются некоторые из различных факторов, которые могут повлиять на производительность кладки.В дополнение к этому, показатели производительности могут варьироваться в зависимости от размера блока и плотности бетона, удобоукладываемости раствора, типа сцепления с кладкой, количества и типа проемов в стене, количества арматуры и размера стены.

Как показано на Рисунке 1, вес бетонной кладки существенно влияет на производительность кладки, при этом более легкие единицы веса приводят к более высокой производительности (при прочих равных условиях). На основе типичных пустотелых бетонных блоков, использование легких бетонных блоков (менее 105 фунтов на квадратный фут (1680 кг / м 3 ) бетона) может повысить производительность от 10% до 18% по сравнению с тяжелыми блоками (125 фунтов на квадратный фут (2000 кг / м)). 3 ) или более плотный бетон) 8 дюймов(203-мм) и от 20% до 54% ​​для 12-дюйм. (305-мм) агрегаты (ссылки 3, 4).

Образец связки также может повлиять на производительность. Поскольку бригады каменщиков привыкли укладывать бетонную кладку в основном в непрерывном связующем, для укладки других видов связки часто требуется больше времени. Например, по оценкам, стековая облигация снижает производительность примерно на 8% по сравнению с сопоставимыми показателями производительности текущих облигаций (ссылка 4).

Рисунок 1 — Расчетные темпы производства на основе веса бетонной кладки (см.4)
Таблица 1 — Типичные показатели производительности бетонной кладки (a)

ВЛИЯНИЕ КАЧЕСТВА НА ПРОИЗВОДИТЕЛЬНОСТЬ

Общее качество проекта может повлиять на производительность кладки. Качественное строительство включает в себя:

  1. предтендерные и предпроектные конференции,
  2. правильный дизайн,
  3. внимание к планировке и планировке,
  4. качественных материалов,
  5. подходящей рабочей площадки и
  6. правильная установка.

Проект с этими ингредиентами также будет способствовать созданию очень продуктивной рабочей площадки.

Предварительные торги и конференции перед строительством

Предтендерные и предстроительные конференции должны проводиться и посещаться всеми сторонами, вовлеченными в кладочные работы, включая представителя владельца, архитектора / инженера, подрядчика, руководителя строительства, поставщиков кладочного материала и подрядчика по камню. Это способствует хорошему общению до начала работы и до возникновения каких-либо недоразумений.Четкое общение сводит к минимуму задержки из-за таких факторов, как изменения и ошибки в последнюю минуту.

Правильный дизайн

Качественный дизайн означает, что у дизайнера есть:

  • разработан и детализирован проект, который можно построить,
  • разработал планы и спецификации, которые достаточны для строительства и завершены соответствующими кодами и стандартами, на которые имеются ссылки,
  • просмотрел планы, спецификации и структурные чертежи, чтобы исключить противоречивые слова и противоречивые детали,
  • включают вклад качественного подрядчика по каменщику, а
  • включил все кладочные материалы в CSI Division 4.(Часто некоторые каменные материалы находятся в отделе 7. Если вся работа каменщика помещается в отдел 4, это улучшает общение с бригадой каменщиков и имеет больше шансов быть должным образом включенными в работу.)

Подобно конференциям перед торгами и перед строительством, исчерпывающий набор планов и спецификаций поможет повысить производительность, поскольку он сократит или устранит время, затрачиваемое на исправление недоразумений и ошибок.

Полный набор планов и спецификаций будет включать копию требований Строительного кодекса для каменных конструкций и спецификаций для каменных конструкций (исх.1, 2), национальных консенсусных стандартов проектирования и строительства кладки. Кроме того, для определения материалов кладки должны быть включены соответствующие стандарты ASTM.

Планировка и макет

Внимание к планированию самого здания, а также к последовательности и графику строительства может повлиять на производительность кладки.

Бетонные конструкции из каменной кладки можно возводить практически любого размера. Однако для максимальной эффективности строительства и экономии бетонные элементы кладки следует проектировать и строить с учетом модульной координации.Модульная координация — это практика компоновки и определения размеров конструкций до стандартной длины и высоты с учетом строительных материалов модульных размеров. Стандартные бетонные модули для каменной кладки обычно имеют размер 8 дюймов (203 мм) по вертикали и горизонтали, но могут также включать модули размером 4 дюйма (102 мм) для некоторых приложений. Эти модули обеспечивают лучшую общую гибкость дизайна и координацию с другими строительными изделиями, такими как окна и двери.

Обычно ширина проема в кладке для дверей и окон должна составлять 4 дюйма.(102 мм) больше ширины двери или окна. Это позволяет использовать 2 дюйма (51 мм) с каждой стороны проема для обрамления. Высота проема для окон в кирпичной кладке обычно на 8 дюймов (203 мм) больше, чем высота окна. Такой размер проема позволяет установить подоконник в нижней части окна на 2 дюйма (51 мм) сверху и снизу для обрамления и 4 дюйма (102 мм). Высота дверного проема в каменной кладке на 2 дюйма (51 мм) больше, чем высота двери, что оставляет 2 дюйма (51 мм) для дверной рамы. Рисунок 2 иллюстрирует эти размеры отверстий.

Таким образом, двери и окна шириной 28 дюймов, 36 дюймов, 44 дюйма и 52 дюйма (711, 914, 1118 и 1321 мм) и т. Д. С шагом 8 дюймов (203 мм) являются модульными. и не потребует резки кладки. Высота модульных окон может быть кратна 8 дюймам (203 мм), при этом оконный проем в каменной кладке на 8 дюймов (203 мм) больше, чем высота окна, если будет использоваться подоконник 4 дюйма (102 мм). Точно так же высота модульной двери на 2 дюйма (51 мм) меньше любого числа, кратного восьми. Таким образом, дверь высотой 86 дюймов (2184 мм), которая подходит для 88-дюймовой двери.(2235 мм) высокий проем в кладке, имеет модульную высоту.

Обратите внимание, что в некоторых местах доступны продукты для размещения дверей 6 ‘- 8 дюймов (2032 мм) в кирпичных стенах без необходимости резки каменных блоков. К ним относятся сборные перемычки с выемкой 2 дюйма (51 мм), которая обеспечивает необходимый проем в кирпичной кладке 6 футов 10 дюймов (2083 мм) для размещения двери и рамы. В других областях дверные коробки доступны с перемычкой 4 дюйма (101,6 мм), которая позволяет двери размером 6–8 дюймов (2032 мм) соответствовать размерам 7–4 или 88 дюймов.(2235 мм) высокий проем в кладке.

Немодульные макеты могут потребовать дополнительных соображений по таким элементам, как использование нестандартных элементов или резка каменных блоков распилом и поддержание узоров склеивания. Кроме того, могут возникнуть другие строительные проблемы, такие как размещение арматуры откоса и адекватное уплотнение раствора в небольших основных пространствах. Конечный продукт обычно сложнее изготовить, он производит больше отходов и является более дорогостоящим.

Точно так же, согласование размещения труб, каналов, желобов и каналов для их совмещения с полыми сердцевинами кладки может уменьшить потребность в распиловке блоков кладки.

Скопление стали в армированной кладке может снизить производительность. Размещение слишком большого количества арматурных стержней в слишком маленьком пространстве затрудняет укладку стали и обеспечение надлежащего покрытия цементным раствором. Спецификация для каменных конструкций (ссылка 3) требует свободного пространства дюйма (6,4 мм) между арматурным стержнем и кладкой для мелкодисперсного раствора и ½ дюйма (13 мм) для грубого раствора.

Образцы панелей уменьшают количество недоразумений и обеспечивают объективный индикатор предполагаемых методов строительства.Они помогают убедиться, что все стороны понимают диапазон материалов, методов и качества изготовления, приемлемых для работы. Образцы панелей обычно имеют размер не менее 4 футов на 4 фута (1,22 x 1,22 м) и должны содержать весь диапазон цветов блоков и растворов. Выбор единиц всего одного оттенка для образца панели не будет точно отражать выполненную работу. Вместо этого единицы должны выбираться случайным образом, как при строительстве проекта. Процедуры очистки, нанесения герметика и все другие процедуры должны выполняться на панели для образцов, чтобы можно было оценить их приемлемость.Панель с образцами должна оставаться на месте на протяжении всего строительства в качестве ориентира.

Для максимальной производительности своевременная доставка блоков, раствора, раствора и других кладочных материалов поможет ускорить работу. Кроме того, планируйте кладочные работы так, чтобы по возможности избегать периодов года, особенно подверженных отрицательным температурам или продолжительным дождям. Хотя возведение кладки может происходить в жаркую, холодную и влажную погоду, в некоторых случаях могут потребоваться специальные строительные процедуры, чтобы гарантировать, что на качество кладки не повлияет погода.Более подробную информацию об этих строительных процедурах можно найти в TEK 3-1C, Всепогодное бетонное строительство (ссылка 4).

Рисунок 2 — Проемы в модульных стенах

Качественные материалы

Каменные материалы имеют успешную историю соответствия применимым спецификациям и требованиям проекта.Гарантия того, что используемые материалы соответствуют спецификациям, помогает удерживать конструкцию кладки в правильном направлении. Например, стандарты ASTM для блоков каменной кладки определяют допуски на размеры блоков. Установки, соответствующие допускам ASTM, будет легче разместить, и каменщику будет легче поддерживать уровень и выравнивание. Точно так же блоки без чрезмерной стружки (характеристика также регулируется стандартами ASTM) позволяют размещать их без необходимости сортировки продукта по качеству — действия, которое снижает общую производительность.

Строительная площадка

Качественная рабочая площадка способствует повышению производительности за счет наличия достаточного пространства для работы субподрядчика каменщика и легкого доступа к материалам для каменной кладки. Сюда входят:

  • нетронутое пространство для сборки образца панели (панелей),
  • — это определенная и достаточно большая площадь для материалов и принадлежностей, и
  • — определенная зона большого размера для процедур отбора проб и испытаний в соответствии с требованиями проекта.

Правильная установка

Помимо перечисленных выше факторов, для качественного монтажа необходимы:

  • достаточное количество квалифицированных мастеров,
  • квалифицированного и достаточного надзора и
  • подходящее оборудование для работы.

Произошли некоторые замечательные разработки в продукции и оборудовании, чтобы помочь каменщикам и, следовательно, повысить производительность кладки. Например, новые вилочные погрузчики часто имеют увеличенную грузоподъемность, одну стрелу, которая увеличивает обзор, они более маневренные, имеют более высокую грузоподъемность и больший вылет. Другие достижения в области оборудования, которые могут повысить производительность, включают портативные ручные лазеры, которые работают в нескольких направлениях одновременно, электрические переносные лебедки и силовые (кривошипные или гидравлические) леса.

Изделия, которые легче установить каменщику, такие как самоклеящиеся гидроизоляционные элементы и предварительно сформированные концевые заглушки для гидроизоляции, также могут повлиять на производительность кладки.

Выбор раствора также может повлиять на производительность. Цементы для кладки и строительных растворов обеспечивают большую консистенцию, потому что все вяжущие ингредиенты предварительно смешаны. Предварительно смешанные растворы, в состав которых входит песок, смешанный с соответствующим цементом, также доступны в силосах, смесителях или блендерах. Предварительно смешанные строительные растворы могут улучшить контроль качества и однородность раствора, а также могут повысить производительность за счет устранения необходимости смешивания на стройплощадке.

В некоторых случаях работа других специалистов также может повлиять на производительность кладки. Например, бетонные фундаменты или опоры, которые не соответствуют своим допускам, могут потребовать от каменщика выпилить первый ряд блоков или предпринять какие-то другие меры для компенсации.

Список литературы

  1. Строительные нормы и правила для каменных конструкций, ACI 530-02 / ASCE 5-02 / TMS 402-02. Сообщено Объединенным комитетом по стандартам кладки, 2002 г.
  2. Спецификация каменных конструкций, ACI 530.1-02 / ASCE 6-02 / TMS 602-02. Сообщено Объединенным комитетом по стандартам кладки, 2002 г.
  3. Всепогодное бетонное строительство, ТЭК 3-1С. Национальная ассоциация бетонных каменщиков, 2002.
  4. Колкоски, Р. В. Оценка масонства. Книжная компания «Ремесленник», 1988.
  5. Исследование «Исследование продуктивности масонов». Национальная ассоциация бетонщиков, 1989.

NCMA TEK 4-1A, с изменениями в 2002 г.

NCMA и компании, распространяющие эту техническую информацию, не несут никакой ответственности за точность и применение информации, содержащейся в этой публикации.

Повторное использование отходов глиняного кирпича в строительном растворе и бетоне

Применение переработанного глиняного кирпича может не только решить проблему утилизации снесенных твердых отходов, но и уменьшить ущерб окружающей среде, вызванный чрезмерным освоением ресурсов. Порошок из глиняного кирпича (CBP) проявляет пуццолановую активность и может использоваться как заменитель цемента. Заполнитель из переработанного глиняного кирпича (RBA) может использоваться для замены природного грубого заполнителя. Бетон из заполнителя из вторичного глиняного кирпича (RBAC) может достигать подходящей прочности и использоваться в производстве бетона средней и низкой прочности.Здесь рассматриваются отходы глиняного кирпича как потенциальный материал для частичной замены цемента и заполнителя. Обсуждаются показатели механических и долговечных свойств раствора и бетона. Понимание свойств глиняных кирпичей имеет решающее значение для дальнейших исследований и применений.

1. Введение

Конструкции из глиняного кирпича широко используются во всем мире. В первые дни основания Китая было построено много зданий из глиняного кирпича. Со временем многие здания достигли проектного срока службы или стали неисправными из-за использования дефектной конструкции или неподходящих материалов.Кроме того, частые землетрясения разрушили многие здания и образовали большое количество отходов. В связи с потребностями градостроительства и реконструкции старые здания пришлось снести, что привело к накоплению отходов глиняного кирпича [1, 2] (Рисунок 1). В Китае ежегодно производится около 15,5 млн тонн строительного мусора, в основном бетона и кирпича. Согласно отчету Европейского Союза в 2011 году, ежегодно в Европейском Союзе производилось около 1 миллиарда тонн строительных и сносных отходов (CDW), которые содержали большое количество кирпичей [3].Кроме того, отходы глиняного кирпича от снесенных кирпичных стен составляли примерно 54% ​​строительных и сносных отходов в Испании [4]. В столице Валле-дель-Каука, Кали, строительными компаниями и общественным строительством было произведено в среднем 1900 м 2 3 КДВ [5]. Кроме того, в результате частного строительства и реконструкции было получено 580 м 3 КДВ [5].

Основной метод обращения с КДВ — через свалки или рекультивационные площадки. Фундамент полигона плохого качества.Кроме того, использование свалок или мелиоративных площадок — дорогостоящий подход. Переработка одной тонны бетона, кирпича и кирпичной кладки стоит примерно 21 доллар за тонну, а вывоз того же материала на свалку стоит примерно 136 долларов за тонну [6]. Кроме того, расстояние между площадками сноса и свалками становится больше, а транспортные расходы — выше. Поскольку свалки и мелиоративные площади ограничены, свалка отработанного глиняного кирпича занимает ценные земельные ресурсы и повреждает структуру почвы, что приводит к плохому урожаю зерна.Хранение и удаление отходов становится серьезной экологической проблемой, особенно в большинстве городов, где отсутствуют свалки. За счет утилизации строительных отходов количество отходов, отправляемых на свалки, будет значительно сокращено [6].

Производство бетона и строительного раствора потребляет большое количество невозобновляемых ресурсов и вызывает серьезное загрязнение окружающей среды. Бетон состоит из песка, гравия, цемента и воды, которые трудно получить. На мировом уровне гражданское строительство и строительство потребляли 60% сырья, добытого из литосферы [7].Кроме того, рост населения привел к увеличению строительной активности и потребления природных ресурсов. В районах, где отсутствуют высококачественные камни или гравий, импортировать заполнители было бы невыгодно. Во многих городских районах не хватает хороших природных заполнителей, ресурсы песка и камня постепенно истощаются, а добыча полезных ископаемых стала более сложной. Между тем производство цемента небезопасно для окружающей среды. В качестве важного сырья для бетона цемент будет производить большое количество пыли и углекислого газа во время его производства [8].При нынешней технологии для производства 1 тонны цемента требуется 1,7 тонны сырья, приблизительно 7000 МДж электроэнергии и топливной энергии [9], 0,75 тонны диоксида углерода и 12 килограммов диоксида серы и пыли [10]. В Китае в 2014 году было произведено 2,5 миллиарда тонн цемента, что составляет примерно 60% мирового производства цемента [11, 12].

Отходы из глиняного кирпича имеют высокую ресурсную ценность, и многие страны повторно используют их для многих применений в строительстве.Основы для перехода к европейскому обществу по переработке отходов с высоким уровнем ресурсоэффективности были предусмотрены в Европейской директиве (2008/98 / EC) от 19 ноября 2008 г. [13]. Европейский Союз поставил цель перерабатывать 70% строительных отходов к 2020 году [14]. В Германии, Дании и Нидерландах коэффициент повторного использования составляет примерно 80% по сравнению со средним показателем 30% в других странах [15]. Хотя Германия впервые использовала дробленый кирпич в портландцементе для производства бетонных изделий в 1860 году [16], дробленый кирпич в качестве заполнителя широко использовался в свежем бетоне для реконструкции после Второй мировой войны [17].Сообщалось, что на строительство 175 000 жилых единиц было израсходовано 11,5 млн. М 3 щебня [18].

Концепция устойчивого развития включает энергосбережение, защиту окружающей среды и защиту невозобновляемых природных ресурсов. Из-за ограниченного пространства для свалки и наличия дорогостоящих природных заполнителей необходимо изучить перспективу применения измельченного глиняного кирпича в качестве нового материала для гражданского строительства. Повторное использование и переработка отходов — это метод энергосбережения в современном обществе.Повторное использование глиняного кирпича в качестве заполнителя не только снижает проблему хранения отходов, но также помогает сохранить природные ресурсы заполнителя [19]. Использование отработанного глиняного кирпича не только снижает затраты на очистку и утилизацию участка, но также дает значительные социальные и экономические выгоды.

В качестве справочного материала для дальнейших исследований пустых глиняных кирпичей подробно описывается повторное использование пустых глиняных кирпичей в бетонном строительстве. Описываются механические свойства и долговечность раствора с использованием отходов глиняного кирпича в виде цемента или песка, а также резюмируются механические свойства и долговечность бетона, содержащего РБА.Также обсуждается возможное применение RBAC на структурных элементах.

2. Отходы глиняного кирпича, используемые в строительном растворе

Отходы глиняного кирпича можно измельчить до мельчайших частиц для использования в строительном растворе. Он может существовать в двух формах: CBP и мелкие агрегаты. Первый проявляет пуццолановую активность, давая более плотную смесь, а второй может использоваться в качестве замены песка. Механические свойства и долговечность раствора были изучены в предыдущих исследованиях.

2.1. Пуццолановая активность CBP

В нескольких исследованиях [20, 21] было установлено, что CBP является пуццолановым материалом.Его пуццолановая активность является результатом преобразования кристаллических структур силикатов глины в аморфные соединения при производстве кирпичей, где глина подвергается воздействию высоких температур от 600 ° C до 1000 ° C. Пуццолановая активность CBP может быть подтверждена характеристиками микроструктуры. Как показано на Рисунке 2, зерно CBP имеет полуовальную форму и полугладкую поверхность, и оно содержит морфологически неправильные частицы, которые в основном представляют собой кварц и полевой шпат, компоненты, необходимые для пуццолановой активности.


Как правило, обожженная глина не может проявлять пуццолановую активность. Глина содержит большое количество кварца и полевого шпата, которые являются кристаллическими минералами и не производят активных веществ. Поэтому глину нельзя считать пуццоланом. Однако, если глина подвергается воздействию температуры 600–1000 ° C, кристаллическая структура силиката часто превращается в аморфное соединение, реагирующее с известью при комнатной температуре [22]. Оценка пуццолановой активности обычно основана на индексе силовой активности, установленном ASTM C618, который ограничивает сумму оксидов кремния, железа и алюминия для пуццоланов не менее 70% [23].Множество исследований показали, что эти оксиды CBP превышают 70% и обладают высокой пуццолановой активностью [20, 21, 23–40]. Как показано в таблице 1, сумма оксида кремния, железа и алюминия в CBP превышает 70%, что доказывает, что CBP обладает высокой пуццолановой активностью; эти компоненты будут способствовать образованию C-S-H (гидратов силиката кальция) или C-A-H (гидратов алюмината кальция) и, таким образом, повлияют на характеристики раствора и бетона.

9025 3 CaO 9031 — — 9011 9011 0,07

Химический состав (%) Каталожный номер
SiO 2 Al 2 O 3 SO 3 MgO Na 2 O K 2 O TiO 2 MnO P 3 2 9013 907 9011 9011
41.47 39,05 12,73 0,63 1,59 2,81 1,03 [20]
1,59 2,81 1,03 [21]
54,2 15,4 7,6 7,6 2,5 [23]
39,55 15,71 14,05 12,88 14,05 12,88 14,05 12,88 [24]
63,89 25,49 7,73 0,29 0,04 [25]
63.89 25,49 7,73 0,29 0,04 Следы 0,95 Следы Следы [26]
2,04 2,07 0,38 2,81 0,46 0,03 0,15 [27]
58,12 15,25 3.26 15,1 2 1,87 0,38 2,84 0,41 0,03 0,18
58,34 15,14 2,82 0,49 0,04 0,17
59,12 15,19 4,81 10,15 1,33 4.28 1,39 3,07 0,4 ​​ 0,05 0,16
58,13 15,24 4,63 10,57 4,63 10,57 1,42 10,57 1,42 1,42 0,16
58,87 15,1 4,61 10,24 1,23 4,28 1,44 3,06 0.4 0,05 0,16
77,43 9,27 3,9 2,89 0,11 1,36 0,8
73,83 12,94 5,52 1,67 0,12 1,36 0,9 2,18 0,84 0,0852 9,85 4,4 2,03 0,07 1,15 0,84 2,28 0,63 0,06 1,7 0,99 1,94 0,72 0,09
65,92 20,08 9,1 0.73 0,86 0,44 0,97 1,09 [29]
49,9 16,6 6,5 6,5 4,4 0,8 0,1 0,2 [30]
57,67 14,91 5,02 9,81 1,86.2 [31]
54,83 19,05 6 9,39 2,9 1,77 0,5 0,5 [32]
69,99 10,62 4,02 8,86 0,038 1,39 1,02 2,61 0,55 68117 -79 15,23 6,28 1,79 0,127 2,02 0,26 3,71 0,85 0,07 0,07
1,2 0,27 2,17 0,84 0,1
67,58 18,94 8,084 0.948 0,13 0,719 0,246 1,884 1,06 [33]
69,26 14,17 0,26 14,17 6,3 1,34 [34]
53,8 14,1 12,1 9,2 8,9 — [35]
69.43 17,29 6,4 0,51 2,54 1,14 [36]
[36]
1,2 0,8 1,5 0,8 0,1 [37]
75,06 14,25 5,61 1,3.7 1,35 0,19 0,08 [38]
52 40 1,5 0,5 5 [39]
50,91 15,29 8,97 12,7 0,2 4,06 0,83 0,83 0,83 — 40]

Пуццолановая активность относится к способности веществ реагировать с гидроксидом кальция с образованием продуктов гидратации при обычных температурах.Значение pH насыщенного раствора гидроксида кальция составляет 12,45 при 25 ° C. Высокие концентрации ионов OH могут разорвать связи в диоксиде кремния, силикатах и ​​алюмосиликатах с образованием простых ионов [41, 42] в соответствии со следующей химической реакцией:

Образующиеся силикатные и алюминатные ионы сопровождают ионы Ca 2+ образуют CSH (гидраты силиката кальция) или CAH (гидраты алюмината кальция) [43, 44]. Поскольку скорость растворения силиката выше, чем у алюмината, а для образования алюмината кальция требуется более высокая концентрация ионов кальция, сначала на частицах пуццоланов появляются гели CSH, а затем на поверхности осаждаются гексагональные листы алюминатов кальция. гелей CSH.

Исследования показали, что пуццолановая активность CBP увеличивается с увеличением содержания в аморфной фазе. Кроме того, чем больше удельная поверхность, тем меньше частицы и выше пуццолановая активность, потому что порошок в пуццолановой реакции имеет большую реакционную поверхность [27]. Более того, CBP имел более высокую удельную поверхность, чем цемент, и проявлял высокую пуццолановую активность [20].

2.2. Механические свойства строительных растворов с отходами из глиняного кирпича

CBP можно рассматривать как многообещающий наполнитель, который снижает эффект явления большей усадки, которое, вероятно, происходит за счет более высокого измельчения пор из-за развития пуццолановой активности CBP.Несколько исследований [21, 27, 28, 45] показали, что микроструктура была более совершенной для строительных растворов с CBP. Более того, микроструктура стала более тонкой, а процент более мелких пор со временем постепенно увеличивался. CBP улучшает структуру раствора и уменьшает размер и количество пор в нем, в результате чего получается более прочная и плотная затвердевшая паста. Алиабдо и др. [23] исследовали пористую структуру образцов паст с CBP. Они обнаружили, что пуццолановая реакционная способность CBP и, возможно, регидратация негидратированных частиц цемента в прикрепленном растворе улучшила плотность матрицы и улучшила структуру пор.Структура пор исследуемых образцов пасты представлена ​​на рисунке 3, а образец, содержащий 25% CBP, имеет наименьший диаметр пор и наилучшую структуру пор. Строительный раствор с CBP имеет более высокую степень измельчения микроструктуры, что может быть связано с совместным действием фазы дополнительного армирования, образованной продуктами пуццолановой реакции CBP, и эффектом заполнения этой добавки. Кроме того, добавление CBP влияет на долю пор в строительном растворе.При частичной замене цемента на CBP доля макропор уменьшалась, а доля мезопор увеличивалась [26]. Хотя исследование продемонстрировало эффект наполнения CBP, Gonçalves et al. [26] сообщили, что плотность упаковки существенно не изменилась при замене цемента на CBP. Они пришли к выводу, что это может быть связано с подобием гранулометрического состава CBP и портландцемента, что не привело к изменению плотности упаковки. Кроме того, также возможно, что продукт пуццолановой активности CBP компенсирует потерю веса, вызванную заменой портландцемента CBP.

Кроме того, соотношение вода / цемент (в / ц) влияет на плотность раствора, содержащего CBP. При разных соотношениях воды и цемента эффект от замены цемента CBP на плотность различен. Толедо Филхо и др. [25] обнаружили, что смеси серии M1 (w / c = 0,40) дали значения пористости, которые были на 28-35% ниже, чем наблюдаемые для смесей серии M2 (w / c = 0,50).

Щелочная активация может превратить алюмосиликатные материалы в более компактные связующие. Робайо и др. [29] обнаружили, что добавление в смесь обычного портландцемента и Na 2 SiO 3 способствует растворению некоторых фаз в отходах глиняного кирпича и усиливает процессы активации щелочью, что улучшает механические свойства.Reig et al. [30] продемонстрировали, что CBP может образовывать активируемые щелочью цементные пасты и растворы с использованием NaOH и раствора силиката натрия в качестве активаторов. Прочность на сжатие раствора составляла примерно 30 МПа с соотношением масс / масс 0,45, что доказало возможность использования CBP в цементе после активации CBP раствором NaOH и силиката натрия. Кроме того, Rovnaník et al. [31] изучали CBP, активированный щелочью, и обнаружили, что образцы демонстрируют менее компактную структуру с большим количеством пор, расположенных между зернами с острыми краями, а геополимеры, содержащие CBP, активированный щелочью, демонстрируют более низкую прочность на изгиб и сжатие.

В некоторых предыдущих исследованиях сообщалось, что использование CBP в качестве добавки к цементу улучшило прочность раствора на сжатие. Пуццолановая активность этих CBP может способствовать более высокой начальной и конечной прочности содержащих их растворов. Химический состав CBP также объясняет механизм этого явления, заключающийся в том, что присутствие CBP обеспечивает продолжение набора прочности строительных растворов до 90-го дня, так как CBP активировал гидратации соединений на основе кремнезема в цементных пастах. С увеличением процента добавок прочность на сжатие увеличивается [24].Прочность раствора на сжатие также увеличивается с возрастом и крупностью CBP. Чем мельче размер частиц CBP, тем плотнее микроструктура матрицы пасты и тем выше прочность паст на сжатие [25, 32]. Кроме того, высокая температура отверждения может эффективно улучшить гидратационную активность CBP [33]. О’Фаррелл и др. [32] подтвердили важную связь между прочностью на сжатие и пороговым радиусом раствора. Для пороговых радиусов до 0,1 мкм м прочность на сжатие не была очень чувствительна к пороговому радиусу и имела лишь небольшое увеличение при значительном уменьшении порогового радиуса.Однако, когда пороговый радиус уменьшился ниже 0,1 мкм м, прочность значительно увеличилась при небольшом уменьшении порогового радиуса. Он показал, что прочность на сжатие увеличивается с увеличением тонкости пор и уменьшением объема пор, а также показал влияние этого дополнительного геля C-S-H на развитие прочности на сжатие.

Кроме того, коэффициент замещения CBP значительно влияет на прочность раствора. Ортега и др. [21] показали, что эффект пуццолановой активности был более выраженным для строительных смесей с 10% CBP по сравнению с растворами с 20% этой добавки.Это может быть связано с тем, что первые содержат больше клинкера; следовательно, при тех же сроках твердения ожидалось, что большое количество портандита было образовано для образцов с 10% CBP по сравнению с образцами с 20%. Между тем, в исследовании Liu et al. [33], коэффициент замещения, обозначенный изменением интенсивности, не должен превышать 15%. Более того, замена больших количеств CBP значительно снизит прочность раствора на сжатие; когда коэффициент замещения достигнет 25%, прочность раствора снизится на 25.2% [23]. Это может быть связано со следующим: пуццолановая активность частично продуцирует метастабильный C-A-H; метастабильный C-A-H может превращаться в стабильный гидрогранат с переменным составом при более высоких температурах или с более длительным временем отверждения [30], а гидрогранат приводит к уменьшению объема, плотности и прочности строительных растворов [46].

Хотя замена CBP в строительном растворе привела к снижению прочности на сжатие, исследования Ortega et al. [21] подтвердили, что добавление CBP не снижает прочность строительных смесей на сжатие, что соответствует требованиям соответствующих стандартов.Он показал положительный эффект пуццолановой активности и заполняющего эффекта CBP на характеристики строительных смесей. Прочность на сжатие всех изученных растворов увеличивалась с возрастом твердения, а значение для образцов BP10 (10% кирпичного порошка) было немного выше, чем для образцов CEM I (коммерческий обычный портландцемент) через 400 дней. Кроме того, прочность на изгиб была немного выше для строительных растворов с CBP по сравнению с CEM I в течение 400-дневного периода. Точно так же Букур и Бенмалек [34] обнаружили, что наполнители CBP вызывают лишь небольшое снижение прочности на изгиб и сжатие с уровнем (2.5%, 5,0%, 7,5% и 10%). Жесткость замененной части природного песка могла бы компенсировать пуццолановую активность, обеспечиваемую мелкой частью наполнителя CBP. Более того, Толедо Филхо и др. [25] обнаружили, что добавление CBP почти не влияло на прочность на сжатие и модуль упругости до 20% замены цемента. Однако при высоком соотношении вода / цемент прочность и модуль упругости раствора будут уменьшаться с увеличением CBP.

Сообщалось об исследованиях отходов глиняного кирпича как мелкозернистого заполнителя в строительном растворе.Bektas et al. [47] показали, что высокая водопоглощающая способность глиняного кирпича существенно влияет на текучесть раствора. Однако даже 30% кирпичной смеси продемонстрировали достаточную удобоукладываемость и хорошее уплотнение при заданных пропорциях смеси. Это подтвердило, что заполнители кирпича не снижали прочность раствора с использованными уровнями. Более того, Mobili et al. [48] ​​обнаружили, что строительный раствор с РБК показал наибольшее количество воды, абсорбированной за счет капиллярного действия.

2.3. Прочность растворов с отходами из глиняного кирпича

Прочность — важное свойство строительного раствора. Капиллярное поглощение воды необходимо для определения долговечности строительных материалов. Некоторые данные о добавлении CBP показали, что CBP с низкой степенью замещения (менее 20%) может затруднить проникновение воды в растворы, содержащие CBP [25, 26]. Такое поведение может быть связано с более мелкими пористыми структурами, которые снижают проникновение воды. Добавление CBP улучшило сульфатостойкость цементного раствора.Подходящая замена для обеспечения высокой сульфатостойкости составляет примерно 15% [35, 48, 49]. Кроме того, использование CBP значительно снизило скорость проникновения ионов хлора, что является типичной причиной коррозии стали в строительных растворах; механизм, который может объяснить это явление, заключается в том, что CBP способствует образованию дополнительных гидратов, которые могут снижать проницаемость и увеличивать уплотнение материалов, что значительно затрудняет проникновение хлорид-ионов [21, 25, 26, 45, 50].Кроме того, Aliabdo et al. [23] обнаружили, что введение CBP снижает потерю массы строительного раствора при высоких температурах. Контрольные образцы (без CBP) имели самую высокую потерю веса, связанную с дегидратацией C-S-H и содержанием эттрингита и гидроксида кальция, в то время как пуццолановая реакционная способность строительного раствора с CBP потребляла гораздо больше этих веществ, что приводило к меньшей потере веса; можно сделать вывод, что замена цемента на CBP может привести к более высокой огнестойкости раствора.

Что касается мелких заполнителей глиняного кирпича в растворах, Bektas et al. [47] изучали процесс замораживания-оттаивания раствора с мелкими заполнителями кирпича; они пришли к выводу, что использование мелкозернистого кирпича снижает расширение раствора при замерзании-оттаивании. Поскольку агрегаты содержали больше пузырьков воздуха, предотвращающих растрескивание, связанное с замораживанием-оттаиванием, давление, вызванное образованием льда и потоком воды, было уменьшено, и пути потока воды были отрезаны; Другими словами, плотно распределенная структура воздушных пустот давала место для расширительных механизмов.

Что касается усадки при высыхании, Bektas et al. [47] сообщили о снижении усадки при высыхании после включения 20% переработанного кирпича в качестве мелкого заполнителя. Это было связано с тем, что дополнительная вода, накопленная в заполнителе кирпича, поддерживала достаточное количество влаги во время гидратации. Кроме того, они наблюдали влияние кирпичных заполнителей на расширение раствора, погруженного в раствор NaOH и воду. Поскольку заполнители кирпича содержат большое количество кремнезема, возможное образование ASR может увеличить расширение и последующее растрескивание.Точно так же Бекташ [51] исследовал чувствительность тонких RBA к ASR и пришел к выводу, что ASR происходит в виде продукта реакции брусков строительного раствора, а скорость расширения раствора пропорциональна содержанию CBP.

3. Отходы глиняного кирпича, используемые в бетоне

Чтобы сократить потери ресурсов, переработанный глиняный кирпич рассматривался как заменитель заполнителя в бетоне. Изучены физические свойства РБА. Поскольку дизайн микса является ключевым в RBAC, он также был изучен. Кроме того, некоторые исследователи изучили механические свойства и долговечность RBAC.

3.1. Физические свойства RBA

Кирпичный заполнитель имеет более высокую пористость и абсорбцию, чем природный заполнитель. Плотность RBAC уменьшается с увеличением содержания кирпича [52–54]. Кажущаяся плотность и насыпная плотность переработанного глиняного кирпича как заполнителей ниже, чем у природных заполнителей, а скорость водопоглощения и коэффициент измельчения выше, чем у природных заполнителей [36, 48, 55]. Поскольку частицы РБА имели угловую форму, они хорошо сцеплялись с цементом [52].Прочность RBA больше влияет на прочность бетона. Чем выше сила RBA, тем выше сила RBAC [54, 56, 57]. Микроскопические изображения поверхности среза бетона с натуральными заполнителями и заполнителями кирпича показаны на рис. 4. При визуальном наблюдении поверхности бетона по сравнению с натуральными заполнителями видно, что заполнители кирпича имели больше пор в своей структуре [36].

3.2. Конструкция смесителя RBAC

Из-за пористой природы RBA, изменение водопотребления и корректировка соотношения вода / цемент следует учитывать при проектировании смесителя [52, 58].Пористые РБА могут потреблять воду для смешивания бетона, что влияет на удобоукладываемость бетона. Следовательно, рекомендуется предварительное смачивание кирпичных заполнителей, чтобы избежать этой проблемы [23]. Кроме того, перед смешиванием РБА должны быть в состоянии насыщения и сухости поверхности, потому что дополнительная вода может повлиять на обрабатываемость РБАК [52]. Адамсон и др. [36] изучали удобоукладываемость бетона с RBA; они обнаружили, что удобоукладываемость бетона увеличивалась с увеличением количества грубых заполнителей, когда соотношение вода / цемент оставалось постоянным.Это может быть связано с более высокой пористостью кирпича, который может удерживать больше воды и, следовательно, улучшать удобоукладываемость бетона.

Характеристики RBAC зависят от соотношения вода / цемент, песчанистости и среднего размера частиц кирпича [36, 59–62]. Более того, уровень замещения RBA существенно повлиял на свойства RBAC [59]. Крупные заполнители с плоской градацией могут давать более однородный размер частиц заполнителя, что может быть полезно для характеристик бетона [36, 60]. Механические свойства RBAC значительно ухудшились с увеличением индекса измельчения переработанных заполнителей; тем не менее, влияние увеличения индекса дробления на коэффициент проницаемости и общий коэффициент пустотности RBAC можно игнорировать [61].Некоторые исследователи изучали структуру смеси RBAC, используя разные методы. Ge et al. [62] применили метод ортогонального проектирования и получили оптимальную бетонную смесь с точки зрения прочности на сжатие, прочности на изгиб и модуля статической упругости. Как и в случае с обычным бетоном, соотношение вода / цемент было наиболее значимым фактором, влияющим на механические свойства бетона, содержащего CBP. Шипош и др. [59] использовали моделирование нейронной сети для изучения дизайна смеси RBAC; они обнаружили, что на прочность на сжатие может значительно влиять размер заполнителя (мелкий или крупный): значение прочности на сжатие мелких заполнителей было ниже, чем у крупных заполнителей.

РБА из разных источников обладают разными свойствами; следовательно, оптимальный коэффициент замены RBA зависит от силы RBA и не может быть унифицирован. Zhang и Zong [58] предположили, что 30% было подходящим уровнем замещения грубых заполнителей. Кахим [63] показал, что дробленый кирпич можно заменить натуральными заменителями заполнителя на величину до 15% без снижения прочности. Когда коэффициент замены RBA составляет 30%, свойства бетона будут снижены (до 20%, в зависимости от типа кирпича).

Поскольку RBA продемонстрировал более низкую прочность, некоторые методы были использованы для повышения прочности RBAC при проектировании смеси. Добавление добавок может улучшить некоторые свойства образцов [64]. Использование воздухововлекающей добавки и суперпластификатора позволяет улучшить удобоукладываемость при перемешивании [52, 60]. Характеристики бетона можно частично улучшить за счет соответствующего количества CBP [45, 62]. Увеличение прочности могло быть связано с увеличением содержания SiO 2 , которое благоприятно влияло на образование гелей CSH в результате пуццолановых реакций [23, 32, 34, 65].Кроме того, смешанное использование CBP и RBA может дать лучшие характеристики RBAC [48, 59], вероятно, потому, что мелкие частицы RBA образуют компактную и плотную ITZ строительного раствора и заполняют поры RBAC. Manzur et al. [66] обнаружили, что восприимчивость бетона к коррозии увеличивается с увеличением водоцементного отношения; кроме того, бетонная смесь с более высокой прочностью на сжатие была полезной для устойчивости бетона к коррозии, потому что это означало, что бетон будет иметь большую плотность и более низкую проницаемость, что приведет к проникновению меньшего количества ионов хлора.Кроме того, волокно может эффективно препятствовать развитию трещин и улучшать ударную вязкость и деформационную способность бетона [64].

3.3. Механические свойства RBAC

Пористость RBA увеличивает пористость бетона, что может увеличить водопоглощение и снизить прочностные свойства бетона [35]. Увеличение водопоглощения кирпичных заполнителей приводит к увеличению водопроницаемости бетона. Более того, коэффициент водопроницаемости RBAC и прочность на сжатие RBA имеют линейную зависимость.Водопроницаемость RBAC уменьшалась по мере увеличения прочности на сжатие RBA [54, 67]. Алиабдо и др. [23] изучили взаимосвязь между прочностью на сжатие и пористостью и обнаружили, что повышенная пористость имеет решающее значение для снижения прочности бетона.

Кроме того, механические свойства RBAC и максимальный размер заполнителя (MAS) были коррелированы. Уддин и др. [68] сообщили о влиянии MAS на RBAC. Они показали, что влияние содержания цемента на прочность на сжатие было более значительным, когда крупнозернистый заполнитель MAS был меньше.Mohammed и Mahmood [69] сообщили, что скорость ультразвукового импульса (UPV) увеличивается с максимальным размером агрегата. Поскольку прочность на сжатие и модуль Юнга RBAC изменяются вместе с UPV, максимальный размер заполнителя, прочность на сжатие и модуль Юнга могут быть коррелированы.

Кроме того, RBAC обладает некоторыми свойствами, аналогичными обычному бетону. Мартинес-Лаге и др. [70] сообщили, что коэффициент Пуассона для бетона не зависел существенно от уровня замещения крупного заполнителя, и значения экспериментальной группы были равны 0.14–0.20. Кроме того, исследования показали, что чем выше плотность RBA, тем выше сила RBAC [37, 45, 71].

Поскольку прочность является основным элементом конструкции, некоторые исследователи изучили механические свойства RBAC. Khalaf [52] и Zong et al. [53] обнаружили, что прочность на сжатие и изгиб RBAC снижается при использовании RBA. Чем выше коэффициент замены RBA, тем больше потеря прочности. Снижение прочности на сжатие составило 44% для RBAC, приготовленного с 50% RBA, через 28 дней.Этот вывод подтверждается наблюдениями Nepomuceno et al. [72] и Heikal et al. [38]. Они показали, что прочность бетона на изгиб и сжатие снижается по мере увеличения уровня замены кирпича. Граница раздела между строительным раствором и заполнителями показана на рисунке 5. Как показано, RBAC содержал микротрещины в ITZ, и несколько внутренних пустот появились в RBA. Это могло способствовать тому, что прочность на сжатие RBAC была ниже, чем у обычного бетона [60].


Хотя некоторые исследования показали снижение прочности RBAC на сжатие, Adamson et al.[36] сообщили, что средняя прочность цилиндров, содержащих RBA, была немного выше, чем у контрольной смеси, а прочность увеличивалась с увеличением содержания кирпича. Они предположили, что это может быть связано с относительно низкой прочностью природных заполнителей по сравнению с прочностью RBA, использованных в эксперименте. Кроме того, шероховатость поверхности и угловая форма RBA способствовали образованию хорошей связи между агрегатами, тем самым увеличивая прочность на разрыв геополимера при расщеплении [37].Уддин и др. [68] показали, что прочность бетона на растяжение при раскалывании уменьшается с увеличением максимального размера заполнителя, независимо от изменения отношения песка к общему объему заполнителя (s / a) и содержания цемента. Однако результаты показали, что прочность бетона на сжатие увеличивается с увеличением максимального размера заполнителя только при определенных условиях. Напротив, некоторые исследования показали, что размер частиц CBP не оказывает значительного влияния на прочность на изгиб RBAC [39, 45, 58, 62].

Из-за высокой пористости RBA модуль упругости RBAC ниже, чем у обычного бетона [45, 48, 58, 70]. Дебиб и Кенай [19] обнаружили, что модуль упругости снижается на 30%, 40% и 50% для грубого, мелкозернистого, а также для крупнозернистого и мелкозернистого кирпичного бетона, соответственно. Кроме того, Zhang и Zong [58] и Aliabdo et al. [23] пришли к выводу, что присутствие RBA снижает модуль упругости и прочность на разрыв при расщеплении бетона. Однако Disfani et al.[73] показали, что модуль упругости при разрыве и модуль упругости при изгибе для всех смесей, стабилизированных цементом, были удовлетворительными и соответствовали требованиям дорожных властей для применения в качестве основания дорожного покрытия.

Дополнительно была изучена реакционная способность РБА со щелочами. Бекташ [51] подтвердил, что RBA проявляют щелочную реактивность, а образование геля ASR было подтверждено визуальными наблюдениями и исследованиями под микроскопом. Полоса эттрингита, образованная вокруг частиц известняка, наблюдалась под микроскопом.Rovnaník et al. [31] показали, что высокощелочные бетонные смеси с заполнителем из кирпича продемонстрировали более высокое расширение по сравнению с контрольной смесью.

Что касается усадки при высыхании, несколько исследователей обнаружили более высокую деформацию усадки в бетоне, содержащем переработанный глиняный кирпич с мелкими и крупными заполнителями [19, 74]. Это могло быть связано с более низким сдерживающим эффектом кирпичных заполнителей по сравнению с естественными заполнителями. Дебиб и Кенай [19] отметили, что скорость ранней усадки повторно используемого кирпичного мелкозернистого бетона была в шесть раз выше, чем у обычного бетона.Кроме того, были опубликованы некоторые данные о факторах, влияющих на усадку при высыхании. Хатиб [74] сообщил, что уровень замены заполнителя из переработанного мелкого кирпича до 100% показал только 10% усадку, то есть даже высокий уровень замены не привел к снижению прочности. Из-за эффекта внутреннего отверждения и разбавления CBP замена цемента на CBP может значительно уменьшить автогенную усадку бетона [45].

3.4. Долговечность RBAC

При проектировании конструкций необходимо учитывать долговечность бетона.На него влияет проницаемость используемого материала. Фактически, водопроницаемость может быть увеличена почти вдвое при включении RBAC [19]. Помимо повышенной водопроницаемости, увеличение воздухопроницаемости бетона за счет использования RBA было обнаружено Zong et al. [53]. Это было связано с более пористыми характеристиками RBA.

Хотя водопроницаемость отрицательно сказывается на устойчивости бетона к замерзанию и оттаиванию [40], Adamson et al. [36] обнаружили, что ни один образец не разрушился в течение 300 циклов испытаний на замораживание-оттаивание.С увеличением частоты замены РБА морозостойкость бетона улучшалась [45, 75]. Кроме того, RBAC, полученный с RBA, показал более низкую устойчивость к карбонизации и более высокую водопроницаемость [53, 58, 76]. Напротив, Гу [77] обнаружил, что замена заполнителя кирпича не оказывает значительного отрицательного влияния на глубину карбонизации. Кроме того, согласно Adamson et al. [36], при увеличении содержания кирпича сопротивление проникновению хлоридов снижалось. Это может быть связано с более высокой пористостью и абсорбцией в заполнителях кирпича по сравнению с заполнителями из природных материалов.Тем не менее, Ge et al. [45] показали, что сопротивление бетона проникновению хлорид-ионов улучшилось. Кроме того, коррозия стали в образцах, содержащих РБА, началась раньше, чем в образцах с естественными агрегатами; наличие RBA ускоряет коррозию стальной арматуры [36, 53, 66].

Кроме того, поскольку пористость RBA непосредственно отражается на общей пористости бетона, RBAC продемонстрировал более низкую теплопроводность и лучшие огнестойкость.Wongsa et al. [37] показали, что теплопроводность и UPV RBAC увеличивались по мере увеличения плотности бетона и что теплопроводность RBAC была примерно в три раза ниже, чем у обычного бетона. Кроме того, бетон с RBA показал немного более высокую огнестойкость, чем обычный бетон [23, 57, 78]. Более того, наличие РБА для производства легкого геополимерного бетона с высоким содержанием кальция и летучей золы обеспечило отличную теплоизоляцию и хорошую плотность [37, 79].

4.Конструктивные характеристики RBAC

Продукция RBA, используемая в конструкции, является нашей первоочередной задачей. Следовательно, необходимы исследования структурных характеристик RBAC. Из-за низкой плотности кирпичных заполнителей блок с РБА был намного легче и позволял снизить вес конструкции. Изучены механические свойства балок и колонн RBAC.

4.1. RBAC Masonry Units

Были проведены исследования по бетонным каменным блокам. Использование RBA в качестве альтернативы агрегатам может снизить вес агрегатов.Результаты испытаний Aliabdo et al. [23] показали, что полная замена мелких и крупных агрегатов на RBA снижает прочность агрегатов на сжатие. Сухой вес бетонных блоков снизился примерно на 25%. Водопоглощение бетонных блоков кладки увеличивалось с увеличением содержания РБА. С увеличением RBA термическое сопротивление кирпичных бетонных блоков значительно улучшилось. Таким образом, модифицированные бетонные блоки для кладки обладают лучшими теплофизическими свойствами по сравнению с натуральными заполнителями.Они предложили, чтобы уровень замещения грубых заполнителей не превышал 50%; в противном случае это привело бы к значительному снижению прочности на сжатие. Поскольку 20% летучей золы использовалось для замены цемента и 3% пузырьков было добавлено в бетон из возобновляемого кирпичного заполнителя, прочность образцов на сжатие достигла 19,4 МПа, что позволило удовлетворить требования к несущим блокам; кроме того, теплопроводность была ниже, чем у обычного бетона [80]. Изучали блок MU5 RBA; размер образца составлял 390 мм × 190 мм × 190 мм, с долей пор 57%.Результаты показали, что средняя прочность на сжатие блока MU5 RBA была на 6% ∼12% ниже, чем расчетное значение по стандартной китайской формуле. Кроме того, средняя прочность на изгиб блока MU5 RBA составляла 1,15 МПа, что соответствовало требованиям к исследуемому материалу. Этот блок можно использовать на практике [81]. Жан [82] сообщил, что блок, содержащий РБА, имел более высокую водостойкость, карбонизацию и морозостойкость.

Кроме того, пустые глиняные кирпичи использовались непосредственно в половинном или полном масштабе для строительства стен.Было изучено влияние накипи на прочность кладки при сжатии, модуль Юнга, модуль сдвига и диагональное сопротивление растяжению на основе испытаний компонентов и материалов в двух масштабах. Результаты показали, что на разрушение стенок при сдвиге влияли прочность на диагональное растяжение, осевая нагрузка и свойства материала (коэффициент трения и сцепления), а разрушение образцов при изгибе контролировалось соотношением формы и осевой нагрузки [71 ].

4.2. Колонна и балка RBAC

Были изучены характеристики колонн и балок, содержащих RBA.Wang et al. [83] изучали сейсмические характеристики колонн с RBA. Использовались четыре колонки; они продемонстрировали натуральные заполнители, переработанный бетон, RBA, а также порошок волокна и кремния, добавленные в RBA, соответственно. Они обнаружили, что сейсмостойкость трех колонн из переработанного бетона снизилась по сравнению с обычной бетонной колонной. Однако добавление порошка диоксида кремния и волокна улучшило модуль упругости и пластичность. Лю и др. [84] показали, что использование стальных труб улучшает несущую способность колонн.Ji et al. [85] и Wang et al. [86] наблюдали свойства изгиба и сдвига балок RBA; они сообщили, что образцы демонстрировали аналогичную форму повреждений по сравнению с обычным бетоном, и что арматурный стальной стержень и бетон были хорошо связаны. Кроме того, были изучены квадратные простые бетонные колонны с FRP с RBA, и RBAC показал более низкую жесткость, чем обычный бетон; кроме того, ограниченные колонны RBAC показали более высокие предельные нагрузки и осевые деформации, что указывает на их более высокую пластичность [87–89].

5. Выводы

Потенциальное использование пустого глиняного кирпича в качестве связующего и заменителя заполнителя в растворах и бетоне было обобщено в этой статье. Пуццолановая активность CBP позволила CBP частично заменить цемент для производства раствора. RBA можно было использовать для производства RBAC, даже если механические свойства RBAC были хуже, чем у обычного бетона. Добавление RBA в некоторых случаях повысило надежность RBAC. Кроме того, RBAC может снизить транспортные расходы и собственные нагрузки, и его можно использовать для производства блоков, балок и колонн.

Было показано, что полная замена природных заполнителей РБА возможна; это может снизить потребление природных ресурсов и стимулировать повторное использование строительных отходов. Поскольку структурные характеристики RBAC важны для строительной инженерии, применение RBAC в конструкциях может быть усилено.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *