Расчет толщины стены по теплопроводности калькулятор: КАЛЬКУЛЯТОР ТЕПЛОПОТЕРЬ СТЕН ДОМА. РАСЧЁТ ТОЛЩИНЫ СТЕН ДЛЯ РАЗЛИЧНЫХ РЕГИОНОВ

Калькулятор расчета толщины стен онлайн

Данный калькулятор позволяет рассчитать ориентировочную толщину стен будущего дома. Для этого необходимо выбрать регион, где будет располагаться строение, температуру и материал, из которого будут изготовлены стены.

Онлайн калькулятор расчета толщины стен дома основан на СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».

Район проживания:
Майкоп
АлейскБарнаулБеляБийскЗмеиного рскКатандаКош-АгачОнгудайРодиноРубцовскСлавгородТогул
АрхараБелогорскБлаговещенскБомнакБратолюбовкаВыссаГошДамбукиЕрофей ПавловичЗавитинскЗеяНорский складОрогонПоярковоСвободныйСковородиноСредняя НожкаТыган-УрканТындаУнахаУсть-НожкаЧерняевоШимановскЭкиман
АрхангельскБорковскаяЕмецкКой насМезеньОнега
АстраханьВерхний Баскунчак
БелорецкДуванМелеузУфаЯнаул
Белгород
Брянск
БабушкинБаргузинБагдаринКяхтаМондыНижнеангарскСосново-ОзерскоеУкаитУлан-УдэХоринск
ВладимирМуром
ВолгоградКотельниковоЭльтон
ВологдаВытеграНикольскТотьма
Воронеж
ДербентМахачкала
ИвановоКинешма
АлыгджерБодайбоБратскВерхняя ГутараДубровскоеЕрбогаченЖигаловоЗимаИкаИлимскИркутскИчераКиренскМамаМарковоНаканноНевонНепаОрлингаПеревозПреображенкаСлюдянкаТайшетТулунУсть-Ордынский — Бурятский АО
Нальчик
Калининград
Элиста
Калуга
Апука — Корякский ДОИча — Корякский АОКлючиКозыревскКорф — Корякский АОЛопатка, мысМильковоНачикио. БерингаОссора — Корякский АОПетропавловск-КамчатскийСемлячикиСоболевоКронокиУкаОктябрьскаяУсть-Воямполка — Корякский АОУсть-КамчатскУсть-Хайрюзово
Черкесск
КемьЛоухиОлонецПанадыПетрозаводскРеболы
КемеровоКиселевскКондомаМариинскТайгаТисульТопкиУстъ-Кабырза
ВяткаНагорскоеСовали
ВендингаВоркутаОбъячевоПетруньПечораСыктывкарТроицко-ПечорскУсть-УсаУсть-ЦильмаУсть-ЩугорУхта
КостромаЧухломаШарья
КраснодарСочиТихорецк
АгатаАчинскБайкит — Эвенкийский АОБоготолБогучаныВанавара — Эвенкийский АОВельмоВерхнеимбатскВолочанкаДиксон — Таймырский АОДудинка — Таймырский АОЕнисейскЕссей — Эвенкийский АОИгаркаКанскКежмаКлючиКрасноярскМинусинскТаимбаТроицкоеТура — Эвенкийский АОТуруханскХатанга — Таймырский АОЧелюскин, мыс — Таймырский АОЯрцево
Ай-ПетриКлепининоСимферопольФеодосияЯлта
Курган
Курск
Липецк
СвирицаТихвинСанкт-Петербург
АркагалаБроховоМагаданОмсукчанПалаткаСреднеканСусуман
Йошкар-Ола
Саранск
ДмитровКашираМосква
Вайда-ГубаКандалакшаКовдорКраснощельеЛовозероМончегорскМурманскНиванкюльПулозероПялицаТериберкаТерско-ОрловскийУмбаЮкспор
АрзамасВыксаНижний Новгород
Новгород
БарабинскБолотноеКарасукКочкиКупиноКыштовкаНовосибирскТатарскЧулым
Исиль-КульОмскТараЧерлак
Оренбург
Оренбург
ЗеметчиноПенза
БисерПермь
АнучиноАстраханкаБогопольВладивостокДальнереченскМельничноеПартизанскПосьетПреображениеРудная ПристаньЧугуевка
Великие ЛукиПсков
МиллеровоРостов-на-ДонуТаганрог
Рязань
Самара
ВерхотурьеЕкатеринбургИвдель
Саратов
Александровск-СахалинскийДолинскКировскоеКорсаковКурильскМакаровНевельскНогликиОхаПогибиПоронайскРыбновскХолмскЮжно-КурильскЮжно-Сахалинск
Владикавказ
ВязьмаСмоленск
АрзгирСтаврополь
Тамбов
БугульмаЕлабугаКазань
БежецкТверьРжев
АлександровскоеКолпашевоСредний ВасюганТомскУсть-Озерное
Кызыл
Тула
Березово — Ханты-Мансийский АОДемьянскоеКондинское — Ханты-Мансийский АОЛеушиМарресаляНадымОктябрьскоеСалехардСосьваСургут — Ханты-Мансийский АОТарко-Сале — Ямало-Ненецкий АОТобольскТюменьУгутУренгой — Ямало-Ненецкий АОХанты-Мансийск — Ханты-Мансийский АО
ГлазовИжевскСарапул
СурскоеУльяновск
АянБайдуковБикинБираБиробиджанВяземскийГвасюгиГроссевичиДе-КастриДжаорэЕкатерино-НикольскоеКомсомольск-на-АмуреНижнетамбовскоеНиколаевск-на-АмуреОблучьеОхотскИм.Полины ОсипенкоСизиманСоветская ГаваньСофийский ПриискСредний УргалТроицкоеХабаровскЧумиканЭнкэн
АбаканШира
Челябинск
Грозный
АгинскоеАкшаАлександровский ЗаводБорзяДарасунКалаканКрасный ЧикойМогочаНерчинскНерчинский ЗаводСредний КаларТунгокоченТупикЧараЧита
ПорецкоеЧебоксары
АнадырьМарковоОстровноеУсть-ОлойЭньмувеем
АлданАллах-ЮньАмгаБатамайБердигястяхБуягаВерхоянскВилюйскВитимВоронцовоДжалиндаДжарджанДжикимдаДружинаЕкючюЖиганскЗырянкаИситьИэмаКрест-ХальджайКюсюрЛенскНагорныйНераНюрбаНюяОймяконОлекминскОленекОхотский ПеревозСангарСаскылахСреднеколымскСунтарСуханаСюльдюкарСюрен-КюельТокоТоммотТомпоТуой-ХаяТяняУсть-МаяУсть-МильУсть-МомаЧульманЧурапчаШелагонцыЭйикЯкутск
ВарандейИндигаКанин НосКоткиноНарьян-МарХодоварихаХоседа-Хард
Ярославль

Комфортная температура в доме:


Материал стен:


ЖелезобетонБетон на гравии или щебне из природного камняКерамзитобетонГазо- и пенобетон, газо- и пеносиликат

Глиняный обыкновенный на цементно-песчаном раствореСиликатный на цементно-песчаном раствореКерамический пустотный на цементно-песчаном растворе
Сосна и ельДуб
Маты минераловатные прошивныеПлиты из стеклянного штапельного волокна
Медь (для сравнения)Стекло оконное

HEBEL D400HEBEL D500YTONG D400H+H D400H+H D500H+H D600КЗСМ D400КЗСМ D500КЗСМ D600EuroBlok D400EuroBlok D500EuroBlok D600ЭКО D400ЭКО D500ЭКО D600Bonolit D300Bonolit D400Bonolit D500Bonolit D600AeroStone D400AeroStone D500AeroStone D600AeroStone D700AeroStone D800ГРАС D400ГРАС D500ГРАС D600
BRAER Ceramic Thermo 14,3 NFBRAER Ceramic Thermo 12,4 NF BRAER BLOCK 44BRAER Ceramic Thermo 10,7 NFBRAER Ceramic Thermo 10,7 NF тип 2 BRAER BLOCK 25Porotherm 8Porotherm 12Porotherm 25Porotherm 38Porotherm 44Porotherm 51Porotherm 51 Premium
ISOVER ОптималROCKWOOL ЛАЙТ БАТТСROCKWOOL КАВИТИ БАТТСROCKWOOL РОКФАСАДKNAUF Insulation Термо Плита 037KNAUF Insulation Фасад Термо Плита 034KNAUF Insulation Фасад Термо Плита 032
ISOVER Классик Плюс


Рассчитать

Калькулятор теплопотерь стен дома. Расчет толщины стен для различных регионов.


Листовой металл выпускается в виде широких полос и листов методом прокатки или ковки (реже). Последовательная обработка производится раскроем (лазерным, механическим или плазменным), гибкой, пробивкой. В некоторых случаях используется сочетание нескольких методов металлообработки. Механический раскрой делается на гильотине и ножницах, гибка и пробивка — с применением пресса.

Приложение А (справочное). Характеристика методов определения толщины покрытия

Приложение А (справочное)

Таблица А.1 — Определение толщины высушенного покрытия

Принцип Метод Окраши- ваемая поверх- ность Область применения Стандарт Точность/ прецизионность
Механический 4А — измерение толщины микрометром/ индикатором с круговой шкалой nd/d с l ASTM D 1005, DIN 50933 Механический: нижний предел — 5 мкм.

Электронный: нижний предел — 3 мкм

Магнитный 7А — метод отрыва магнита nd с l/p/f ISO 2178 Систематическая погрешность — ±5 мкм.

Воспроизводимость — ±6%

7В — метод магнитной индукции nd с l/p/f ISO 2178 Систематическая погрешность — ±2 мкм.

Воспроизводимость — ±3%

7D — метод вихревых токов nd с l/p/f ISO 2360 Систематическая погрешность — ±2 мкм.

Воспроизводимость — ±3%

,/ — любой ферромагнитный металл/неферромагнитный металл.
d — разрушающий;

nd — неразрушающий

c — контактный;

l/p/f — применим в лаборатораторных, производственный и полевых условиях.
Типичные международные (национальные стандарты), в которых описаны данные методы.
Данные точности и прецизионности для этих методов имеются у производителей приборов и могут быть проверены с помощью поверочных эталонов. Приведенные цифры основаны на эмпирических значениях, которые указаны производителем приборов и получены пользователем. Возможны изменения.
Зависит от методики.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт). Допустимая – минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/пМатериал стеныТеплопроводность, Вт/м·°CТолщина стены, мм
ТребуемаяДопустимая
1Газобетонный блок0,14444270
2Керамзитобетонный блок0,5517451062
3Керамический блок0,16508309
4Керамический блок (тёплый)0,12381232
5Кирпич (силикатный)0,7022211352

Вывод: из наиболее популярных строительных материалов, однородная конструкция стены возможна только из газобетонных и керамических блоков. Стена толщиной более метра, из керамзитобетона или кирпча, не представляется реальной.

Расчет многослойной конструкции

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

Показатели теплопередачи для различных материалов

Величины проводимости тепла материалами и их плотность указаны в таблице:

Показатель теплопроводностиРегион
12 м2•°С/ВтКрым
22,1 м2•°С/ВтСочи
32,75 м2•°С/ВтРостов—на—Дону
43,14 м2•°С/ВтМосква
53,18 м2•°С/ВтСанкт—Петербург
МатериалВеличина теплопроводностиПлотность
Бетонные
1,28—1,51
2300—2400
Древесина дуба0,23—0,1700
Хвойная древесина0,10—0,18500
Железобетонные плиты1,692500
Кирпич с пустотами керамический0,41—0,351200—1600

Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

Калькулятор теплопотерь стен дома. Расчет толщины стен для различных регионов.

Калькулятор расчета теплопроводности стен жилых домов разработан в строгом соответствии с СНиП П-03-79. Функционал позволяет рассчитать степень теплопроводности любой стены и сравнить его с требуемой СНИПом величиной. От Вас требуется указать предполагаемый регион строительства и выбрать материал и толщину стен.

Рассмотрим участвующие в вычислениях величины.

Статистические сведения для каждого региона определены в СНиП:

  • Темп. наружного воздуха — типичная минимальная температура наружного воздуха в зимний период.
  • Ср. темп. отопит. периода – среднесуточная температура наружного воздуха по отопительному периоду.
  • Продолжительность отопит. периода – среднестатистическая продолжительность отопительного периода в днях.
  • Условия эксплуатации в зонах влажности — зона влажности географического региона (A или B).

Используемые для расчетов константы из ГОСТ и СНиП, характеризующие внутренние жилые помещения (одинаковы для всех регионов):

Для расчетов также используются установленные характеристики для внутренних помещений.

Характеристики внутреннего помещения, используемые в вычислениях

  • Темп. внутреннего воздуха — положенная СНиПом минимальная температура внутреннего воздуха для жилых помещений.
  • Влажность внутреннего воздуха — предполагаемая влажность внутреннего воздуха помещения. При разной влажности материалы стен обладают различной теплопроводностью.
  • Коэффициент теплоотдачи внутренней поверхности – как быстро материал передает тепло вовнутрь помещения.
  • Коэффициент теплоотдачи наружной поверхности — как быстро материал передает тепло во внешнюю среду.
  • Коэффициент теплотехнической однородности – коэффициент, позволяющий оценить теплотехническую однородность стенового материала.
  • Коэффициент полож. наружной поверхности
  • Нормируемый температурный перепад

Вышеуказанный СНиП также утверждает методики расчета теплопроводности стен, будь то стена из одного материала, или стеновой пирог из нескольких компонентов. Полученный по формулам коэффициент теплопроводности должен удовлетворять требованиям из этого же СНИП, т.е. быть выше двух коэффициентов, рассчитанным по разным формулам.

Приведем ряд рекомендаций, опубликованных специалистами НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА СТРОИТЕЛЬНОЙ ФИЗИКИ (НИИСФ) ГОССТРОЯ СССР.

Рекомендации разработчиков СНиП-II-3-79 по устройству стенового пирога

Рекомендации касаются проектирования ограждающих конструкций зданий и сооружений.

Преимущество при проектировании стеновых конструкций следует отдавать многослойным наружным стенам с использованием эффективного теплоизоляционного материала Однослойные наружные стены показывают некоторую эффективность при использовании легкого бетона плотностью не выше 1000 кг/м3, ячеистого бетона плотностью менее 800 кг/м3. Также хорошо показывает себя кладка из пустотелых керамических или силикатных камней и кирпичей. Пирог многослойных стен необходимо проектировать таким образом, чтобы с теплой стороны (изнутри) располагался материал с большим коэффициентом теплопроводности, что обеспечивает более высокую температуру угла;

Если утеплитель располагается внутри, скажем, кирпичной кладки, его рациональнее располагать ближе к внешней поверхности стены. При проектировании помещений для районов с расчетной скоростью ветра в июле не менее 2 м/с допускается использовать покрытия с вентилируемой воздушной прослойкой. Оптимальная толщина вентилируемой воздушной прослойки в наружных стенах находится в пределах 0,05-0,1 а оптимальная высота — 5-6 м.

Рациональнее организовать в ограждающей конструкции несколько воздушных прослоек малой толщины, чем одну большей толщины, при этом воздушные прослойки должны располагаться ближе к наружной стороне ограждения;

Поскольку переувлажненные материалы стеновых конструкций хуже справляются со своей задачей, слои материалов следует располагать изнутри наружу в порядке увеличения паропроницаемости.

Наружные и внутренние стены следует предохранять от грунтовой влаги путем устройства гидроизоляции. Основная обязательная во всех случаях горизонтальная гидроизоляция в нижней части наружной стены или по всему верху цоколя должна быть расположена выше тротуара или отмостки здания, но ниже отметки пола первого этажа. Дополнительную горизонтальную гидроизоляцию следует предусматривать в стенах зданий с подвалами и цокольными этажами ниже уровня их пола.

Для чего нужен расчет

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

Расчет толщины утеплителя для стен

На практике все эти способы используют вместе, но с экономической точки зрения, больший приоритет имеет утепление дома, а точнее увеличение толщины утеплителя.

Как же рассчитать необходимую толщину стен и утеплителя, чтобы дом был не только крепким, но теплым.

Наш расчет будет состоять из двух основных этапов:

  1. Нахождения сопротивлением теплопередаче стен, которое необходимо для дальнейших вычислении.
  2. Подбор необходимой толщины утеплителя в зависимости от конструкции и материала стен.

В начале, предлагаем посмотреть небольшое видео, в котором эксперт подробно рассказывает для чего нужно закладывать утеплитель в наружные стены кирпичного дома и какой вид утеплителя при этом использовать.

Сопротивлением теплопередаче стен

Для нахождения этого параметра используем СП 50.13330.2012 «Тепловая защита зданий» который можно скачать на нашем сайте (ссылка).

В пункте 5 «Тепловая защита зданий» представлены несколько формул, которые помогут нам рассчитать толщину утеплителя и стен. Для того чтобы это сделать существует параметр, называемый сопротивлением теплопередаче и обозначаемый буквой R. Он зависит от необходимой температуры внутри помещения и климатических условий данного города или района.

В общем случает он рассчитывается по формуле R ТР = a х ГСОП + b.

Согласно таблице 3, значения коэффициентов a и b для стен жилых зданий равняется 0,00035 и 1,4 соответственно.

Осталось только найти величину ГСОП. Расшифровывается она как градусо-сутки отопительного периода. С этим значением придется немного повозится.

Формула для расчета ГСОП = (tВ—tОТ) х zОТ.

В данной формуле tВ — это температура, которая должна быть внутри помещения. По нормам она равняется 20-22 0 С.

Значение параметров tОТи zОТ означают среднюю температуру наружного воздуха и количество суток отопительного периода в году. Узнать их можно в СНиП 23-01-99 «Строительная климатология». (ссылка).

Если посмотрите на данный СНиП, то увидите большую таблицу в самом начале, где для каждого города или района приведены климатические параметры.

Нас будет интересовать колонка, в которой написано «Продолжительность и средняя температура воздуха периода со средней суточной температурой воздуха ≤ 8 0 С».

Пример расчета параметра R ТР

Для того, чтобы все стало более понятным, давайте рассчитаем сопротивлением теплопередаче стен (R ТР ) для дома построенного в г. Казань.

Для этого у нас есть две формулы:

R ТР = a х ГСОП + b,

Сначала рассчитаем ГСОП. Для этого ищем г. Казань в правой колонке СНиП 23-01-99.

Выполняем расчеты

Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

δ это толщина материала, используемого для строительства стены;

λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

Обыкновенный глиняный, силикатный и полнотелый кирпич

При сплошной кладке с внутренней штукатуркой

  • Для температуры воздуха 4С — толщина стен 30 см;
  • При температуре -5°С – толщина стен 25 см;
  • При температуре -10°С – 38 см;
  • При температуре -20°С – 51 см;
  • При температуре -30°С – 64 см.

Кирпичная кладка с воздушной прослойкой

  • Для температуры воздуха -20°С (-30°С) – толщина стен 42 см;
  • Для температуры воздуха -30°С (-40°С) – толщина стен 55 см;
  • Для температуры воздуха -40°С (-50°С) – толщина стен 68 см;

Сплошная кладка с плитными наружными утеплителями толщиной 5 сантиметров и внутренней штукатуркой

  • Для температуры воздуха -20°С (-30°С) – толщина стен 25 см;
  • Для температуры воздуха -30°С (-40°С) – толщина стен 38 см;
  • Для температуры воздуха -40°С (-50 °С) – 51 см;

Сплошная кладка с внутренним утеплением плитами термоизоляционными, имеющими толщину 10 сантиметров

  • Для температуры воздуха -20°С (-25°С) – толщина стен 25 см;
  • Для температуры воздуха -30°С (-35°С) – толщина стен 38 см;
  • Для температуры воздуха -40°С (-50 °С) – 51 см.

Кладка колодцевая с минеральной засыпкой с объемной массой 1400 кг/м3 и внутренней штукатуркой

  • Для температуры -10°С(-20°С) – 38 см;
  • Для температуры -25°С (-35°С) – 51 см;
  • Для температуры -35°С (-50°С) – 64 см.

калькулятор расчета толщины утеплителя (теплоизоляции) для стен

Содержание   

В процессе утепления стен минеральной ватой для утепления стен очень важно заранее рассчитать все параметры теплоизоляции. Убедиться в том, что вы все сделали правильно.

Только после расчета следует приступать непосредственно к монтажу утеплителя. Но как выполнить расчет теплоизоляции правильно и не сделать ошибку во время его осуществления?

Монтаж пенополистирольных плит на стену

Сейчас мы в этом подробно разберемся.

1 Зачем нужен расчет?

Кто-то из вас может задать закономерный вопрос, а зачем собственно рассчитывать все так дотошно?

Ведь можно просто на глаз взять, к примеру, 10 сантиметров утеплителя из пенопласта, и его наверняка хватит для полноценного утепления дома.

И действительно, при отделке тех же стен часто расчет вообще не выполняется. Но это не всегда правильно.

Если вы экономный человек и желаете расходовать свои средства правильно, то вам придется выполнить несколько простых действий.

Это необходимо для того, чтобы получить возможность использовать точное количество утеплительного материала. При этом его будет достаточно и для надежной теплоизоляции, и для размещения точки росы в правильном месте.

С теплоизоляцией все и так понятно, даже если производится утепление ангара с помощью ППУ. Если толщины утеплителя не хватит, то поверхность стен не будет защищена должным образом. Рано или поздно она промерзнет, а это значит, что температура у вас в доме упадет, и очень быстро.

Тут важно использовать формулы расчета, чтобы не прогадать с толщиной, при этом не затрачивая лишних средств на работу. Ведь лишние пару сантиметров того же пенопласта – это тоже деньги.

В особенности если вы собираетесь отделывать всю наружную поверхность стен. На таких площадях перерасход теплоизоляции может существенно отразиться на вашем кошельке.

к меню ↑

1.1 Что такое точка росы?

Второй – более неочевидный момент, заключается в необходимости смещения точки росы. Для стен, особенно наружных, важно просчитать точку росы правильно.

Точкой росы называют место отложения конденсата. Конденсат образуется из-за пара, что проходит через стену. Выходит он из помещений внутри. Это нормальный процесс. Поверхность стен постоянно подвергается воздействию пара, так как пар – это продукт жизнедеятельности человека.

Горячий, слегка увлаженный воздух довольно легко проходит через почти все конструкции. И если стена не защищена пароизоляцией, то пар будет беспрепятственно выходить наружу.

Внутреннее утепление стен минеральной ватой по каркасу

Однако выход пара может существенно затрудниться, если температура разных конструкций имеет разные показатели.

Наверняка вы видели, как на поверхности стен в сарае или на даче скапливается вода даже с утеплителем для стен снаружи. Она появляется ниоткуда и провоцирует появление на площади стен грибков, а также других подобных неприятностей.

Образуется конденсат из-за того, что неутепленные стены имеют пониженную температуру. Они промерзают, и на внешнем крае стены появляется так называемая точка росы. Положение, где температура конструкции находится на уровне примерно 10 градусов по Цельсию.

Именно в этом месте при образовании конфликта температур происходит физический процесс образования конденсата.

Если человек позаботился о монтаже утеплителя на поверхность стен, то они уже не промерзнут так, как раньше. Однако это не значит, что проблема решена. Без основательного расчета утеплитель может тоже частично промерзать. Это означает, что точка росы просто сместится на дальний край утеплителя.

Все бы ничего, да вот только большинство теплоизоляционных материалов влагу не любят, особенное ее избыточное количество. Нахождение в таких условиях может привести к различным неприятностям.

А всего этого можно избежать, если использовать калькулятор для расчета рабочей толщины теплоизоляции стен.

к меню ↑

1.2 Функции калькулятора

Выполнять расчет толщины для утепления стены можно вручную, а можно и с помощью калькулятора.

Калькулятор в привычном понимании – это специальная вычислительная машина, которая помогает проводить нам расчеты. Он часто используется даже при ручном выведении оптимальной толщины стен.

Однако в данном случае подразумевается другой калькулятор. Имеется в виду специальная программа по расчету эффективности теплоизоляции и утепления полиуретаном.

Сам по себе расчет можно изложить всего в нескольких формулах. Основные различия есть только в том, что каждый хозяин использует определенные материалы.

Так, стены могут быть выполнены из:

  • Кирпича;
  • Бетона;
  • Легких блоков;
  • Древесины и т.д.

Слой утеплителя в пустотелой стене из пеноизола

При этом каждый материал имеет свою теплопроводность и влияет на конструкции. Аналогичная ситуация проходит с утеплителем для стен. Строители часто прибегают к помощи:

То есть по сути, все что от нас требуется – заранее определить нужные значения и подставить их в формулу. Этим и занимается калькулятор. Будучи прописанной по текущим стандартам программой, он содержит в себе все необходимые для работы данные.

Вам же нужно только выбрать материал, вписать его параметры и получить ответ. У того же пенопласта теплопроводность немного отличается от минваты.

Калькулятор же примет все заданные свойства и через секунду выдаст вам результат. Причем результат будет максимально точным, ведь калькулятор не может ошибаться.

Такие программы существенно упрощают жизнь людям. Даже далекому от математических формул и строительства человеку справиться с ними будет достаточно легко.

к меню ↑

2 Процедура расчета

Использовать калькулятор – это конечно хорошо. Но не будем забывать и про личные качества. Все-таки знание и понимание процесса расчета даст нам намного больше сведений, чем бездумное забивание нескольких цифр в рабочую программку.

Да и к тому же рассчитывать утеплители очень просто. Вся процедура заключается в сравнении наличных параметров и свойств, которые необходимы для качественного утепления.

Сначала рассчитывают номинальное теплосопротивление стен. То есть те их теплоизоляционные свойства, которыми они обладают изначально.

Теплосопротивление на утепление стен минеральными плитами считают по формуле:

R=p/k, где

  • R – непосредственно теплосопротивление;
  • P – толщина слоя;
  • k – коэффициент теплопроводности.

Однако показателей сопротивления будет несколько. Ведь стена может состоять не только из одного лишь кирпича или бетона. Снаружи ее могут отделать слоем в 3-4 см штукатурки, а изнутри нанесут еще несколько сантиметров шпаклевки. Все это надо рассчитать и сложить.

В итоге вы получите общий показатель сопротивления, что есть у ваших стен на данный момент. Затем вы сравните его с номинальными показателями по температурному региону.

Схематическое изображение теплоизоляционного пирога

Для этого загляните в справочник строительных норм. Под каждый регион в нем указывается показатель теплосопротивления, при котором стена эффективно удерживает тепло внутри дома. В большинстве случаев полученный показатель будет ниже номинального, и это нормально.

При несоответствии вам нужно отнять от номинального сопротивления реальное. Полученный результат и будет тем теплосопротивлением, которое необходимо будет нивелировать с помощью использования утеплителя.

к меню ↑

2.1 Расчет утеплителя

Итак, недостающие показатели получены. Что же делать дальше? А все очень просто. Действуем по той же схеме. Теперь у нас уже есть понимание того, сколько примерно тепла нужно компенсировать.

Также у нас есть показатели теплопроводности самих утеплительных материалов. Например, у пенопласта он находится 0,035 Вт/м. Данные берутся с таблиц.

Мы перемножаем показатели друг на друга, чтобы получить примерную рабочую толщину утеплителя. Если, например, 50 мм пенопласта не хватит, чтобы полностью компенсировать потери теплосопротивления, то нужно просто увеличить эту толщину и пересчитать ее еще раз.

В конце концов, вы придете к нормальному значению, что будет вас устраивать. Прелесть выполнения расчета в том, что вы сможете подобрать практически идеальный слой утеплителя и сэкономить на этом существенные деньги.

Вместо того чтобы по стандарту утеплять стены десятисантиметровыми пенополистирольными плитами или жидкими утеплителями для стен, можно задействовать несколько формул и определить, что в вашем случае, например, хватит и 7 см пенопласта. Так зачем платить больше?

Собственно, все калькуляторы расчета утеплителя работают по этим же формулам. Просто там все данные уже забиты в ядро программы. Это касается как табличных параметров, так и формул, а также порядка их просчета.

Человеку больше не нужно искать формулы, подставлять в них значения и мучиться с расчетами. Программа перебирает все эти функции на себя, при этом выполняя работу намного быстрее. Любой расчет такой калькулятор способен выполнить почти мгновенно, что тоже большой плюс.

к меню ↑

2.2 Пример расчета теплоизоляционных конструкций (видео)

Расчет толщины стен дома | PoweredHouse

Прежде чем определиться с конструкцией стены, необходимо произвести некоторые простейшие расчеты, которые сделают картину будущих затрат на отопление более ясной.

Приобретая стеновой строительный материал, ознакомьтесь с его техническими характеристиками. Там, как правило, указан такой важный параметр, как коэффициент теплопроводности. На его основе определяется коэффициент теплового сопротивления конструкции, а также необходимая толщина стены. Толщину стены (δ) разделите на коэффициент теплопроводности материала (λ) и получите коэффициент теплового сопротивления конструкции (R): R = δ / λ.

По нормам сопротивление теплопередаче наружных стен должно быть не менее 3,2 λ Вт/м •°С.

Пример расчета коэффициента теплового сопротивления конструкции:

1) Блок ячеистого бетона толщиной 300 мм (коэффициент теплопроводности = 0,12 Вт/м•°С). Сопротивление теплопередаче стены: 0,3/0,12 = 2,5 Вт/м•°С. Вывод: показатель ниже нормы.

2) Блок ячеистого бетона толщиной 400 мм (коэффициент теплопроводности = 0,12 Вт/м•°С). Сопротивление теплопередаче стены: 0,4/0,12 = 3,3 Вт/м•°С. Вывод: показатель чуть выше нормы. Подобные расчеты верны для блоков, уложенных исключительно на клей.

Для того чтобы определиться с толщиной будущей стены, необходимо использовать те же показатели, но использовать их в другом порядке: нормативный показатель сопротивления теплопередаче (λ) умножаем на коэффициент теплопроводности (R) и получаем толщины стены (δ), соответствующую современным нормам с точки зрения энергоэффективности: δ = λ х R.

Пример расчета необходимой толщины стены:

1) Коэффициент теплопроводности сосны и ели поперек волокон равен 0,18 Вт/м•°С, рассчитываем толщину стены: 0,18 х 3,2 = 0,576 м, значит, для того чтобы получить деревянную стену с нормативным сопротивлением теплопередаче, нужно, чтобы она составляла не менее 576 мм.

2) Определим необходимую толщину стены из кирпича. Кирпич глиняный плотностью 1800 или силикатный плотностью 1600 кг/м3 имеет коэффициент теплопроводности 0,81 Вт/м•°С, следовательно толщина стены: 0,81 х 3,2 = 2,592 м.

3) Рассчитаем толщину стены из железобетона (коэффициент теплопроводности 2,04 Вт/м•°С): 2,04 х 3,2 = 6,528 м.

В то же время минераловатный утеплитель толщиной 14-15 см соответствует нормативу: λ = 0,044 Вт/м•°С х 3,2 = 0,14 м.

Для многослойных конструкций расчеты производятся аналогичным образом. При этом учитываются показатели каждого слоя.

Приведенные выше формулы, несмотря на некоторую простоту, позволят вам еще на стадии проектирования выбрать оптимальные материалы и толщину стены. Стоит добавить, что помимо теплопроводности материала есть еще и другие не менее важные показатели, поэтому подход к выбору материала должен быть комплексным.

Для самостоятельного расчета под конкретный регион рекомендуется воспользоваться следующими табличными данными:

Калькулятор расчета толщины утепления стены пеноплэксом

Пеноплэкс – популярная марка эксрудированного пенополистирола, название которой стало нарицательным. Этот материал характеризуется отличными термоизоляционными и прочностными характеристиками, отменной долговечностью и стойкостью в негативным внешним воздействиям, что делает его универсальным утеплителем для самых разных конструкций здания, от фундамента до кровли.

Калькулятор расчета толщины утепления стены пеноплэксом

Очень часто его используют и для утепления стен. Но вот вопрос – пеноплэкс выпускается в достаточно большом разнообразии толщин, от 20 до 150 мм.  Какой же вариант избрать для своего дома? Лучше всего – провести некоторые вычисления, с которыми нам поможет калькулятор расчета толщины утепления стены пеноплэксом

Некоторые пояснения по проведению вычислений будут даны ниже калькулятора.

Калькулятор расчета толщины утепления стены пеноплэксом

 Перейти к расчётам

Пояснения по проведению расчетов

«Работа» любого утеплительного материала заключается в том, чтобы он, включенный в общую конструкцию стены, за счет своей выраженно малой теплопроводности, компенсировал бы «дефицит» термического сопротивления, необходимый для достижения нормированного значения. Эти значения сопротивления теплопередаче установлены действующими СНиП для различных типов строительных конструкций и для разных регионов России, в зависимости от местных климатических условий.

  • Для пользователя будут удобнее определить нужное значение по карте-схеме, расположенной ниже. Обратите внимание, что для каждого региона установлены три значения, которые различаются между собой. В рассматриваемом случае нас, естественно, интересует показатель «ДЛЯ СТЕН» — он указан фиолетовым цветом.
Карта-схема для определения необходимого значения термического сопроитвления
  • Коэффициент теплопроводности пеноплэкса уже внесен в программу расчета, и его указывать не потребуется.
  • Далее, необходимо внести значение толщины утепляемой стены и указать материал ее изготовления: у каждого из строительных материалов – свои теплотехнические характеристики.
  • Следующий пункт – внешняя отделка стены:

— Если применена схема декоративной облицовки по принципу «вентилируемого фасада», то слой отделки никакого влияния на общую утепленности стены не окажет, и в расчет его не принимают.

— При использовании технологии «мокрого фасада», то есть с нанесением армированного штукатурного слоя и, затем, внешней декоративной штукатурки, можно отделку принять в общий расчет, так как ее термическое сопротивление прибавится к общему показателю стены.

— Аналогично можно приять в расчет отделку, выполненную из той или иной листовой (панельной) обшивки, если между ней и пеноплэксом не оставлено вентилируемого просвета.

  • Последний блок калькулятора – это аналогичные вопросы, но уже касающиеся внутренней отделки стены. Понятно, что некоторые материалы, например, тонкий слой шпатлевки с последующим окрашиванием или оклеиванием обоями – ничего существенного в «копилку» утепления не принесут. А вот деревянная обшивка (или из древесных композитных материалов), пробковая отделка, оштукатуривание, особенно с использованием «теплых» штукатурок могут серьезно повлиять на требуемую толщину внешнего утепления стены, и имеет смысл принять их в расчет.
  • Результат будет выдан в миллиметрах. Его несложно сопоставить со стандартными толщинами пеноплэкса, чтобы выбрать нужную разновидность утеплительных плит.

Если вдруг калькулятор показал отрицательное значение, то это говорит о том, что внешнего утепления пеноплэксом – вовсе не требуется.

Как провести самостоятельное утепление стены пеноплэксом?

Технологию нельзя назвать слишком сложной, но все же она потребует чёткого соблюдения всех рекомендаций, иначе утеплительный слой на стене может просто «отстрелиться», разрушиться. О нюансах технологии подробно рассказывается в статье нашего портала, посвященной именно утеплению станы пеноплэксом.

Калькулятор расчет утеплителя для наружных стен. Калькулятор толщины теплоизоляции онлайн. Калькулятор расчета каменных конструкций

7 сентября, 2016
Специализация: мастер по внутренней и наружной отделке (штукатурка, шпаклёвка, плитка, гипсокартон, вагонка, ламинат и так далее). Кроме того, сантехника, отопление, электрика, обычная облицовка и расширение балконов. То есть, ремонт в квартире или доме делался «под ключ» со всеми необходимыми видами работ.

Безусловно, расчет утеплителя для стен в собственном доме, это очень серьёзная работа, особенно, если это не было сделано изначально и в доме холодно. И вот здесь вам придётся столкнуться с рядом вопросов.

Например, каким должен быть утеплитель, какой из них лучше и какая нужна толщина материала? Давайте попробуем разобраться в этих вопросах, а ещё посмотрим видео в этой статье, наглядно демонстрирующее тему.

Утепление стен

Внутри или снаружи

Если вы решили использовать калькулятор расчета толщины утеплителя для стен, то точных данных вы не получите. Вручную можно получить более точную и достоверную информацию. Помимо этого имеет значение расположение изоляции, которую можно укладывать, как внутри, так и снаружи здания, что при расчетах нужно учитывать обязательно!

Особенности внутреннего и наружного утепления:

  • представьте себе, что вы используете калькулятор расчета утеплителя для стен, но при этом изоляцию укладываете внутри помещения, будут ли результаты расчётов верными? Обратите внимание на схему вверху;
  • какой бы толщины ни была изоляция в комнате, стена всё равно останется холодной и это приведёт к определённым последствиям;
  • то есть, это означает, что точка росы или зона, где тёплый воздух при встрече с холодным превращается в конденсат, переносится ближе к помещению. И чем мощнее внутреннее утепление, тем ближе будет эта точка;

  • в некоторых случаях эта зона доходит до поверхности стены, где влага способствует развитию грибковой плесени. Но если даже она остаётся внутри стены, то эксплуатационный ресурс от этого никак не увеличивается;
  • следовательно, инструкция и здравый смысл указывают на то, что внутреннее утепление следует монтировать только в крайнем случае или же тогда, когда нужна звукоизоляция;
  • при наружном утеплении точка росы будет приходиться на зону изоляции, а это означает, что вы сможете повысить срок годности вашей стены и избежать возникновения сырости.

Расчет – дело серьезное!

№п/п Стеновой материал Коэффициент теплопроводности Необходимая толщина (мм)
1 Пенополистироп ПСБ-С-25 0,042 124
2 Минеральная вата 0,046 124
3 Клееный деревянный брус или цельный массив ели и сосны поперёк волокон 0,18 530
4 Кладка керамоблоков на теплоизоляционный клей 0,17 575*
5 Кладка газо- и пеноблоков 400кг/м3 0,18 610*
6 Кладка полистирольных блоков на клей 500кг/м3 0,18 643*
7 Кладка газо- и пеноблоков 600кг/м3 0,29 981*
8 Кладка на клей керамзитобетона 800кг/м3 0,31 1049*
9 Кладка из керамического пустотелого кирпича на ЦПР 1000кг/м3 0,52 1530
10 Кладка из рядового кирпича на ЦПР 0,76 2243
11 Кладка из силикатного кирпича на ЦПР 0,87 2560
12 ЖБИ 2500кг/м3 2,04 6002

Теплотехнический расчет различных материалов

Примечание к таблице. Наличие знака * указывает на необходимость добавления коэффициента 1,15, если в здании сделаны перемычки и монолитные пояса из тяжёлых бетонов. Вверху для наглядности составлена диаграмма — цифры совпадают с таблицей.

Итак, расчет толщины утеплителя, это определение его теплового сопротивления, которое мы обозначим буквой R — постоянная величина, которая рассчитывается отдельно для каждого региона.

Давайте возьмём для наглядности среднюю цифру R=2,8 (м2*K/Вт). Согласно Государственным Строительным Нормам такая величина является минимально допустимой для жилых и общественных зданий .

В тех случаях, когда тепловая изоляция состоит из нескольких слоёв, например, кладка, пенопласт и евровагонка, то сумма всех показателей складывается воедино — R=R1+R2+R3 . А общую или отдельную толщину теплоизоляционного слоя рассчитывают по формуле R=p/k .

Здесь p будет означать толщину слоя в метрах, а буква k , это коэффициент теплопроводности данного материала (Вт/м*к), значение которого вы можете взять из таблицы теплотехнических расчётов, которая приведена выше.

По сути, используя эти же формулы, вы можете произвести расчет энергоэффективности от утепления подоконников или узнать толщину изоляции для пола. Величину R используйте в соответствии со своим регионом.

Чтобы не быть голословным, приведу пример, возьмём кирпичную кладку в два кирпича (обычная стена), а в качестве изоляции будем использовать пенополистирольные плиты ПСБ-25 (двадцать пятый пенопласт), цена которых достаточно приемлема даже для бюджетного строительства.

Итак, тепловое сопротивление, которого нам нужно достичь, должно составлять 2,8 (м2*Л/Вт). Вначале узнаём теплосопротивление данной кирпичной кладки. От тычка до тычка кирпич имеет 250 мм и между ними раствор толщиной 10 мм.

Следовательно, p=0,25*2+0,01=0,51м . Коэффициент у силиката составляет 0,7 (Вт/м*к), тогда Rкирпича=p/k=0,51/0,7=0,73 (м2*K/Вт) — это мы получили теплопроводность кирпичной стены, рассчитав её своими руками.

Идём далее, теперь нам нужно достичь общего показателя для слоёной стены 2,8 (м2*K/Вт), то есть R=2,8 (м2*K/Вт и для этого нам нужно узнать необходимую толщину пенопласта. Значит, Rпенопласта=Rобщая-Rкирпича=2,8-0,73=2,07 (м2*K/Вт).

На фото — локальная защита пенопластом

Теперь для расчёта толщины пенополистирола берём за основу общую формулу и здесь Pпенопласта=Rпенопласта*kпенопласта= 2?07*0?035=0?072м . Конечно, 2 см мы никак не найдём у ПСБ-25, но если учесть внутреннюю отделку и воздушную прослойку между кирпичами, то нам будет достаточно 70 см, а это два слоя

Правильный расчет теплоизоляции повысит комфортность дома и уменьшит затраты на обогрев. При строительстве не обойтись без утеплителя, толщина которого определяется климатическими условиями региона и применяемыми материалами. Для утепления используют пенопласт, пеноплекс, минеральную вату или эковату, а также штукатурку и другие отделочные материалы.

Чтобы рассчитать, какая должна быть у утеплителя толщина, необходимо знать величину минимального термосопротивления . Она зависит от особенностей климата. При ее расчете учитывается продолжительность отопительного периода и разность внутренней и наружной (средней за это же время) температур . Так, для Москвы сопротивление передаче тепла для наружных стен жилого здания должно быть не меньше 3,28, в Сочи достаточно 1,79, а в Якутске требуется 5,28.

Термосопротивление стены определяется как сумма сопротивления всех слоев конструкции, несущих и утепляющих. Поэтому толщина теплоизоляции зависит от материала, из которого выполнена стена . Для кирпичных и бетонных стен требуется больше утеплителя, для деревянных и пеноблочных меньше. Обратите внимание, какой толщины бывает выбранный для несущих конструкций материал, и какая у него теплопроводность. Чем тоньше несущие конструкции, тем больше должна быть толщина утеплителя.

Если требуется утеплитель большой толщины, лучше утеплять дом снаружи. Это обеспечит экономию внутреннего пространства. Кроме того, наружное утепление позволяет избежать накопления влаги внутри помещения.

Теплопроводность

Способность материала пропускать тепло определяется его теплопроводностью. Дерево, кирпич, бетон, пеноблоки по-разному проводят тепло. Повышенная влажность воздуха увеличивает теплопроводность. Обратная к теплопроводности величина называется термосопротивлением. Для его расчета используется величина теплопроводности в сухом состоянии, которая указывается в паспорте используемого материала. Можно также найти ее в таблицах.

Приходится, однако, учитывать, что в углах, местах соединения несущих конструкций и других особенных элементах строения теплопроводность выше, чем на ровной поверхности стен. Могут возникнуть «мостики холода», через которые из дома будет уходить тепло. Стены в этих местах будут потеть. Для предотвращения этого величину термосопротивления в таких местах увеличивают примерно на четверть по сравнению с минимально допустимой.

Пример расчет

Нетрудно произвести с помощью простейшего калькулятора расчет толщины термоизоляции. Для этого вначале рассчитывают сопротивление передаче тепла для несущей конструкции. Толщина конструкции делится на теплопроводность используемого материала. Например, у пенобетона плотностью 300 коэффициент теплопроводности 0,29. При толщине блоков 0,3 метра величина термосопротивления:

Рассчитанное значение вычитается из минимально допустимого. Для условий Москвы утепляющие слои должны иметь сопротивление не меньше чем:

Затем, умножая коэффициент теплопроводности утеплителя на требуемое термосопротивление, получаем необходимую толщину слоя. Например, у минеральной ваты с коэффициентом теплопроводности 0,045 толщина должна быть не меньше чем:

0,045*2,25=0,1 м

Кроме термосопротивления учитывают расположение точки росы. Точкой росы называется место в стене, в котором температура может понизиться настолько, что выпадет конденсат — роса. Если это место оказывается на внутренней поверхности стены, она запотевает и может начаться гнилостный процесс. Чем холоднее на улице, тем ближе к помещению смещается точка росы. Чем теплее и влажнее помещение, тем выше температура в точке росы.

Толщина утеплителя в каркасном доме

В качестве утеплителя для каркасного дома чаще всего выбирают минеральную вату или эковату.

Необходимая толщина определяется по тем же формулам, что и при традиционном строительстве. Дополнительные слои многослойной стены дают примерно 10% от его величины. Толщина стены каркасного дома меньше, чем при традиционной технологии, и точка росы может оказаться ближе к внутренней поверхности. Поэтому излишне экономить на толщине утеплителя не стоит.

Как рассчитать толщину утепления крыши и чердака

Формулы расчета сопротивления для крыш используют те же, но минимальное термосопротивление в этом случае немного выше. Неотапливаемые чердаки укрывают насыпным утеплителем. Ограничений по толщине здесь нет, поэтому рекомендуется увеличивать ее в 1,5 раза относительно расчетной. В мансардных помещениях для утепления крыши используют материалы с низкой теплопроводностью.

Как рассчитать толщину утепления пола

Хотя наибольшие потери тепла происходят через стены и крышу, не менее важно правильно рассчитать утепление пола. Если цоколь и фундамент не утеплены, считается, что температура в подполе равна наружной, и толщина утеплителя рассчитывается также, как для наружных стен. Если же некоторое утепление цоколя сделано, его сопротивление вычитают из величины минимально необходимого термосопротивления для региона строительства.

Расчет толщины пенопласта

Популярность пенопласта определяется дешевизной, низкой теплопроводностью, малым весом и влагостойкостью. Пенопласт почти не пропускает пара, поэтому его нельзя использовать для внутреннего утепления . Он располагается снаружи или в середине стены.

Теплопроводность пенопласта, как и других материалов, зависит от плотности . Например, при плотности 20 кг/м3 коэффициент теплопроводности около 0,035. Поэтому толщина пенопласта 0,05 м обеспечит термосопротивление на уровне 1,5.

Теплотехнический калькулятор точки росы онлайн

С помощью калькулятора теплоизоляции smartcalc.ru вы рассчитаете необходимую толщину утеплителя в соответствии с климатом, материалом и толщиной стен. Калькулятор точки росы онлайн поможет рассчитать толщину теплоизоляционных материалов и увидеть место выпадения конденсата на графике. Это весьма удобный онлайн калькулятор теплопроводности стены для расчета толщины утепления.

Калькулятор расчета толщины утеплителя стены

С помощью калькулятора теплоизоляции Пеноплэкс вы сможете быстро рассчитать толщину утеплителя для стен и других конструкций в соответствии с нормами СНиП, толщиной и материалом стен, используемой пароизоляцией и других важных параметров при утеплении. Подбирая различные строительные материалы, можно выбрать теплый и доступный вариант при строительстве загородного дома.

Калькулятор KNAUF расчета толщины утеплителя

Рассчитайте толщину теплоизоляционного материала в различных строительных конструкциях на калькуляторе KNAUF, разработанным специалистами из KNAUF Insulation. Все расчеты производятся в соответствии со всеми требованиями СНиП 23-02-2003 «Тепловая защита зданий». Счетчик теплоизоляции KNAUF имеет понятный интерфейс и позволит вам подобрать оптимальную толщину утеплителя.

Калькулятор Rockwool для расчета теплоизоляции

Калькулятор утепления Rockwool для расчета теплоизоляции стены и оценке экономической эффективности материала. Вы можете произвести в режиме реального времени теплотехнический расчет. Быстро подобрать наиболее оптимальную марку теплоизоляции Rockwool для вашего дома и рассчитать необходимое количество упаковок плит и рулонов утеплителя для обрабатываемой поверхности.

Калькулятор теплопроводности для расчета толщины стен

Споры по поводу необходимости утепления стен и фасадов домов никогда не затихнут. Одни советуют утеплять фасад, другие уверяют, что это экономически неоправданно. Частному застройщику, не обладающему серьезными познаниями в теплофизике во всем этом сложно разобраться. С одной стороны теплые стены снижают расходом на отопление. Но какова «цена вопроса» – теплые стены обойдутся дороже.

Деревянные дома, наверняка, никогда не потеряют своей актуальности и не уйдут с пика популярности. Теплая, приятная, полезная для здоровья человека структура качественной древесины не идет ни в какое сравнение ни с камнем, ни со строительными растворами, ни тем более, с какими бы то ни было полимерами. Тем не менее термоизоляционных качеств дерева, хотя и достаточно высоких, все же бывает недостаточно, чтобы обеспечить в доме максимально комфортабельный микроклимат, и приходится прибегать к дополнительному утеплению стен.

Утепление деревянных стен – дело весьма деликатное, так как необходимо обеспечить достаточность слоя термоизоляции, но при этом не допустить чрезмерности. Кроме того, многое зависит и от типа внешней и внутренней отделки стен, если она предусматривается. Одним словом, без проведения теплотехнических вычислений – не обойтись. А в этом вопросе добрую службу должен сослужить калькулятор расчета утепления стен деревянного дома.

Калькулятор позволяет определить вид теплоизоляционных материалов для фундамента, посчитать объем необходимых материалов и получить итоговую стоимость, в том числе и крепежа для плит.

Калькулятор расчета и выбора изоляции под сайдинг.

С помощью данного сервиса, Вы сможете определить виды теплоизоляции и гидроизоляции которые подойдут для изоляции стен под сайдинг. Более того калькулятор позволит определить стоимость и рассчитать объем необходимых материалов.

Калькулятор расчета теплоизоляции под вентилируемый фасад

Для того что бы правильно подобрать материалы для утепления вентилируемого фасада, подобрать гидроизоляцию и крепеж, воспользуйтесь этим сервисом. Введя площадь стен, и толщину плит, Вы рассчитаете необходимый объем материалов и узнаете их стоимость.

Онлайн калькулятор расчета стоимости штукатурного фасада.

Сервис позволяет определить виды материалов, стоимость и объем. Исходя из площади фасада и толщины утеплителя, можно рассчитать примерную стоимость штукатурного фасада.

Расчет материалов для изоляции каркасных стен

Если перед Вами стоит задача, изоляции каркасных стен, то этот калькулятор для Вас. Зная площадь стен и толщину утеплителя, вы без труда рассчитаете необходимые материалы.


Онлайн расчет изоляции для пола под стяжку

Для пола, который планируется сделать с использованием цементной, либо любой другой, требуется особые, прочные изоляционные материалы.

Онлайн расчет изоляции для пола по лагам

Что бы правильно подобрать изоляционные материалы для пола, который уложен по деревянным лагам, воспользуйтесь данным калькулятором. Он определит необходимую плотность материалов, их количество и примерную стоимость.

Расчет теплоизоляции для межкомнатных перегородок

Подберите изоляцию для межкомнатных перегородок. Вы сможете расчитать количество и вид изоляции, ее стоимость, а так же, сразу сделать заявку.

Калькулятор для расчета изоляции потолка

Просто введите площадь потолка и толщину теплоизоляции, получите количество материалов и их стоимость.

Определить стоимость материалов для изоляции межэтажных перекрытий

Для решения таких задач, воспользуйтесь онлайн-расчетом цен и количества необходимых материалов.

Онлайн-расчет изоляции чердака

Для утепления чердака, следует подобрать материалы используя данный сервис.

Расчет изоляции для скатной кровли (мансарды)

Изоляция скатной кровли, требует помимо утеплителя, еще пароизоляционную и ветровлагозащитную мембрану, воспользовавшись этим онлайн-калькулятром, вы без труда определити нужные Вам материалы и их ориентировочную стоимость.

Расчет изоляции для плоской кровли

Для расчета материалов для плоской кровли, мы предлагаем воспользоваться этим калькулятром. В расчет включена так же гидроизоляционная мембрана и телескопический крепеж.

Калькулятор расчета водостоков

Калькулятор позволит сделать предварительный расчет необходимых материалов для монтажа водосточной системы. Определить предварительно стоимость/

Рекомендуем также

понятный алгоритм расчета с примером

Одним из важнейших этапов проектирования загородного, дачного дома или другой является расчет толщины стены. Для жилых зданий этот параметр очень важен. Ведь неверные расчёты могут привести к тому, что дом будет промерзать. Кроме того, можно ошибиться и возведя слишком толстые стены. В этом случае траты на ненужный объем материалов будут абсолютно напрасными. О том, какой должна быть толщина стен и как ее грамотно рассчитать, мы и поговорим в этой статье.

Для чего нужны расчеты?

Выполнение точных расчётов позволит вам максимально точно определить, какой толщины стены должны быть в вашем доме. Сейчас очень популярен расчет толщины стен онлайн, с помощью специальных автоматизированных калькуляторов.

Но нужно помнить, что такой расчет будет примерным. Кроме того, обычно калькуляторы выдают общую толщину стены. В то время как любая стенка всегда состоит из нескольких слоев. И очень важно понимать, как рассчитывается толщина каждого слоя в отдельности.

О чего зависит толщина стенок?

Этот показатель в первую очередь определяется климатом региона, в котором строится дом. Важнейшее значение в расчетах имеет такой показатель, как уровень сопротивления теплоотдаче. Значения данного показателя в разных городах буду различаться. Чем холоднее климат, тем выше требуемый минимальный порог теплосопротивления стен.

Сопротивление теплопередаче регламентируется нормативными документами и имеет постоянное значение в рамках каждого региона.

Полную таблицу значений требуемого сопротивления теплопередаче по городам РФ можно скачать здесь Таблица теплосопротивлений.

Еще одним важным фактором является материал стен. Значение имеет теплопроводность всех материалов, входящих в состав так называемого «пирога».

Значения теплопроводности всех возможных стройматериалов можно найти в Таблица теплопроводности материалов.

Алгоритм расчета

Расчет толщины стены не так уж и сложен, как может показаться на первый взгляд. Мы постараемся избежать сложных формул и объяснить основные принципы расчетов на конкретном примере.

Допустим, мы строим дом в Барнауле. Из таблицы берем показатель сопротивления теплопередаче для Барнаула. Это 3,54 Вт/м2*С.

Дом будет построен из газобетона, фасад отделан облицовочным кирпичом, внутри – гипсовая штукатурка.

Здесь нужно понимать, что толщина стены складывается из толщины всех слоев, как и сопротивление теплоотдаче. Теплопроводность у всех материалов разная. И уменьшая один из слоев, придется увеличить другой.

Итак, предположим, что слой кирпичной облицовки в толщину составляет 12см. Теплопроводность облицовочного кирпича – 0,93 Вт/м2*С.

Сопротивление теплопередаче рассчитывается путем деления толщины материала (в метрах) на значение его теплопроводности.

Итак, рассчитаем теплосопротивление кирпичного слоя:

0,12/0,93 = 0,13 Вт/м2*С.

Внутренний слой гипсовой штукатурки будет толщиной 3см. Теплопроводность – 0,3 Вт/м2*С.  Аналогичным образом рассчитаем сопротивление теплоотдаче для этого слоя:

0,03/0,3 = 0,1 Вт/м2*С.

Теперь остается рассчитать толщину газобетона. Известно, что его теплопроводность равна 0,14 Вт/м2*С. Чтобы понять какое теплосопротивление должна оказывать газобетонная кладка, вычтем из показателя минимального порога сопротивления теплопередаче по региону все рассчитанные значения теплосопротивлений наших материалов:

3,54 – 0,13 – 0,1 = 3,31 Вт/м2*С.

Толщина материала определяется путем умножения полученного значения на его теплопроводность:

3,31 * 0,14 = 0,46 м.

Таким образом, минимальная толщина нашей газобетонной кладки равна 46 см.

Учитывая, что блоков такой толщины не существует, нам придется взять блоки большей толщины, слегка переплатив за объем материала. Либо купить изделия с меньшей толщиной, предусмотрев при этом утеплительный слой. В таком случае толщина газобетона будет уже заданной величиной и придется аналогичным образом рассчитывать толщину утеплителя.

Калькулятор теплоизоляции и проводимости (тепловой поток)

Теплоизоляция — это уменьшение потерь тепла с одной стороны барьера на другую. Свойства материала, используемого для изоляционного слоя (слоев), будут определять скорость потери внутреннего тепла. Все четыре свойства, которые описывают тепловые характеристики барьера, описаны ниже.

Теплопроводность (k)

Теплопроводность одинаково хорошо применима к газу, жидкости и твердому телу, каждый из которых имеет собственное характеристическое значение (например,грамм. теплопроводность воды составляет 0,591 Вт / м / К (0,341 БТЕ / ч / фут / об).

В частности, это количество тепла (британские тепловые единицы или калории), которое проходит через барьер единичной толщины (1,0 фут или метр), разделяющий единичную разницу температур (1,0 Ренкина или Кельвина) за единичный период времени (1,0 секунда). , минута или час). Единицы, используемые для описания этого свойства, могут быть в различных формах, смешивая различные единицы длины, но обычно выражаются в британских единицах измерения как «БТЕ / ч / фут / об», а в метрических единицах — как «Вт / м / К».

См. «Применимость» ниже

Скорость передачи тепла (q)

Скорость теплопередачи одинаково хорошо применима к газу, жидкости и твердому телу и относится к скорости, с которой его объем будет терять тепло в окружающую среду.

В частности, это количество тепла (британские тепловые единицы или калории), которое проходит от материала или вещества за единицу времени (1,0 секунда, минута или час). Единицы, используемые для описания этого свойства, могут иметь множество форм, но обычно выражаются в британских единицах измерения как «Британские тепловые единицы / ч» и в метрических единицах как «W».

См. «Применимость» ниже

Коэффициент теплопередачи (U & h)


Рис. 1. Потери тепла из воды

Коэффициент теплопередачи одинаково хорошо применим к газу, жидкости и твердому телу, но обычно используется в качестве спецификации тепловых свойств для коммерческих продуктов, таких как изоляционные плиты или материалы заданной толщины. Таким образом, если вы умножите это значение на толщину барьерного материала, вы получите теплопроводность материала, из которого барьер изготовлен.

В частности, это количество тепла (британские тепловые единицы или калории), которое проходит через барьер, разделяющий разницу температур (1,0 по Рэнкину или Кельвину) за единичный период времени (1,0 секунда, минута или час). Единицы, используемые для описания этого свойства, обычно выражаются в британской системе мер как «Btu / h / ft² / R» или в метрической форме как «W / m² / K».

См. «Применимость» ниже

Термическое сопротивление (R)

Термическое сопротивление одинаково хорошо применимо к газу, жидкости и твердому телу и описывает способность материала предотвращать потерю тепла.

В частности, это разница температур (по шкале Ренкина или Кельвина) через барьер, когда через него проходит единичная скорость тепла (британские тепловые единицы в час или ватт) в течение единичного периода времени (1,0 секунда, минута или час). Единицы, используемые для описания этого свойства, обычно выражаются в британской системе мер как «R.ft² / Btu / h /» или в метрической форме как «K.m² / W».

См. «Применимость» ниже

Тепловые потери

Это то, что вы делаете, чтобы узнать, как быстро выравниваются разные температуры через барьер:
1) Умножьте объем (м³) высокотемпературного вещества на его плотность (кг / м³)
2) Умножьте результат на его удельный теплоемкость (Вт.ч / кг / К)
3) Разделите результат на площадь поверхности барьера (м²)
4) Разделите результат на его коэффициент теплопередачи или теплопроводность (Вт / м² / К)
Единицы аннулируются следующим образом: ( м³ . кг . W . Ч. м² . K ) / ( кг . м³ . K . м² . W ), оставляя вас с ‘h’ (часы)

Если вы хотите попробовать это с водой (cp = 1,163 Втч / кг / K, ρ = 1000 кг / м³) в трубе длиной один метр; Определите среднюю площадь поверхности вашей трубы и объем воды внутри нее:
(Площадь = l.π.Øm = 0,52 м² и объем = l.π.ز / 4 = 0,012668 м³)
примечание: Øm — это диаметр середины толщины стенки трубы (включая изоляцию)
и с помощью ThermIns рассчитайте коэффициент теплопередачи (рис. 1):
1) 1000 x 0,012668 = 12,668 кг
2) 1,163 x 12,668 = 14,73252 Вт · ч / K
3) 14,73252 ÷ 0,52 = 28,33539 Вт · ч / K / м²
4) 28,33539 ÷ 0,2 = 30,86 часов

ThermIns не включает вышеуказанное средство расчета, поскольку это усложняет использование программы и предполагает неверную точность.Например, такой расчет должен предполагать, что….
1) окружающая среда не нагревается в результате теплопередачи
2) емкость изготовлена ​​идеально
3) материалы на 100% однородны
4) все стороны сделаны из одинаковых материалов
5) емкость не соприкасается с любой другой поверхностью
6) источник тепла не пополняется
пр.
Немногие, если таковые вообще имеются, были бы точными.

В то время как CalQlata планирует выпустить в будущем более полный калькулятор теплопроводности, Thermins может предоставить вам достаточную информацию для проектирования трубы, барьера или контейнера с достаточной уверенностью и точностью.

Калькулятор теплопроводности

— Техническая помощь


Рис. 2. Расчет контейнера

Вы можете ввести отрицательные или положительные отклонения температуры в калькуляторе теплопроводности, и оба будут давать аналогичные результаты в примере расчета плоского барьера, но вы заметите значительные различия в результатах, которые вы получите при переключении полярности в параметре расчета трубчатого барьера. Это связано с тем, что площади поверхности внутри и снаружи различаются, и, поскольку температура всегда меняется от горячей к холодной, скорость потока в трубу и из нее будет разной.

Контейнеры

Если вы хотите рассчитать тепловые свойства шестигранного контейнера, просто откройте его и обращайтесь с ним как с плоским барьером (см. Рис. 2). В большинстве случаев результаты будут очень близки к реальным.

Разумеется, возможны отклонения площади из-за толщины углов, но если толщина стенок не велика по сравнению с размером коробки, ошибка будет минимальной.

Применимость

Все формулы в калькуляторе теплопроводности основаны на линейных скоростях передачи через все материалы, и все изоляционные слои на 100% контактируют со своими соседними слоями.Любые отклонения от приведенного выше не будут отражать реальных ситуаций, однако, если отклонения не значительны, эти ошибки будут минимальными.

Дополнительная литература

Дополнительную информацию по этому вопросу можно найти в справочных публикациях (2, 3 и 12)

Пример задачи — Расчет толщины изоляции трубы

Пример описания проблемы

Рассчитайте толщину изоляции (минимальное значение), необходимую для трубы, по которой проходит пар, при температуре 180 0 C.Размер трубы составляет 8 дюймов, а максимально допустимая температура наружной стены изоляции составляет 50 0 C. Теплопроводность изоляционного материала для диапазона температур трубы может быть принята равной 0,04 Вт / м · К. Потери тепла пара на метр длины трубы должно быть ограничено до 80 Вт / м.

Решение

Решение этой проблемы, как показано ниже, довольно простое.

Согласно статье EnggCyclopedia о теплопроводности,

Для радиальной теплопередачи за счет теплопроводности через цилиндрическую стенку скорость теплопередачи выражается следующим уравнением:

Для данной задачи образца,

T 1 = 50 0 C
T 2 = 180 0 C
r 1 = 8 «= 8 × 0.0254 м = 0,2032 м
k = 0,04 Вт / м · K
N = длина цилиндра

Q / N = Тепловые потери на единицу длины трубы
Q / N = 80 Вт / м

Следовательно, подставляя указанные числа в уравнение радиальной скорости теплопередачи сверху,

80 = 2π × 0,04 × (180-50) ÷ ln (r 2 / 0,2032)

ln (r 2 / 0,2032) = 2π × 0,04 × (180-50) / 80 = 0,4084

Следовательно, r 2 / = r 1 × e 0,4084
r 2 / = 0.2032 × 1,5044 = 0,3057 м

Следовательно, толщина изоляции = r 2 — r 1
толщина = 305,7 — 203,2 = 102,5 мм

Следует взять некоторый запас на толщину изоляции, потому что, если скорость кондуктивной теплопередачи окажется выше, чем скорость конвективной теплопередачи за пределами изоляционной стены, температура внешней изоляционной стены вырастет до более высоких значений, чем 50 0 C. Следовательно, скорость кондуктивной теплопередачи должна быть ограничена более низкими значениями, чем оценки, использованные в этом примере задачи.Цель этого примера задачи — продемонстрировать расчеты радиальной теплопроводности, а практические расчеты толщины изоляции также требуют учета конвективной теплопередачи на внешней стороне изоляционной стены.

Расчет толщины изоляции для труб »Мир трубопроводной техники

Когда жидкость проходит по трубе, она теряет тепло в окружающую атмосферу, если ее температура выше, чем температура окружающего воздуха. Если температура трубы ниже температуры окружающего воздуха, она получает от нее тепло.Поскольку трубы обычно изготавливаются из металлов, таких как сталь, медь и т. Д., Которые очень хорошо проводят тепло, потери тепла будут значительными и очень дорогостоящими. Поэтому важно обеспечить покрытие из материала, который очень плохо проводит тепло, например, минеральной ваты, конопли и т. Д.

Общая теплопередача (Q) от трубы через такой изоляционный материал зависит от следующих факторов:

  1. N : Длина трубы.
  2. Tp : рабочая температура жидкости внутри трубы.
  3. Ti : Максимально допустимая температура на внешней поверхности изоляции. Обычно 50 ° C.
  4. Rp : Радиус трубы.
  5. Ri : Радиус изоляции.
  6. k : Теплопроводность изоляционного материала.

Формула для стационарной теплопередачи через изоляционный материал, обернутый вокруг трубы, выглядит следующим образом:

Приведенное выше уравнение получено из уравнения Фурье для теплопроводности, для стационарной теплопередачи при радиальной теплопроводности через полый цилиндр.

Пример расчета

Предположим, у нас есть труба диаметром 12 дюймов, по которой течет горячее масло с температурой 200 ° C. Максимально допустимая температура изоляции на внешней стене составляет 50 ° C. Допустимые потери тепла на метр трубы — 80 Вт / м. Используемая изоляция — это стеклянная минеральная вата с теплопроводностью для этого диапазона температур 0,035 Вт / мК. Теперь осталось определить необходимую толщину изоляции.

Теплопроводность выражается в ваттах на метр на Кельвин (Вт / м.K), что по сути то же самое, что ватт на метр на градус Цельсия (Вт / мКл) (Нет множителя при преобразовании из Кельвина в градусы. Таким образом, приращение в Кельвинах такое же, как приращение в градусах Цельсия.)

В приведенной выше формуле, Q — общая потеря тепла, N — длина трубы. Таким образом, Q / N становится допустимой потерей тепла на метр трубы, которая составляет 80 Вт / м.

Q / N = 80 Вт / м.

Диаметр трубы 12 дюймов, следовательно, радиус 6 дюймов.

Радиус в метрах: (6 ″ X 25,4) / 1000 = 0.1524 метра.

Итак:

80 = 2π × 0,035 × (200-50) ÷ ln (Ri / 0,1524)

ln (Ri / 0,1524) = 2π × 0,035 × (200-50) / 80 = 0,4123

Следовательно, Ri = Rp × e 0,4123

Ri = 0,1524 × 1,5103 = 0,2302 м

Следовательно, толщина изоляции = Ri — Rp = 0,2302 — 0,1524 = 0,0777

Толщина изоляции = 77,7 мм

Дополнительный запас должен быть принимается по толщине изоляции, поскольку иногда теплопередача через изоляцию может быть выше, чем конвективная теплопередача за счет воздуха на внешней стене изоляции.В этом случае температура внешней поверхности изоляции может увеличиться более чем до 50 ° C. Цель этого примера задачи — продемонстрировать расчеты радиальной теплопроводности, а практические расчеты толщины изоляции также требуют учета конвективной теплопередачи на внешней стороне изоляционной стены.

Нравится:

Нравится Загрузка …

Расчетные данные | WBDG — Руководство по проектированию всего здания

Введение

Этот раздел Руководства по проектированию механической изоляции представляет собой сборник информации и данных, которые могут быть полезны разработчикам и конечным пользователям систем механической изоляции.Раздел содержит несколько простых калькуляторов, позволяющих рассчитывать тепловой поток и температуру поверхности. Включены обсуждение и ссылки на другие более сложные компьютерные программы для выполнения этих вычислений.

Оценка потерь тепла / тепловыделения

Устойчивый одномерный тепловой поток через системы изоляции регулируется законом Фурье:

где:

q = скорость теплового потока, британских тепловых единиц / час

A = площадь поперечного сечения, нормальная к тепловому потоку, футы 2

k = теплопроводность изоляционного материала, британских тепловых единиц / час фут 2 ° F

dT / dx = температурный градиент, ° F / дюйм

Для плоской геометрии конечной толщины уравнение сводится к:

q = k · A · (T 1 –T 2 ) / X

(2)

где:

X = толщина изоляции, дюйм.

Для цилиндрической геометрии уравнение принимает следующий вид:

q = k · A 2 · (T 1 –T 2 ) / (r 2 · ln (r 2 / r 1 ))

(3)

где:

r 2 = внешний радиус, дюйм

r 1 = внутренний радиус, дюйм

A 2 = площадь внешней поверхности, футы 2

Термин r 2 ln (r 2 / r 1 ) иногда называют «эквивалентной толщиной» изоляционного слоя.Эквивалентная толщина — это толщина изоляции, которая при установке на плоской поверхности будет давать тепловой поток, равный потоку тепла на внешней поверхности цилиндрической формы.

Теплоотдача от поверхностей представляет собой комбинацию конвекции и излучения. Обычно предполагается, что эти режимы являются аддитивными, и поэтому для оценки теплового потока к / от поверхности можно использовать комбинированный поверхностный коэффициент:

где:

ч с = комбинированный коэффициент поверхности, БТЕ / ч фут 2 ° F

ч c = коэффициент конвекции, БТЕ / ч фут 2 ° F

ч r = коэффициент излучения, БТЕ / h фут 2 ° F

Предполагая, что излучающая среда равна температуре окружающего воздуха, потери / приток тепла на поверхности можно рассчитать как:

q = h с · A · (T surf –T amb )

(5)

Коэффициент излучения обычно оценивается как:

h r = ε · σ · (T surf 4 –T amb 4 ) / (T surf –T amb )

(6)

где:

ε = эмиттанс поверхности

σ = постоянная Стивена-Больцмана (= 0.1714 x 10 -8 БТЕ / (ч · фут 2 · ° R 4 )

T x = Температура, ° R

Коэффициент излучения (или коэффициент излучения) поверхности определяется как отношение излучения, испускаемого поверхностью, к излучению, испускаемому черным телом при той же температуре. Эмиттанс — это функция материала, состояния его поверхности и температуры. Таблица с приблизительным коэффициентом излучения обычно используемых материалов приведена в Таблице 1.

Таблица 1.Данные об эмиссии широко используемых материалов

Материал Излучение (~ 80 ° F)
Универсальная куртка 0,9
Алюминиевая краска 0,5
Алюминий, анодированный 0,8
Алюминий, технический лист 0,1
Алюминий с тиснением 0,2
Алюминий оксидированный 0.1-0,2
Алюминий полированный 0,04
Сталь с алюминиево-цинковым покрытием 0,06
Холст 0,7-0,9
Цветная мастика 0,9
Медь полированная 0,03
Медь окисленная 0,8
Эластомер или полиизобутилен 0,9
Оцинкованная сталь, окунутая или матовая 0.3
Сталь оцинкованная, новая, полированная 0,1
Чугун или сталь 0,8
Окрашенный металл 0,8
Пластиковая труба или оболочка (ПВХ, ПВДХ или ПЭТ) 0,9
Рубероид и черная мастика 0,9
Резина 0,9
Стеклоткань, пропитанная силиконом 0,9
Нержавеющая сталь, новая, очищенная 0.2

© Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

Конвекция — это перенос энергии за счет комбинированного действия теплопроводности, накопления энергии и перемешивания. Он классифицируется как принудительная конвекция (когда перемешивающее движение вызывается каким-либо внешним фактором) или естественная конвекция (когда перемешивание происходит в результате разницы плотности, вызванной температурными градиентами). Коэффициенты конвекции (h c ) могут быть оценены для ряда простых геометрий, используя корреляции данных экспериментальных исследований.В этих исследованиях используются соответствующие безразмерные параметры для корреляции результатов. Incropera и DeWitt представляют ряд этих корреляций в своем тексте «Основы тепломассообмена». Эти корреляции также резюмированы в Стандартной практике ASTM C 680 и в Справочнике ASHRAE 2013 г. — Основы.

Контроль температуры поверхности

Обычный расчет, связанный с системами механической изоляции, включает определение толщины изоляции, необходимой для поддержания температуры поверхности до определенного значения с учетом рабочей температуры процесса и температуры окружающей среды.Например, может потребоваться рассчитать толщину изоляции резервуара, необходимую для поддержания температуры внешней поверхности на уровне 140 F или ниже, когда температура жидкости в резервуаре составляет 450 F, а температура окружающей среды составляет 80 F.

В установившемся режиме тепловой поток через изоляцию к внешней поверхности равен тепловому потоку от поверхности к окружающему воздуху. В форме уравнения:

или

(k / X) · A · (T hot –T surf ) = h · A · (T surf –T amb )

(8)

Переставив это уравнение, получим:

X = (кг / ч) · [(T hot –T surf ) / (T surf –T amb )]

(9)

Поскольку соотношение температурных разностей известно, требуемую толщину можно рассчитать, умножив на отношение проводимости изоляционного материала к поверхностному коэффициенту.

В приведенном выше примере предположим, что поверхностный коэффициент может быть оценен как 1,0 БТЕ / ч фут 2 F, а проводимость изоляции, которая будет использоваться, составляет 0,25 БТЕ / ч фут 2 F. Требуемая толщина может тогда можно оценить как:

X = (0,25 / 1,0) [(450–140) / (140–80) = 1,29 дюйма

Эта расчетная толщина будет округлена до следующего доступного размера, вероятно, 1– ½ дюйма.

Для радиального теплового потока рассчитанная толщина будет представлять собой эквивалентную толщину; фактическая толщина (r 2 -r 1 ) будет меньше (см. уравнение (8) выше).

Эту простую процедуру можно использовать как оценку первого порядка. На самом деле поверхностный коэффициент не является постоянным, а изменяется в зависимости от температуры поверхности, скорости воздуха, ориентации и поверхностной светимости.

При выполнении этих расчетов важно использовать фактические размеры трубы и изоляции труб. Многие (но не все) изоляционные изделия для труб и трубопроводов соответствуют стандартам размеров, первоначально опубликованным военными в MIL-I-2781, а затем принятым другими организациями, включая ASTM.Стандартные размеры труб и изоляции приведены для справки в Таблице 2. Стандартные размеры труб и изоляции приведены в Таблице 3. Соответствующие размерные данные для гибкой изоляции с закрытыми ячейками приведены в Таблицах 4 и 5.

Для систем механической изоляции также важно понимать, что теплопроводность (k) большинства изоляционных материалов значительно зависит от температуры. В документации производителя обычно приводятся кривые или таблицы зависимости проводимости от температуры.При выполнении расчетов теплопередачи важно использовать «эффективную теплопроводность», которая может быть получена путем интегрирования кривой зависимости проводимости от температуры или (в качестве приближения) с использованием проводимости, рассчитанной при средней температуре через изоляционный слой. . ASTM C 680 предоставляет алгоритмы и методики расчета для включения этих уравнений в компьютерные программы.

С этими осложнениями легко справиться для различных граничных условий с помощью доступных компьютерных программ, таких как программа NAIMA 3E Plus® (www.pipeinsulation.org).

Пример распечатки программы 3E Plus® показан на Рисунке 1.

Рис. 1. Образец распечатки из программы NAIMA 3E Plus®.

Оценки тепловых потерь для труб стандартных размеров приведены в таблицах 6 и 7. Они полезны для быстрой оценки стоимости потерь энергии из-за неизолированных трубопроводов.

Размеры стандартной изоляции труб и трубопроводов

Таблица 2. Внутренний и внешний диаметры стандартной изоляции труб

Размер трубы, NPS Наружный диаметр трубы, дюйм. Внутренний диаметр изоляции, дюймы Номинальная толщина изоляции
1 1 – ½ 2 2 – ½ 3 3 – ½ 4 4 – ½ 5
½ 0,84 0,86 2,88 4,00 5,00 6,62 7,62 8,62 9,62 10,75 11,75
¾ 1.05 1,07 2,88 4,00 5,00 6,62 7,62 8,62 9,62 10,75 11,75
1 1,315 1,33 3,50 4,50 5,56 6,62 7,62 8,62 9,62 10,75 11,75
1 – ¼ 1,660 1.68 3,50 5,00 5,56 6,62 7,62 8,62 9,62 10,75 11,75
1 – ½ 1.900 1,92 4,00 5,00 6,62 7,62 8,62 9,62 10,75 11,75 12,75
2 2,375 2,41 4.50 5,56 6,62 7,62 8,62 9,62 10,75 11,75 12,75
2 – ½ 2,875 2,91 5,00 6,62 7,62 8,62 9,62 10,75 11,75 12,75 14,00
3 3,500 3,53 5,56 6.62 7,62 8,62 9,62 10,75 11,75 12,75 14,00
3 – ½ 4.000 4,03 6,62 7,62 8,62 9,62 10,75 11,75 12,75 12,75 14,00
4 4,500 4,53 6,62 7,62 8.62 9,62 10,75 11,75 12,75 14,00 15,00
4 – ½ 5.000 5,03 7,62 8,62 9,62 10,75 11,75 12,75 14,00 14,00 15,00
5 5,563 5,64 7,62 8,62 9,62 10.75 11,75 12,75 14,00 15,00 16,00
6 6,625 6,70 8,62 9,62 10,75 11,75 12,75 14,00 15,00 16,00 17,00
7 7,625 7,70 10,75 11,75 12,75 14.00 15,00 16,00 17,00 18,00
8 8,625 8,70 11,75 12,75 14,00 12,00 16,00 17,00 18,00 19,00
9 9,625 9,70 12,75 14,00 15,00 16,00 17.00 18,00 19,00 20,00
10 10,75 10,83 14,00 15,00 16,00 17,00 18,00 19,00 20,00 21,00
11 11,75 11,83 15,00 16,00 17,00 18,00 19,00 20.00 21,00 22,00
12 12,75 12,84 16,00 17,00 18,00 19,00 20,00 21,00 22,00 23,00
14 14,00 14,09 17,00 18,00 19,00 20,00 21,00 22,00 23.00 24,00

Таблица 3. Внутренний и внешний диаметры стандартной изоляции трубопровода

Размер трубки, CTS Внешний диаметр трубки, дюйм Изоляция ID Номинальная толщина изоляции
1 1 – ½ 2 2 – ½ 3 3 – ½ 4 4 – ½ 5
3/8 0,500 0,52 2.38 3,50 4,50 5,56 6,62
½ 0,625 0,64 2,88 3,50 4,50 5,56 6,62
¾ 0,875 0,89 2,88 4,00 5,00 6.62 7,62 8,62 9,62 10,75 11,75
1 1,125 1,14 2,88 4,00 5,00 6,62 7,62 8,62 9,62 10,75 11,75
1 – ¼ 1,375 1,39 3,50 4,50 5,56 6,62 7.62 8,62 9,62 10,75 11,75
1 – ½ 1,625 1,64 3,50 4,50 5,56 6,62 7,62 8,62 9,62 10,75 11,75
2 2,125 2,16 4,00 5,00 6,62 7,62 8,62 9.62 10,75 11,75 12,75
2 – ½ 2,625 2,66 4,50 5,56 6,62 7,62 8,62 9,62 10,75 11,75 12,75
3 3,125 3,16 5,00 6,62 7,62 8,62 9,62 10,75 11.75 12,75 14,00
3 – ½ 3,625 3,66 5,56 6,62 7,62 8,62 9,62 10,75 11,75 12,75 14,00
4 4,125 4,16 6,62 7,62 8,62 9,62 10,75 11,75 12,75 14.00 15,00
5 5,125 5,16 7,62 8,62 9,62 10,75 11,75 12,75 14,00 15,00 16,00
6 6,125 6,20 8,62 9,62 10,75 11,75 12,75 14,00 15,00 16,00 17.00

Таблица 4. Внутренний и внешний диаметры стандартной гибкой изоляции для труб с закрытыми порами

Размер трубы, NPS Наружный диаметр трубы, дюйм Внутренний диаметр изоляции, дюймы Внешний диаметр изоляции, дюймы
Номинальная толщина изоляции
½ « ¾ « 1 «
½ 0,84 .97 1,87 2,47 2,97
¾ 1.05 1,13 2,03 2,63 3,13
1 1,315 1,44 2,44 2,94 3,44
1 – ¼ 1,660 1,78 2,78 3,38 3,78
1 – ½ 1.900 2,03 3,03 3,63 4,03
2 2.375 2,50 3,50 4,10 4,50
2 – ½ 2,875 3,00 4,00 4,60 5,00
3 3,500 3,70 4,66 5,26 5,76
3 – ½ 4.000 4,20 5,30 5,90 6,40
4 4.500 4,70 5,88 6,40 6,90
4 – ½ 5.000
5 5,563 5,76 6,86 7,46 7,96
6 6,625 6,83 7,93 8,53 9,03
7 7,625
8 8.625 8,82 9,92 10,52

Таблица 5. Внутренний и внешний диаметры стандартной гибкой изоляции для труб с закрытыми порами

Номинальный размер трубки, дюймы Внешний диаметр трубки Внутренний диаметр изоляции, дюймы Внешний диаметр изоляции, дюймы
Номинальная толщина изоляции
½ « ¾ « 1 «
3/8 0.500 . 600 1,500 1,950
½ 0,625 . 750 1,650 2,150 2,750
¾ 0,875 1.000 1,950 2,500 3.000
1 1,125 1,250 2,220 2,850 3,250
1 – ¼ 1.375 1,500 2,500 3,100 3,500
1 – ½ 1,625 1,750 2,750 3,350 3,750
2 2,125 2,250 3,250 3,850 4,250
2 – ½ 2,625 2,750 3,750 4,350 4,750
3 3.125 3,250 4,250 4,850 5,250
3 – ½ 3,625 3,750 4,850 5,450 5,950
4 4,125 4,250 5,350 5,950 6.450

Потери тепла в неизолированных трубах и трубопроводах

Таблица 6. Тепловые потери из неизолированной стальной трубы в неподвижный воздух при 80 ° F, БТЕ / ч · фут

Номинальный размер трубы, дюймы Внутренняя температура трубы, ° F
180 280 380 480 580
½ 56,3 138 243 377 545
¾ 68,1 167 296 459 665
1 82,5 203 360 560 813
1 – ¼ 102 251 446 695 1010
1 – ½ 115 283 504 787 1150
2 141 350 623 974 1420
2 – ½ 168 416 743 1160 1700
3 201 499 891 1400 2040
3 – ½ 228 565 1010 1580 2310
4 254 631 1130 1770 2590
4 – ½ 281 697 1250 1960 2860
5 313 777 1390 2180 3190
6 368 915 1640 2580 3770
7 421 1040 1880 2950 4310
8 473 1180 2110 3320 4860
9 525 1310 2340 3680 5400
10 583 1450 2610 4100 6000
12 686 1710 3070 4830 7090
14 747 1860 3340 5260 7720
16 850 2120 3810 6000 8790
18 953 2380 4270 6730 9870
20 1060 2630 4730 7460 10950
24 1260 3150 5660 8920 13100

© Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

Таблица 7. Тепловые потери от неизолированной медной трубы к неподвижному воздуху при 80 ° F, БТЕ / ч · фут

Номинальный размер трубки, дюймы Внутренняя температура трубки, ° F
120 150 180 210 240
3/8 10,6 20,6 31,9 44,2 57,5 ​​
½ 12,7 24,7 38,2 53.1 69,2
¾ 16,7 32,7 50,7 70,4 91,9
1 20,7 40,5 62,9 87,5 114
1 – ¼ 24,6 48,3 74,9 104 136
1 – ½ 28,5 55,9 86,9 121 158
2 36.1 71,0 110 154 201
2 – ½ 43,7 86,0 134 187 244
3 51,2 101 157 219 287
3 – ½ 58,7 116 180 251 329
4 66,1 130 203 283 371
5 80.9 159 248 347 454
6 95,6 188 294 410 538
8 125 246 383 536 703
10 154 303 473 661 867
12 183 360 562 786 1031

© Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc.

Как рассчитать теплопотери

Вы когда-нибудь задумывались, как рассчитать теплопотери? В этой статье, опубликованной в журнале Process Heating, рассматриваются основные принципы теплопередачи, а также расчеты, которые используются для труб и сосудов. Подробнее читайте здесь.

На Рисунке 1 (ниже) показано сечение типичной системы трубопроводов. Он состоит из трубы, утеплителя, погодного барьера и промежутков между каждым слоем. Если труба и ее содержимое теплее окружающей среды, тепло будет передаваться от трубы к воздуху.Если от трубы передается достаточно тепла, содержимое трубы может утолщаться или затвердеть, что приведет к повреждению труб или насосного оборудования. Тепло передается от одного объекта к другому почти так же, как вода. Объекты с неравными температурами в тепловой системе стремятся к тепловому равновесию. Более горячий объект передает часть своего тепла более холодному объекту, пока он не достигнет той же температуры. Тепло может передаваться посредством теплопроводности, конвекции и излучения.

Проводимость

Электропроводность определяется как передача тепла или электричества через проводящую среду посредством прямого контакта.Скорость теплопередачи зависит от того, какое сопротивление существует между объектами с разными температурами. Во многих случаях желательна передача тепла от одной среды к другой. Приготовление пищи — это повседневный пример предполагаемой теплопередачи. Кроме того, большинство электронных компонентов работают более эффективно, если избыточное тепло, выделяемое оборудованием, отводится в среду, на которую не влияет добавление тепла.

Действует ли вещество как теплопроводник или изолятор, зависит от терморезистивных свойств вещества.Тепловое сопротивление (R) — это мера способности объекта задерживать теплопередачу за счет теплопроводности через заданную толщину вещества.

Математически R равно: R = L / k, где L — толщина изоляции в дюймах, а k — теплопроводность, (BTU) (дюйм) / (фут2) (oF) (час)

Изменение толщины (L) влияет на значение R или тепловое сопротивление изоляции. Значения K — это константы, которые зависят от физических свойств данного материала. Они измеряют способность материала передавать тепло.Некоторые общие значения K, измеренные при комнатной температуре, для материалов составляют 325,300 для стали, 2750,700 для меди, 0,250 для стекловолокна и 0,167 для воздуха. Новый призыв к действию

Конвекция

Потери из-за конвекции могут быть незначительными в системе без обширных расчетов. В любой трубопроводной системе существуют небольшие воздушные зазоры между поверхностной стеной и изоляцией. Воздушные зазоры обычно небольшие — менее одной десятой дюйма — и препятствуют потоку воздуха, который ограничивает конвекцию.Хотя небольшие воздушные зазоры не влияют на потерю тепла за счет конвекции, их терморезистивные свойства следует проанализировать, чтобы определить вклад в потери тепла в системе за счет теплопроводности.
Для иллюстрации предположим, что труба, показанная на рисунке 1, состоит из стекловолоконной изоляции толщиной 1 дюйм, а воздушный зазор между стенкой трубы и изоляцией составляет 0,05 дюйма. Используя уравнение значения R, вы можете рассчитать сопротивление изоляции и воздушный зазор. Соотношение двух сопротивлений указывает на то, что изоляция оказывает наибольшее влияние на общее тепловое сопротивление, а незначительные дефекты в применении изоляции минимальны.

Процент сопротивления за счет воздушного зазора равен 0,299, деленному на 4,299, или 6,95 процента.

Радиация

Потеря тепла из-за излучения происходит в результате передачи тепла высокоэнергетическими молекулами посредством волн или частиц. Для значительных потерь тепла из-за излучения более горячая поверхность должна быть значительно выше температуры окружающей среды — намного выше, чем это наблюдается в типичных приложениях с тепловым трассировщиком. Следовательно, потерями тепла из-за излучения можно пренебречь.
На практике при низких и средних температурах на конвекцию и излучение приходится около 10 процентов общих тепловых потерь системы.Добавив 10 процентов, можно вычислить общую формулу для расчета теплопотерь системы через теплопроводность, конвекцию и излучение.

Расчет тепловых потерь на плоской поверхности

Термин «потеря тепла» обычно относится к теплопередаче объекта в окружающую среду. Это означает, что рассматриваемый объект — например, стена — имеет температуру выше температуры окружающей среды (рис. 2). Математически формула для расчета теплопотерь системы за счет теплопроводности, выраженная в БТЕ / час:

Q = (U) (A) (T)

, где U — проводимость, БТЕ / (фут) 2 ( o F) (час)

A — площадь поверхности объекта, футы 2
ΔT — разница температур (T1 -T2), o F
Проводимость — это величина, обратная сопротивлению, R, и может быть выражена как U = 1 / R или U = k / L.

Следовательно, другой способ выразить основную теплопотери (Q):

Q = [(k) (A) (ΔT) (1.1)] / л Потери тепла, БТЕ / час

БТЕ и ватты: сравнение.

Приведенное выше уравнение вычисляет тепловые потери всей плоской площади в БТЕ / час, но электричество обычно продается в киловатт-часах. Следовательно, уравнение требует коэффициента преобразования для преобразования БТЕ в ватты. Один ватт равен 3,412 БТЕ. Изменение уравнения дает новую формулу:

Q = [(k) (A) (ΔT) (1.1)] / (3,412) (л) Потери тепла, Вт / ч

Не можете получить достаточно информации? Подробнее читайте здесь.

Чтобы помочь вам в заказе лучшей системы отопления, позвольте знающему представителю Indeeco помочь вам сегодня же! Позвоните по телефону 314-644-4300 или посетите наш сайт www.indeeco.com.

Быстрое определение теплопроводности, объемной теплоемкости и термического сопротивления стен на месте с использованием коэффициентов отклика

Основные моменты

Представлено быстрое определение термического сопротивления на месте с помощью EPM.

Представлено быстрое определение теплопроводности и VHC стены на месте.

Временной интервал следует выбирать на основе минимального времени теплового отклика стены.

С помощью EPM можно быстро определить свойства различных слоев стены.

Реферат

Точное определение теплофизических характеристик стен необходимо для реализации стратегии энергосбережения в существующих зданиях.На практике такие данные недоступны, поскольку современные методы определения требуют больших затрат времени и поэтому используются редко. Основанный на теории факторов отклика, метод быстрых переходных процессов на месте, метод импульсов возбуждения, EPM, был представлен в качестве доказательства концепции в предыдущей статье. В данной статье подробно изучаются условия точного применения метода в тяжелых и многослойных стенах. Теория, моделирование и эксперименты объединены для определения эффективности метода в различных типах стен, с особым вниманием к влиянию времени теплового отклика стен и временного интервала факторов отклика, что приводит к точности R c — определение стоимости.Показано, что два основных теплофизических свойства стенки, теплопроводность и объемная теплоемкость, а также толщина стенки могут быть определены с помощью обратного моделирования факторов отклика. Соотношения факторов отклика показали, что они определяют минимальное время термической реакции стены и дают представление о ее составе. Использование более длительных интервалов времени оказалось выгодным с точки зрения точности и производительности метода. Более продолжительное время эксперимента в результате больших интервалов времени все же значительно меньше, чем время, необходимое для проведения измерений в соответствии с действующими стандартами и другими традиционными методами.

Ключевые слова

Измерения на месте

Термическое сопротивление

Импульсный метод возбуждения

Факторы отклика

Переходный теплоперенос

Теплофизические свойства

Рекомендуемые статьиЦитирующие статьи (0)

© 2019 Авторы. Опубликовано Elsevier Ltd.

Рекомендуемые статьи

Цитирующие статьи

Интернет-курсов PDH. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов по HVAC; не только экологичность или экономия энергии

курса.»

Russell Bailey, P.E.

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам.

, чтобы познакомить меня с новыми источниками

информации.

Стивен Дедак, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным.Я многому научился, и их было

очень быстро отвечает на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Blair Hayward, P.E.

Альберта, Канада

«Простой в использовании веб-сайт. Хорошо организованный. Я действительно воспользуюсь вашими услугами снова.

проеду по вашей роте

имя другим на работе.»

Roy Pfleiderer, P.E.

Нью-Йорк

«Справочные материалы были превосходными, и курс был очень информативным, особенно потому, что я думал, что я уже знаком

с подробной информацией о Канзасе

Городская авария Хаятт. «

Майкл Морган, P.E.

Техас

«Мне очень нравится ваша бизнес-модель.Мне нравится просматривать текст перед покупкой. Нашел класс

информативно и полезно

на моей работе »

Вильям Сенкевич, П.Е.

Флорида

«У вас большой выбор курсов, а статьи очень информативны. You

— лучшее, что я нашел ».

Рассел Смит, П.E.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, давая время на просмотр

материал «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы. На самом деле это

человек узнает больше

от сбоев.»

John Scondras, P.E.

Пенсильвания

«Курс составлен хорошо, и использование тематических исследований является эффективным.

способ обучения »

Джек Лундберг, P.E.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы, т.е. позволяете

студент, оставивший отзыв на курс

материалов до оплаты и

получает викторину.»

Arvin Swanger, P.E.

Вирджиния

«Спасибо за то, что вы предложили все эти замечательные курсы. Я определенно выучил и

получил огромное удовольствие «.

Mehdi Rahimi, P.E.

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материалов и простотой поиска.

на связи

курса.»

Уильям Валериоти, P.E.

Техас

«Этот материал в значительной степени оправдал мои ожидания. По курсу было легко следовать. Фотографии в основном обеспечивали хорошее визуальное представление

обсуждаемых тем ».

Майкл Райан, P.E.

Пенсильвания

«Именно то, что я искал. Потребовался 1 балл по этике, и я нашел его здесь.»

Джеральд Нотт, П.Е.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых мне кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую

всем инженерам »

Джеймс Шурелл, P.E.

Огайо

«Я понимаю, что вопросы относятся к« реальному миру »и имеют отношение к моей практике, и

не на основании какой-то неясной секции

законов, которые не применяются

до «обычная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы перенести его на свой медицинский прибор.

организация.

Иван Харлан, П.Е.

Теннесси

«Материалы курса имели хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Юджин Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо изложенной,

а онлайн-формат был очень

Доступно и просто

использовать. Большое спасибо ».

Патрисия Адамс, P.E.

Канзас

«Отличный способ добиться соответствия требованиям PE Continuing Education в рамках ограничений по времени лицензиата.»

Joseph Frissora, P.E.

Нью-Джерси

«Должен признаться, я действительно многому научился. Помогает иметь распечатанный тест во время

обзор текстового материала. Я

также оценил просмотр

фактических случаев предоставлено.

Жаклин Брукс, П.Е.

Флорида

«Документ» Общие ошибки ADA при проектировании объектов «очень полезен.

испытание потребовало исследования в

документ но ответы были

в наличии «

Гарольд Катлер, П.Е.

Массачусетс

«Я эффективно использовал свое время. Спасибо за широкий выбор вариантов.

в транспортной инженерии, что мне нужно

для выполнения требований

Сертификат ВОМ.»

Джозеф Гилрой, P.E.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований PG в Делавэре».

Ричард Роудс, P.E.

Мэриленд

«Я многому научился с защитным заземлением. Пока все курсы, которые я прошел, были отличными.

Надеюсь увидеть больше 40%

курсов со скидкой.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительный

курса. Процесс прост, и

намного эффективнее, чем

приходится путешествовать «.

Деннис Мейер, P.E.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры получат блоки PDH

в любое время.Очень удобно ».

Пол Абелла, P.E.

Аризона

«Пока все отлично! Поскольку я постоянно работаю матерью двоих детей, у меня мало

время искать где

получить мои кредиты от.

Кристен Фаррелл, P.E.

Висконсин

«Это было очень познавательно и познавательно.Легко для понимания с иллюстрациями

и графики; определенно делает это

легче поглотить все

теории.

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов работы с полупроводниками. Мне понравилось пройти курс по

.

мой собственный темп во время моего утро

метро

на работу.»

Клиффорд Гринблатт, П.Е.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина. Я бы очень рекомендовал

вам на любой PE, требующий

CE единиц. «

Марк Хардкасл, П.Е.

Миссури

«Очень хороший выбор тем из многих областей техники.»

Randall Dreiling, P.E.

Миссури

«Я заново узнал то, что забыл. Я также рад оказать финансовую помощь

по ваш промо-адрес который

пониженная цена

на 40%.

Конрадо Казем, П.E.

Теннесси

«Отличный курс по разумной цене. Воспользуюсь вашими услугами в будущем».

Charles Fleischer, P.E.

Нью-Йорк

«Это был хороший тест и фактически подтвердил, что я прочитал профессиональную этику

кодов и Нью-Мексико

правил.

Брун Гильберт, П.E.

Калифорния

«Мне очень понравились занятия. Они стоили потраченного времени и усилий».

Дэвид Рейнольдс, P.E.

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости дополнительных

сертификация. «

Томас Каппеллин, П.E.

Иллинойс

«У меня истек срок действия курса, но вы все же выполнили свое обязательство и дали

мне то, за что я заплатил — много

оценено! «

Джефф Ханслик, P.E.

Оклахома

«CEDengineering предоставляет удобные, экономичные и актуальные курсы.

для инженера »

Майк Зайдл, П.E.

Небраска

«Курс был по разумной цене, материал был кратким, а

хорошо организовано.

Glen Schwartz, P.E.

Нью-Джерси

«Вопросы подходили для уроков, а материал урока —

хороший справочный материал

для деревянного дизайна.

Брайан Адамс, П.E.

Миннесота

«Отлично, я смог получить полезные рекомендации по простому телефонному звонку.»

Роберт Велнер, P.E.

Нью-Йорк

«У меня был большой опыт работы в прибрежном строительстве — проектирование

Здание курс и

очень рекомендую

Денис Солано, P.E.

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса по этике штата Нью-Джерси были очень хорошими.

хорошо подготовлены. «

Юджин Брэкбилл, P.E.

Коннектикут

«Очень хороший опыт. Мне нравится возможность загружать учебные материалы по номеру

.

обзор где угодно и

всякий раз, когда.»

Тим Чиддикс, P.E.

Колорадо

«Отлично! Поддерживаю широкий выбор тем на выбор».

Уильям Бараттино, P.E.

Вирджиния

«Процесс прямой, никакой ерунды. Хороший опыт».

Тайрон Бааш, П.E.

Иллинойс

«Вопросы на экзамене были зондирующими и продемонстрировали понимание

материала. Полное

и комплексное »

Майкл Тобин, P.E.

Аризона

«Это мой второй курс, и мне понравилось то, что мне предложили курс

поможет по телефону

работ.»

Рики Хефлин, P.E.

Оклахома

«Очень быстро и легко ориентироваться. Я обязательно воспользуюсь этим сайтом снова».

Анджела Уотсон, P.E.

Монтана

«Легко выполнить. Нет путаницы при подходе к сдаче теста или записи сертификата».

Кеннет Пейдж, П.E.

Мэриленд

«Это был отличный источник информации о солнечном нагреве воды. Информативный

и отличное освежение ».

Luan Mane, P.E.

Conneticut

«Мне нравится подход к регистрации и возможность читать материалы в автономном режиме, а затем

вернуться, чтобы пройти викторину «

Алекс Млсна, П.E.

Индиана

«Я оценил объем информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях »

Натали Дерингер, P.E.

Южная Дакота

«Обзорные материалы и образец теста были достаточно подробными, чтобы я мог позвонить по номеру

.

успешно завершено

курс.»

Ира Бродский, П.Е.

Нью-Джерси

«Веб-сайтом легко пользоваться, вы можете скачать материал для изучения, а потом вернуться

и пройдите викторину. Очень

удобно а на моем

собственный график «

Майкл Гладд, P.E.

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

Деннис Фундзак, П.Е.

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

свидетельство. Спасибо за изготовление

процесс простой ».

Fred Schaejbe, P.E.

Висконсин

«Опыт положительный.Быстро нашел курс, который соответствовал моим потребностям, и закончил

один час PDH в

один час.

Стив Торкильдсон, P.E.

Южная Каролина

«Мне понравилось загружать документы для проверки содержания

и пригодность, до

с для оплаты

материал

Ричард Вимеленберг, P.E.

Мэриленд

«Это хорошее напоминание об ЭЭ для инженеров, не занимающихся электричеством».

Дуглас Стаффорд, П.Е.

Техас

«Всегда есть возможности для улучшения, но я ничего не могу придумать в вашем

.

процесс, которому требуется

улучшение.»

Thomas Stalcup, P.E.

Арканзас

«Мне очень нравится удобство участия в викторине онлайн и получение сразу

сертификат. «

Марлен Делани, П.Е.

Иллинойс

«Учебные модули CEDengineering — это очень удобный способ доступа к информации по телефону

.

много различные технические зоны за пределами

по своей специализации без

надо ехать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *