Минвата коэффициент теплопроводности: Коэффициент теплопроводности минваты. Описание и таблица

Теплопроводность минеральной ваты Isover, Ursa, Knauf, Rockwool

Содержание статьи о теплопроводности минеральной ваты

Одной из главных характеристик минеральной ваты является ее теплопроводность. Именно этот показатель является основным при выборе теплоизоляционного материала для тех или иных целей. В данной статье рассмотрим теплопроводность минеральной ваты таких производителей, как Isover, Ursa, Knauf и Rockwool.

Минеральная вата характеристики

Минеральная вата является одним из самых качественных современных теплоизоляционных материалов. Она используется для утепления домов, жилых и нежилых зданий, оборудования и т.п. Для каждой цели используются определенные материалы с разными характеристиками.

Основные характеристики минваты:

Данный материал обладает хорошими эксплуатационными характеристиками, именно поэтому он настолько популярен. Чтобы знать, как выбрать минеральную вату и на что обращать внимание, советуем ознакомиться с характеристиками минеральной ваты. Эту информацию вы найдете в другой статье.

Теплопроводность утеплителей

Теплопроводность – одна из главных характеристик строительных материалов и утеплителей, в том числе и минеральной ваты. Чем ниже этот показатель, тем меньший слой утеплителя понадобится для теплоизоляции стен, крыши, пола и других строительных конструкций.

Коэффициент теплопроводности утеплителей (Вт/м °С) с необходимой толщиной слоя:

  • кирпичная кладка – 0,520/1460 мм;
  • керамзит – 0,170/869 мм;
  • стекловата – 0,044/189 мм;
  • базальтовая вата – 0,039 /167 мм;
  • пенополистирол – 0,037 /159 мм.

Коэффициент теплопроводности минеральной ваты

Коэффициент теплопроводности минеральной ваты – это одна из основных характеристик, влияющих на сферу использования материала. Теплопроводность представляет собой процесс переноса тепла от материалов с высшей температурой к материалам с меньшей температурой и наоборот.

Минеральная вата является волокнистым теплоизоляционным материалом, к которому относится каменная (базальтовая), шлаковая и стеклянная вата. Каждый из этих видов имеет свой коэффициент теплопроводности. Теплопроводность стекловаты – 0,030-0,052 Вт/м*К, теплопроводность базальтовой ваты – 0,035-0,046 Вт/м*К, для шлаковой ваты этот показатель варьируется в диапазоне 0,46-0,48 Вт/м*К. Качество теплоизоляции определяется толщиной утеплителя и его теплопроводностью. Значения теплопроводности должны соответствовать государственным нормам:

  • λ10, ГОСТ 7076-994;
  • λ25, ГОСТ 7076-99;
  • λА, СП 23-101-2004;
  • λБ, СП 23-101-2004.

Минеральная вата Isover характеристики теплопроводности

Наименование материала Вид материала Предназначение Коэффициент теплопроводности (Вт/мК)
ISOVER Классик рулон утепление конструкций, где теплоизоляционный материал не должен нести нагрузку 0,033-0,037
ISOVER Каркас-П32 плита утепление каркасных конструкций 0,032- 0,037
ISOVER Каркас-М37 мат утепление каркасных конструкций 0,037- 0,043
ISOVER Каркас-М40-АЛ мат утепление каркасных конструкций 0,040- 0,046
ISOVER ЗвукоЗащита плита утепление каркасных конструкций 0,038- 0,044
ISOVER ПлавающийПол плита звукоизоляция перегородок, подвесных потолков, стен внутри помещения 0,033-0,046
ISOVER Каркас-П34 плита звукоизоляция от ударного шума при устройстве «плавающего пола» 0,034-0,040
ISOVER СкатнаяКровля плита изоляция многослойных стен зданий из мелкоштучных материалов 0,037-0,043
ISOVER OL-TOP, OL-P, OL-Pe плита жесткая изоляция скатной кровли 0,037-0,042
ISOVER ВентФасад плита изоляция плоской кровли 0,032-0,040
ISOVER OL-E плита жесткая изоляция стен с вентилируемым зазором 0,034- 0,039
ISOVER ШтукатурныйФасад плита жесткая изоляция стен с нанесением штукатурного слоя 0,038- 0,043

Все утеплители из минеральной ваты производителя Isover имеют низкий коэффициент теплопроводности – в пределах от 0,032 до 0,044 Вт/мК.

Благодаря этому обеспечивается отличная теплозащита и звукоизоляция. Естественно, немалую роль в этом играет и уникальная структура волокна.

Самый низкий коэффициент теплопроводности имеют плиты ISOVER Каркас-П32 – 0,032 Вт/мК. Они используются для изоляции каркасных стен. Теплопроводность ISOVER Классик – 0,041 Вт/мК, ISOVER Штукатурный Фасад – 0,038. Ниже будет приведен каталог этого и других производителей, где эта информация описана более подробно в доступной форме.

Минвата Урса характеристики теплопроводности

Наименование материала Вид материала Предназначение Коэффициент теплопроводности (Вт/мК)
URSA GEO М-11 рулон универсальный материал (утепление пола, крыши, стен) 0,040
URSA GEO Универсальные плиты плиты в рулоне 0,036
URSA GEO Скатная крыша плиты в рулоне утепление скатных крыш 0,035
URSA GEO Шумозащита плиты в рулоне изоляция каркасных
перегородок и стен при
облицовке изнутри
0,039
URSA GEO Лайт рулон изоляция полов, перекрытий, акустических
потолков
0,044
URSA GEO М-11Ф рулон изоляция стен при
облицовке изнутри, утепление полов, перекрытий, бань
0,040
URSA GLASSWOOL ФАСАД мат системы утепления с вентилируемым воздушным зазором 0,032-0,043
URSA GLASSWOOI П-15 плита утепление скатных крыш 0,042
URSA М-25 мат изоляция конструкций сложной формы 0,038

Минеральная вата Урса обладает одним из лучших показателей теплопроводности. Теплоизоляционные плиты обеспечивают надежное утепление дома. Это вызвано использованием «дышащей» волокнистой структуры и воздушных прослоек. Отдельного внимания заслуживает минвата Урса Гео, так как она производится по экологичной технологии с использованием уникальной рецептуры. Рассмотрим характеристики теплопроводности минеральной ваты компании Урса.

Самый распространенный материал данной компании – URSA GEO М-11 в рулонах. Он имеет коэффициент теплопроводности 0,040 Вт/мК. Такой же показатель в URSA GEO М-11Ф. Немного высшую теплопроводность имеют плиты URSA GEO Лайт и URSA GLASSWOOI П-15 (0,044 и 0,042 соответственно). URSA GEO Универсальные плиты и URSA GEO Скатная крыша, используемые для теплоизоляции крыши – материалы с наименьшим коэффициентом теплопроводности (0,035-0,036). Невысокий коэффициент имеют и маты

URSA М-25, предназначенные для утепления конструкций сложной формы.

Коэффициент теплопроводности Кнауф

Наименование материала Вид материала Предназначение Коэффициент теплопроводности (Вт/мК) ?10, ?25, ?А1, ?Б2
Термо Плита 037 плита утеплитель для всего дома 0,037, 0,040, 0,041, 0,043
ТЕПЛОкровля 037A плита теплоизоляция кровли 0,037, – , 0,041, 0,043
ТЕПЛОстена 032 А плита утепление «под сайдинг», сборные стеновые сэндвич-панели, утепление навесных вентилируемых фасадов 0. 032, – , 0.039, 0.042
ТЕПЛОрулон 040 рулон теплоизоляция полов мансардных помещений, чердачных и междуэтажных перекрытий, полов по лагам 0,040, 0,044, 0,044, 0,047

Компания Кнауф выпускает материалы первого класса для теплоизоляции. Вся продукция сертифицирована и соответствует государственным и международным стандартам. Благодаря использованию уникальной технологии ECOSE компании удалось занять одно из первых мест на рынке теплоизоляционных материалов.

Коэффициент теплопроводности (Вт/мК) λ10, λ25, λА1, λБ2 для разных изделий отличается. Самый низкий показатель имеют плиты ТЕПЛОстена 032 А, предназначенные для утепление навесных вентилируемых фасадов, утепление «под сайдинг» и как слой в сборных стеновых сэндвич-панелях.

Rockwool коэффициент теплопроводности

Наименование материала Вид материала Предназначение Коэффициент теплопроводности (Вт/мК)
Rockmin плита тепло- и звукоизоляция вентилируемых покрытий и чердаков, кровель, стен, деревянных балочных перекрытий, подвесных потолков, легких каркасных стен и перегородок, а также полов на лагах. 0,039
Domrock мат 0,045
Superrock плита 0,035
Panelrock плита тепло- и звукоизоляция стен наружных зданий 0,036
Wentirock max плита утепление вентилируемых фасадов 0,036
Monrock max плита утепление всех типов плоских крыш 0,039
Dachrock prof плита 0,045
Fasrock max плита тепло- и звукоизоляция внешних стен системой фасадного утепления методом «легким мокрым» 0,037
Fasrock L плита 0,042
Fasrock плита 0,039
Stroprock плита тепло- и звукоизоляция полов на грунте и перекрытий под бетонной стяжкой 0,041
Alfarock мат изоляция труб и трубопроводов 0,037
Rockmata мат 0,036
Wired Mat и Alu Wired Mat мат 0,042

Использование минеральной ваты

Роквул для теплоизоляции дома позволяет зимой сохранять тепло, а летом – прохладу. Плиты и маты обладают оптимальным коэффициентом теплопроводности – от 0,035 до 0,045 Вт/м К. Утеплители данного производителя широко используются в строительстве частных, общественных и производственных зданий.

Наиболее низкий коэффициент теплопроводности (0,035-0,037 Вт/м К) имеют плиты Superrock, Panelrock, Wentirock max, Fasrock max, а также маты Rockmata, Alfarock. 

Видео – краш-тест на огнестойкость минеральной ваты

Каталоги продукции и инструкции по монтажу ведущих производителей

Изовер

Каталог ISOVER ВентФасад

Каталог ISOVER Классик Плюс

Каталог ISOVER Классик

Каталог продукции ISOVER для Сауны

Каталог продукции ISOVER СкатнаяКровля

Каталог продукции ISOVER ШтукатурныйФасад

Инструкция по монтажу фасадной теплоизоляции

Каталог продукции ISOVER на основе каменного волокна

Каталог продукции ISOVER на основе стекловолокна

Утепление скатных кровель и мансард

Кнауф

Инструкция по монтажу теплоизоляции «Вентилируемый фасад»

Инструкция по монтажу системы теплоизоляции «Скатная кровля»

Каталог профессиональных решений по тепловой, пожарной и звуковой защите зданий

Натуральный утеплитель для частного домостроения, каталог продукции

Новое поколение натуральных безопасных утеплителей от Кнауф

Ursa

URSA теплоизоляция из минерального волокна

Каталог утеплителей Урса – Скатные крыши

Каталог утеплителей Урса – Плоские крыши

Каталог утеплителей Урса – Навесные вентилируемые фасады

Каталог утеплителей Урса – Полы и перекрытия

Каталог утеплителей Урса – Перегородки

Каталог утеплителей Урса – Штукатурные фасады

Каталог утеплителей Урса – Трехслойные наружные стены из камней, блоков и жел

Каталог утеплителей Урса – Каркасные стены и стены из сэндвич-панелей

Каталог утеплителей Урса – Стены подвалов и фундаменты

Ниже представлены коэффициенты теплопроводности и использование разных марок рассматриваемых производителей.

Теплопроводность минеральной ваты 👉 характеристика и сравнение с другими утеплителями

С наступлением холодов каждый из нас пытается сохранить в своем доме тепло. Поскольку природные ресурсы не бесконечны, и цена на них с каждым годом растет, все больше граждан предпочитает утеплять свои дома теплоизоляционными материалами. Благодаря им, в зимнее время можно сохранить дом теплым при низком расходе топлива и прохладным в летние месяцы. Поскольку строительная сфера предлагает большой выбор утеплителей, важно знать коэффициент теплопроводности каждого из них. Тема нашей статьи – теплопроводность минеральной ваты.

Минеральная вата

Содержание статьи

Описание минеральной ваты

Среди специалистов большой популярностью пользуется минеральная вата. Она считается одним из лучших теплоизоляторов, поскольку:

  • безопасна для человеческого организма;
  • очень эффективна;
  • сравнительно недорогая.

Теплопроводность и специфика

Теплопроводностью называют возможность предмета пропускать и отдавать тепло. Каждый утеплитель обладает определенной теплопроводностью. От ее коэффициента зависит качественный показатель вещества и область его применения.

На теплопроводность ваты влияет марка и состав. Средняя цифра варьируется в рамках 0,034-0,05 Вт/м*К. Этот показатель весьма низкий, поэтому вата – это хороший теплоизолятор.

У рыхлой минеральной ваты коэффициент еще ниже — 0,035-0,047, поскольку воздушные «подушки» лучше задерживают тепло. У тяжелой минваты коэффициент равен 0,48-0,55 Вт/м*К.

Для сравнения предлагаем вашему вниманию коэффициенты других утеплителей:

  • у пенополиуретана – 0,025;
  • у вспененного каучука – 0,03;
  • у легких пробковых листов – 0,035;
  • у стекловолокна – 0,036;
  • у пенопласта – 0,037;
  • у пенополистирола и поролона – 0,04;
  • у легкой МВ – 0,039-0,047;
  • у стекловаты – 0,05;
  • у хлопковой ваты – 0,055.

Чем ниже коэффициент, тем качественнее утеплительный материал. В отличие от пенопласта, минвата обладает несколько пониженным энергоемким показателем. Но при сопоставлении с этими материалами, она характеризуется лучшей огнестойкостью, и избавлена от вредных элементов.

Поскольку вата обладает низким коэффициентом теплопроводности, ее применяют для утепления построек с внутренней и наружной стороны.

Как выбрать минвату и рассчитать толщину утеплителя

У любого здания есть своя норма теплосопротивления. На этот показатель влияет климатическая зона, в которой находится постройка.

Каждый утеплитель имеет индивидуальный показатель теплопроводимости. На основе этого крайне важно сделать правильное теплоизоляционное условие, которое сократит использование энергии для отопления и охлаждения постройки.

Если использовать минвату для уже готового здания, то при расчете учитывают:

  • тип и сечение материала;
  • коэффициент теплопроводности;
  • показатель теплоизоляции.

Важно! Домам, которые только возводят, намного проще подобрать стройматериалы, утеплитель и отделку.

Чтобы верно рассчитать толщину утеплителя, важно знать показатель:

  • стандарта теплосопротивления постройки в конкретном регионе;
  • теплосопротивления материала, используемого в строительстве;
  • КТ утеплителя.

Специалисты используют формулу: K=R/N.

K – теплосопротивление стены;

R – толщина материала;

N – КТ.

С помощью этой формулы можно узнать показатель теплосопротивления стены. Основываясь на просчитанном результате, легко узнать необходимую толщину теплоизоляции.

Минеральная вата как утеплитель

Каждый теплоизолятор имеет свои отличительные достоинства и минвата не стала исключением. При сравнении с другими похожими материалами, она:

  • не содержит вредных примесей;
  • безопасна для человека;
  • легко монтируется;
  • обладает длительным эксплуатационным сроком.

Предлагаем вашему вниманию сравнение минваты с экструдированным пенополистиролом.

Категория Минвата Пенополистирол
Прочность сжатия 37-190(+/-10%) 28-53 (+/-10%)

 

Водопоглощение за сутки Меньше 0,4 0,2-0,4
Горение Не горит Выпускает токсины
ПТП НГ, Т2 Г1, Д3, РП1
Рабочая температура -180 — +650, плавится при 1000 градусов -50 — +75, при 200-250 градусах выпускает токсины
Паропроницаемость 0,31-0,032 0,007-0,012
Безопасность +
Теплосопротивление 0,036-0,045 0,03-0,033
Звукоизоляция и ветрозащитность + +
Устойчивость к влажности + +
Устойчивость к нагрузке +
Сохранение размера +
Эксплуатация 50 лет (реальная – 15) 50 лет (действительная – 20)
Удобный монтаж + +
Огнеустойчивость +

Рассмотрим более детально известных производителей минеральной ваты.

Производители минваты

Производством утеплителей занимаются различные фирмы, но среди них наибольшим спросом пользуются:

  • KNAUF;
  • ROCKWOOL;
  • ISOVER;
  • URSA;
  • Технониколь.

KNAUF

Минвата этой фирмы уже долгое время занимает лидирующие позиции среди утеплителей. Производитель занимается созданием стройматериалов более 65 лет. Для рынка утеплителей она выпускает только один продукт – минвату.

Она очень проста в монтажных работах и отличается превосходными техническими характеристиками. Эффективность продукта невозможно переоценить. KNAUF выпускают только экологически чистый утеплитель без любых вредных составляющих компонентов.

При нарезании плит отсутствует пыль, поэтому нет необходимости использовать дополнительные защитные меры. Благодаря гидрофобизаторам и водоотталкивающим веществам, вата не боится влаги. Помимо этого, она устойчива к перепадам температуры и огню.

Коэффициент теплопроводности KNAUF равен 0,035-0,4 Вт/м. Это считается весьма низким показателем, поэтому ее активно применяют для обработки жилого и коммерческого помещения. На рынке представлена в листах и матах.

KNAUF

ROCKWOOL

Коэффициент теплопроводности минеральной ваты ROCKWOOL  достоин внимания. Данный материал имеет несколько наименований, у каждого из них два вида: плита и мат. К примеру, Rockmin с коэффициентом 0,039Вт/м*К, изготовляется в форме плит. Его используют с целью тепло- и звукоизоляции чердака, стены, кровли и вентилируемого покрытия.

Domrock утепляет потолки, блочные перекрытия и стены из каркаса. Этот вид утеплителя ROCKWOOL имеет коэффициент 0,045. Panelrock продается в форме плит. Его рекомендуется применять для тепло- и шумоизоляции стен с наружной стороны. Коэффициент теплопроводности составляет 0,036.

Плиты Monrock max целесообразно использовать для обработки плоской кровли. Коэффициент теплопроводности данного типа плит составляет 0,039Вт/м*К. Еще один стоящий продукт от ROCKWOOL – минвата Stroprock с коэффициентом 0,041Вт/м*К. Этим материалом целесообразно утеплять пол и перекрытия, одни из которых устраивают на грунте, а другие располагают под бетон.

Будет неправильным не уделить внимание минвате Alfarock, которой изолируют трубопроводы и трубы. Коэффициент теплопроводности Alfarock — 0,037Вт/м*К.

ROCKWOOL

ISOVER

Еще один известный производитель качественной минваты. Если представлен рулон с маркировкой «Классик», то коэффициент теплопроводности материала составляет 0,033-0,037. Утеплитель рассчитан для обработки тех мест построек, которые подвергаются нагрузкам.

При покупке минваты Каркас-П32, утепление помещение придется выполнять плитами с коэффициентом 0,032-0,037 Вт/м*К. У матов Каркас-М37 он равен 0,043. Их тоже рациональнее использовать на каркасных конструкциях. С этой же целью можно использовать Каркас М-40-Ал с коэффициентом 0,046.

У вышеописанных материалов незначительный коэффициент, благодаря которому они обладают прекрасной звуко- и теплозащитой. Одно из основных показателей в этой категории выпадает структуре волокон. Чтобы эффективно изолировать каркасные стены, можно использовать минвату Каркас-П32, у которой коэффициент — 0,032. Этот показатель самый низкий.

ISOVER

URSA

Чтобы правильно подобрать утеплительный материал, следует знать его основные показатели. Минвата Урса не стала исключением. Чтобы хорошо утеплить крышу, пол и стены, рационально купить вату Урса Гео М-11 с коэффициентом – 0,040 Вт/м*К. Плитами, замотанными в рулоны, с названием Урса Гео, лучше обрабатывать скатные крыши. Коэффициент этого продукта – 0,035.

Чтобы изолировать полы, акустические потолки и перекрытия, лучше всего использовать вату в рулонах Урса Гео Лайт. Ее коэффициент составляет 0,044. Оценивая отзывы специалистов и потребителей, продукция фирмы Урса обладает отличным качеством. При использовании данного материала для теплоизоляции дома, можно сформировать дышащую поверхность с воздушной прослойкой. Применение уникальных рецептов и экологически чистых технологий позволяет компании Урса изготавливать качественный и долговечный продукт.

URSA

Технониколь

Продукция этого производителя составляет достойную конкуренцию вышеперечисленным фирмам. Коэффициент минваты Технониколь – 0,038-0,042Вт/м*К. Минеральная вата является гидрофобизированными негорючими плитами, которые обладают шумо- и теплоизоляционными свойствами. В основе продукта – горные породы базальтовой группы.

Технониколь подходит для любого строительства, а так же для утепления стен. В последнем случае слой утеплителя нужно покрывать тонкослойной штукатуркой. Минеральная вата Технониколь не горит, показатель паропроницаемости – 0,3Мг/(м*ч*Па). Водопоглощение составляет 1 процент от объема. Плотность вещества варьируется в рамках 125-137 кг/м³.

Помимо коэффициента теплопроводности минваты, важно знать ее другие параметры:

  • ширина – 60 см;
  • длина – 120 см;
  • толщина – 4-15 см.

Коэффициент теплопроводности сендвич-панелей

Еще один популярный продукт на строительном рынке – сендвич-панели из минваты. Их показатель варьируется в пределах 0,20-0,82. Звукоизоляция составляет 24 дБ. Прочность на срезе и сжатия – 100 кПа. Плотность панелей – 105-125 кг/м³.

При монтаже плит не нужно использовать какую-то специальную технику. Материал устойчив к:

  • ультрафиолету;
  • температурным перепадам;
  • ржавчине;
  • огню.

У них превосходное шумо- и теплоизоляционное качество. Если панель повредилась, ее можно заменить. Материал не перегружает фундамент. В большинстве профильных магазинов представлена широкая цветовая гамма панелей, поэтому каждый покупатель может легко выбрать подходящий вариант.

Итог

Решившись на утепления дома минватой, уделите особое внимание расчету коэффициента теплопроводности. Только так вы сможете подобрать правильный материал, который сохранит дом теплым в холодную погоду и прохладным в жаркую.

Теплопроводность минеральной ваты, особенности и преимущества

Строительная отрасль развивается стремительно, появляется все больше новых технологий. Поэтому многие люди сейчас отдают предпочтение строительству загородных домов. Чтобы обеспечить комфортное проживание в доме, необходимо позаботиться о его утеплении минватой. Для этого важно знать коэффициент теплопроводности минеральной ваты. Структурность материала

  Таблица характеристик популярных материалов

 

Строительный рынок предлагает огромнейшее разнообразие теплоизоляционных материалов, которые отличаются не только своими эксплуатационными характеристиками, но и стоимостью. Если вы решили осуществить утепление коттеджа, а у вас нет базовых знаний и навыков в этом деле, то, чтобы не ошибиться в выборе, лучше всего воспользоваться советами и рекомендациями специалистов. В статье мы подробно рассмотрим специфику проведения работ с использованием минваты, потому что теплопроводность сэндвич-панелей как основного материала чрезвычайно важна для утепления.

Характерные особенности утеплителя

Минеральная вата наделена множеством свойств, самым главным из которых является отличная устойчивость к деформациям любого характера. Кроме того, панели из нее имеют высокую прочность, отличаются надежностью и долговечностью. Как уже было сказано, сейчас на рынке существует достаточно обширный перечень материалов, которые могут пригодиться для утеплительных работ. К самым популярным среди них можно отнести утепление:

  • плитами пенопласта;
  • асбестом;
  • минватой;
  • каменной ватой и т. д.

Необходимо отметить, что минеральная вата считается одним из наиболее доступных вариантов. Ее активно используют уже больше двух десятков лет. Даже учитывая факт появления новых технологий и строительных продуктов, ничто так и не смогло вытеснить данный материал с полок магазинов. Но не стоит забывать о том, что она не только доступна и долговечна, но и имеет некоторые особенности применения. В состав ваты входит множество компонентов, соответственно, существует немало ее разновидностей. Зависимость структуры и теплопроводности

  Минвата в разрезе

Каждая из вариаций наделена своими качественными свойствами, а также волокнистостью. Если говорить о последнем критерии, то специалисты в строительной отрасли разделяют вату с вертикальной, гофрированной, а также горизонтальной волокнистостью. Чтобы выбрать наиболее подходящий вариант, в каждом из случаев необходимо брать в расчет специфику сфер применения.

Основные преимущества

• Отличная устойчивость к высоким и низким температурным показателям.

• Устойчивость к влиянию климатических, химических и механических факторов.

• Обеспечение хорошей теплоизоляции.

• Звукоизоляционные свойства.

  Процесс утепления

 

Это далеко не полный перечень достоинств, которые делают данный материал востребованным на строительном рынке. Так как в его составе преимущественно натуральные компоненты, его можно по праву назвать безопасным для человеческого здоровья. Даже во время длительной эксплуатации вы можете быть уверенными в том, что в воздух не будут попадать никакие токсические отходы (в том числе при условии высоких температур). Не забывайте и о том, что, применяя утеплительный материал для внутренней отделки, важно обращать внимание на его способность пропускать пары, а также коэффициент теплопроводности ваты. Она наделена всеми характеристиками для обеспечения проводимости паров на должном уровне. Единственное, о чем важно помнить, так это об особой осторожности при работе с материалом из-за его хрупкости. Сопротивление строительных материалов

 

Область применения минеральной ваты

Вата для утепления обладает незначительным коэффициентом проводимости тепла, поэтому она используется в разных строительных и промышленных областях. Важно подчеркнуть, что именно она является практически незаменимым теплоизолятором, если речь идет о работе с горячими ограждающими элементами, потому что имеет низкий уровень возгораемости.

 

Кроме того, сейчас она активно используется в утеплении фасадов зданий, а также для создания внутренней изоляции в бетонных и железобетонных постройках. Минеральная вата применяется для обустройства систем водоотвода и отопления. В последние несколько лет из-за своей доступности для возведения небольших бань также начал использоваться данный материал. Сравнительная характеристика утеплителей

Теплопроводность минваты: важные критерии

Теплопроводность – это способность какого-то объекта или предмета пропускать тепловую энергию. Абсолютно все материалы, применяемые сегодня в строительстве (и минераловатный утеплитель не исключение), обладают определенной теплопроводностью, которую можно количественно оценить в виде коэффициента теплопроводности.

Научно доказано, что твердые материалы не способны удерживать тепло на протяжении долгого времени, именно поэтому возникает необходимость в обеспечении дополнительного утепления жилых и промышленных конструкций.



Специалисты в строительной отрасли оперируют термином «теплоизоляционный материал». Такое понятие характеризует изолятор, который наделен низкой теплоотдачей. Сюда можно отнести облицовочную плитку, стекловату, кирпич и тому подобные. Причем на уровень теплопроводности во многом оказывает влияние структурность материалов, а также их плотность и прочие характеристики.

Теплопроводность ваты может варьироваться в пределах 0,038-0,055 Вт/м*К.
Если проводить сравнение с аналогами, данный материал считается наиболее оптимальным для строительных работ. Сегодня производство сэндвич-панелей происходит по определенной схеме:

  Схема производства

 


Легко понять, что теплопроводность достаточно просто рассчитать по объему и толщине материала. К примеру, стекловата имеет коэффициент теплоотдачи 0,044 Вт/м*К, поэтому толщина ее слоя должна быть не меньше 189 мм.

Выбор утеплителя, чем утеплить дом

На современном строительном рынке присутствует не один, и даже не десять видов утеплителя, а гораздо больше. Большинство из них имеют различное происхождение и абсолютно не похожи друг на друга. Объединяет их только низкая теплопроводность.

У материалов, достойных называться утеплителями, коэффициент теплопроводности не превышает 0,08 Вт/(м*°К). Речь идет об эффективных утеплителях. Но, кроме них, существует довольно много материалов, обладающей невысокой теплопроводностью, которые так или иначе можно задействовать при утеплении.

Выбор утеплителя зависит, прежде всего, от среды его применения. На языке профессионалов это называется «условия эксплуатации». Одним из главных критериев выбора утеплителя является водопоглощение. Влага – это первый враг теплоизоляции. Дело в том, что коэффициент теплопроводности воды намного выше, чем у любого утеплителя.

Впитываемая в утеплитель, влага снижает её свойства по удерживанию тепла в помещении.

Термоизолирующим фактором в теплоизоляции является воздух, теплопроводность которого очень низкая. Практически лишен теплопередачи только абсолютный вакуум. Однако вакуумная теплоизоляция в строительстве не применяется, во всяком случае, до сегодняшнего дня. Впрочем, некоторые производители уже пытались заработать на теме вакуума, но все эти попытки оказались не более чем спекуляцией. Речь идет о всевозможных теплоизоляционных красках, несостоятельность которых была подтверждена в лабораторных условиях.

Характеристики утеплителей

Прежде чем обращаться непосредственно к теме выбора теплоизоляции, следует разобраться в вопросе их эксплуатационных характеристик. К таковым относятся не только теплопроводность и водопоглощение. Есть еще целый ряд параметров, влияющих на выбор. Рассмотрим их по порядку.

Теплопроводность.

Данная характеристика напрямую связана с плотностью материала. Чем он плотнее, тем меньше в нём воздуха, и соответственно выше теплопроводность. Поэтому, сравнивая утеплители, обязательно учитывают их плотность.

Один и тот же утеплитель может иметь разную плотность, которая обязательно указывается в его маркировке. Так, например, у пенополистирола плотностью 25 кг/м²; коэффициент теплопроводности составляет 0,039 Вт/м·°C, тогда как при плотности 50 кг/м³; данный коэффициент увеличивается до 0,041 Вт/м·°С. То же касается минеральной ваты, пенополиуретана, пеностекла, пенофола и прочих утеплителей.

Сравнивать разные утеплители без учета их плотности нет смысла. Чтобы корректно сравнить утеплители по параметру теплопроводности, необходимо брать материалы равной плотности.

И ещё один момент. Нельзя путать теплопроводность (Вт/м⋅К) и сопротивление теплопередаче (м²·°С/Вт). Это противоположные по смыслу понятия. Кроме того, когда говорят о сопротивлении теплопередаче, то обязательно указывают толщину материала или ограждающей конструкции, тогда как коэффициент теплопроводности подразумевает фиксированный слой метровой толщины.

Плотность

Все эффективные утеплители имеют малый вес. Один кубометр утеплителя весит 15-50 кг. Промышленность выпускает утеплители различной плотности для того чтобы предоставить строителям определенный выбор по прочностным характеристикам. Чем плотнее утеплитель, тем он сильнее сопротивляется различным деформационным нагрузкам.

Прочность

Необходимость в прочности теплоизолятора в строительстве возникает нередко. Кроме того, что утеплитель не должен сжиматься под собственным весом, необходимо чтобы он легко справлялся и с дополнительными нагрузками. При фасадном утеплении материалы должны обладать достаточной прочностью и несущей способностью, чтобы выдержать собственный вес и вес штукатурки (при методе скрепленной изоляции). Чем плотнее утеплитель, тем он прочнее и крепче, однако вместе с этим увеличивается его теплопроводность и падает эффективность. Очевидно, что многие характеристики утеплителей тесно взаимосвязаны между собой.

Водопоглощение

Существуют утеплители с высоким и средним водопоглощением, а также маловпитывающие и совершенно не впитывающие воду материалы. Нет необходимости запоминать параметры водопоглощения того или иного утеплителя, достаточно просто знать, какой из них впитывает воду, а какой нет.

Легче всего напитываются водой волокнистые утеплители, такие как минеральная вата, эковата, войлок, шерсть и т.д. Вода вопреки законам гравитации способна подняться капиллярным способом практически на любую высоту. Например, если минеральная вата на фасаде будет иметь доступ к воде на уровне цоколя, то постепенно вымокнет весь фасад до самой крыши. Однако это не повод отказываться от минваты (подробнее об этом в отдельной главе о минеральной вате).

Наименьшим водопоглощением обладают вспененные утеплители с закрытыми ячейками в их структуре. К таким материалам, прежде всего, относится пеноплекс (экструдированный пенополистирол) и пеностекло. У названных утеплителей практически нулевое водопоглощение, благодаря чему их часто используют во влажных средах – для утепления подвалов, фундаментов и эксплуатируемых кровель. Оба утеплителя, кроме всего прочего, обладают ещё и значительной прочностью на сжатие, что делает их ещё более пригодными для утепления названных конструкций.

Обычный пенополистирол (пенопласт), особенно самые легкие его сорта, имеет определенное водопоглощение. Производители указывают о.2% по объему в течение 24 часов. Однако уже из практики известно, что обычный (неэкструдированный) пенополистирол способен напитать значительное количество влаги, которая теоретически может заполнить собой все его пустоты. Но так происходит редко, поскольку пенополистирол отдает влагу ещё легче, чем поглощает её. Благодаря этому свойству данный утеплитель считается одним из самых удобных и практичных при фасадном утеплении.

Горючесть

Класс горючести является очень важной характеристикой при выборе утеплителя. Горючие утеплители, такие как пенополистирол, разрешается использовать только при условии их отделки негорючими материалами, например, цементной штукатуркой. Для снижения горючести используются специальные добавки, направленные на самозатухание. С их помощью горючие утеплители не поддерживают самостоятельное горение.

С точки зрения пожарной безопасности менее всего подходят утеплители из натуральных волокон, такие как эковата, шерсть, джут, лен и т.д. Для снижения их горючести не только применяют антипиреновые добавки, но и уплотняют структуру. Если волокна мощно спрессованы, то к ним уменьшается доступ кислорода и горение сменяется тлением. Это повышает шансы успешного пожаротушения.

Плохо горит натуральная пробка, к тому же её не так просто поджечь. А вот тростниковые и соломенные маты легко воспламеняются, поэтому их следует защищать негорючими материалами.

Специфика утеплителей

В предыдущей главе вкратце раскрыта суть основных характеристик утеплителей. Теперь рассмотрим, как эти характеристики влияют на выбор того или иного утеплителя.

Для фасадного утепления чаще всего применяется пенополистирол и минеральная вата. Эти утеплители имеют сопоставимые коэффициенты теплопроводности с учетом их плотности. Вата на 10-30% дороже пенополистирола и её сложнее крепить, однако она считается более экологичной и в значительной степени пожаробезопасной.

Каменная вата (разновидность минеральной ваты, производимая из базальта) выдерживает высокие температуры до 1000°С и способна защитить конструкции от внешних источников жара и пламени.

Каменную вату производят из базальта.

Пенополистирол дешевле, легче монтируется и терпит огрехи монтажа. Благодаря низкому водопоглощению и легкой отдаче влаги, пенополистирол остается эффективным теплоизолятором практически в любых условиях, которые могут ожидать его с внешней стороны фасада. Его главный недостаток – низкая паропроницаемость. Стало быть, пенополистиролом нет смысла утеплять деревянные дома, достоинством которых являются дышащие стены.

Больше всего споров возникает как раз между приверженцами минеральной ваты и пенополистирола, поскольку это самые экономичные и популярные утеплители. Объективно оба утеплителя хороши, но их следует применять по назначению.

При помощи минеральной ваты лучше всего утеплять по схеме вентилируемого фасада. Данная схема подразумевает крепление минераловатных плит вплотную к стене, а с внешней стороны эти плиты отделываются клинкером или панелями с вентзазором. Восходящие тепловые потоки, возникающие в вентзазоре, создают постоянную тягу и подсушивают волокнистые плиты. Таким образом, минераловатный утеплитель остается сухим и не переувлажняется паром, просачивающимся из помещения через поры в стеновом материале.

Минеральная вата используется и при утеплении методом скрепленной теплоизоляции (мокрый метод). Однако риск накопления избытка влаги в этом случае присутствует даже при полном соблюдении технологии. Дело в том, что насколько бы проницаемой не оказалась бы штукатурка, она все равно в несколько раз хуже проводит пар, нежели минеральная вата. А это уже само по себе есть нарушение порядка расположения материалов ограждающей конструкции, при котором каждый последующий слой стены должен быть более паропроницаем, чем предыдущий. Поэтому сегодня многие специалисты сходятся во мнении, что минеральная вата не лучший выбор для легкого и тем более тяжелого мокрого метода фасадного утепления.

Суспензионный пенополистирол (обычный пенополистирол со структурой в виде шариков) оптимален при утеплении каменных и бетонных стен методом скрепленной теплоизоляции, а также в структуре слоеных стен.

Суспензионный полистирол — самый обычный полистирол.

При внешней защите негорючими материалами (штукатурка, кирпич) его возгорание исключено даже при продолжительном воздействии локальных источников пламени. Но в вентилируемых фасадах его применение категорически недопустимо. Даже самые самозатухающие виды пенопласта в вентилируеумых фасадах сгорают с высокой скоростью и потушить их очень проблематично. Восходящий поток в вентзазоре становится настолько мощным, что вызывает эффект автогена.

Экструзионный пенополистирол состоит из закрытых пор, внутрь которых не может попасть вода, благодаря чему его водопоглощение стремится к нулю. Этот материал дороже своего суспензионного собрата, но это вызвано не столько разницей в качестве, сколько разными технологиями производства.

Экструзионный или экструдированный полистирол.

Экструзионный пенополистирол есть смысл использовать там, где утеплителю угрожает влага. Данный материал хорош при утеплении подвалов, фундаментов, инверсионных кровель.

Однако при выборе стоит принимать во внимание температурный диапазон эксплуатации пенополистиролов. Так, экструзионный пенополистирол вряд ли можно посоветовать в качестве утеплителя для бань и саун. Здесь будет более безопасна каменная вата.

Но самым лучшим утеплителем в данном случае является пеностекло. Этот материал не горит, не выделяет вредных веществ при любых температурах и совершенно не боится влаги.

Пеностекло.

Не менее хорош пробковый агломерат, но проигрывает пеностеклу по жаростойкости.

Пробковый агломерат.

Натуральные утеплители. Для застройщиков, ставящих приоритетом использование натуральных материалов, важна экологическая безопасность утеплителя. Они выбирают материалы, произведенные из натурального сырья.

На постсоветском пространстве натуральные утеплители используют редко. Во-первых, они, как правило, дороже; во-вторых, наши люди считают, что нет особой разницы чем утеплять, поскольку теплоизоляция находится снаружи здания, а не внутри. Тем не менее, есть узкая категория застройщиков, которые выбирают именно натуральный утеплитель, поскольку занимаются строительством экологического жилья.

Натуральными утеплителями имеет смысл утеплять дома из натуральных материалов, прежде всего из дерева. Существуют отдельные технологии, в которых натуральный утеплитель является основным слоем ограждающих конструкций. Например, эковата, получаемая из экологически чистого бумажного вторсырья.

Эковата.

Её напыляют в мокром виде машинным способом, как штукатурку. После высыхания она превращается в непрерывную теплоизолирующую оболочку. Эковату применяют при строительстве каркасных домов, заполняя ею пространство между обшивками.

Одним из самых экологичных утеплителей является натуральная пробка.

Натуральная пробка.

Материал этот сам по себе уникальный. Пробка – это кора пробкового дуба, произрастающего на португальских и испанских побережьях средиземноморья и Атлантики. В пробке содержатся бактерицидные вещества, противодействующие её биоразложению. Она гипоаллергенна, не имеет запаха, не выделяет никаких вредных веществ даже при нагревании. Кроме того, пробка плохо горит и склонна к самозатуханию. Вместе с тем по теплопроводности она сопоставима с минеральной ватой, поэтому считается очень эффективным натуральным утеплителем.

Цельная натуральная пробка – материал недешевый. Однако для утепления используют пробковые агломераты (техническая пробка). Агломерат представляет собой спрессованную пробковую крошку, которая является отходом производства декоративных пробковых отделок. Агломераты состоят на 100% из пробки. Крошка связывается собственными клейкими веществами, выделяющимися из неё при нагревании.

Пробковые агломераты могут различаться по цвету от темно-коричневого до почти черного. Чем темнее агломерат, тем сильнее он нагревался в процессе производства. Но цвет агломерата по большому счету на эксплуатационные характеристики материала не влияет. Значение имеет только плотность. Чем она ниже, тем ниже теплопроводность агломерата.

Практически все натуральные утеплители хорошо проводят сквозь себя пар. Данное свойство важно, если ставится цель сохранения высокой паропроницаемости ограждающих конструкций.

Минеральная вата является условно натуральной, поскольку производится на основе песка или базальта (стеклянная и каменная вата соответственно). Однако в ней присутствуют химические добавки, антигигроскопичные, противопожарные, разрыхляющие и т.д. Эти добавки не позволяют отнести минвату к разряду полностью натуральных утеплителей.

Выбор утеплителя при строительстве дома

Выше было уже много сказано о сфере применения существующих утеплителей. Но во избежание ошибочных трактовок в этой главе будут предложены готовые решения. В то же время, благодаря предыдущим информационным блокам, логика этих решений будет понятна.

Каменные и бетонные стены можно утеплить тремя способами: слоеная стена, «мокрый метод» (скрепленная теплоизоляция) и вентилируемый фасад. Рассмотрим каждый из них в отдельности.

Слоеные стены – это внешние ограждающие конструкции, в толще которых расположен слой утеплителя. Они бывают двухслойными и трехслойными. Двухслойная стена состоит из несущего слоя и утеплителя с фасадной отделкой. Стены, утепленные мокрым методом тоже относятся к двухслойным. Трехслойные стены состоят из несущего слоя, утеплителя и фасадного слоя.

Трёхслойная стена.

Утеплителем в таких конструкциях служат вспененные материалы, обладающие низким водопоглощением. Применение в трехслойных стенах минеральной ваты считается ошибкой. Вата, зажатая между двух слоев кладки без вентзазора, станет увлажняться, утрачивая свои теплоизолирующие свойства.

Мокрый метод подразумевает крепление утеплителя с внешней стороны стены с последующим тонкослойным оштукатуриванием. Этот метод применяется как при новом строительстве, так и при термомодернизации старых домов.

Утепление по технологии «мокрый фасад».

В данном случае применяют и пенополистирол, и минеральную вату. Однако авторитетные специалисты считают, что применение волокнистых утеплителей, в частности минваты, в данном случае имеет ряд недостатков. Дело в том, что оштукатуренная минвата с трудом избавляется от пара, деффундирующего изнури помещений. В строительной практике регистрировались случаи, критического намокания ваты под штукатуркой.

Более подробно об этой технологии утепления можно узнать в отдельной статье: способы утепления фасада.

Вентилируеумый фасад. В данном случае на стену накладывается слой из плит минеральной (каменной) ваты, а фасадная отделка в виде клинкерной кладки или панелей возводится с вентиляционным зазором шириной 3-4 см.

Монтаж утеплителя по технологии «вентилируемый фасад».

Данная схема позволяет минеральной вате свободно избавляться от лишней влаги. Вспененные утеплители в вентилируемых фасадах не применяются. Во-первых, в этом нет никакого практического смысла, поскольку пенные утеплители сами по себе являются паробарьерами. Во-вторых, синтетические пены в структурах с вентиляционным зазором легко воспламеняются и сгорают за считанные секунды.

Подробнее о технологиях такого способа утепления можно узнать в отдельной статье: правильное утепление методом «вентилируемый фасад».

Термомодернизация

Если нужно утеплить уже существующий дом, то выбор утеплителя зависит, прежде всего, от способа утепления. Каменные и бетонные стены целесообразнее утеплять методом скрепленной теплоизоляции (мокрый метод) с использованием пенополистирола. При желании получить более изысканную отделку, например, клинкер или фасадные панели, рекомендуется сооружать вентилируемый фасад (утеплитель – вентиляционный зазор – фасадный слой). В вентфасадах используется только минеральная вата.

Теплые штукатурки

В отдельных случаях привести сопротивление теплопередаче стены к нормативным показателям можно при помощи нанесения слоя теплой штукатурки. Данный класс материалов использует в качестве наполнителя гранулы с низкой теплопроводностью. Чаще всего это перлит, вермикулит или пенополистирольные шарики.

Тёплая штукатурка.

Большинство теплых штукатурок являются паропроницаемыми и обладают достаточно низкой теплопроводностью. Однако для получения выраженного эффекта утепления необходимо наносить их толстым слоем. Теплые штукатурки чаще всего используют в качестве дополнительного утепления стен из ячеистых бетонов, а также при термомодернизации.

характеристики и свойства утеплителей самых популярных производителей

Зимой нужно отапливать помещение, но ограниченность ресурсов и забота о природе стимулирует разумно использовать энергию.

Поэтому за последние пару лет особую популярность получили разные теплоизоляционные материалы, которые нужны для сокращения расхода отопительной энергии.

Благодаря правильному выбору утеплителя, можно сделать здание теплым в зимнее время года и едва прохладным в летние месяцы.

Минеральная вата: характеристики и свойства

На особом счету минеральная вата, которая является одним из лучших теплоизоляционных материалов: она безвредна для здоровья, доступна по цене и высокоэффективна.

Теплопроводность и особенности минеральной ваты

Теплопроводность — свойство предмета пропускать через себя тепло и отдавать его. У любого утеплителя есть своя теплопроводность, которая определяет качество материала, область ее использования.

Теплопроводность минеральной ваты зависит от марки и состава. В среднем показатели равны 0,034-0,05 Вт/м*К. Данные очень низкие, поэтому минеральная вата является прекрасным теплоизоляционным материалом.

Более рыхлая структура минваты имеет более низкий уровень теплопроводности, поэтому тепло лучше задерживается в воздушных «подушках».

У тяжелой минваты теплопроводность равна 0,48-0,55 Вт/м*К, а у легкой (с рыхлой структурой) теплопроводность составляет 0,035-0,047 Вт/м*К. Сравнить коэффициент теплопроводности минеральной ваты с различными видами утеплителей поможет таблица 1.

Таблица 1. Коэффициент теплопроводности популярных утеплителей
Название материала Коэффициент теплопроводности, Вт/м*К
Пенополиуретан 0,025
Вспененный каучук 0,03
Легкие пробковые листы 0,035
Стекловолокно 0,036
Пенопласт 0,037
Пенополистирол 0,04
Поролон 0,04
Легкая минеральная вата 0,039-0,047
Стекловата 0,05
Хлопковая вата 0,055

Чем ниже значение теплопроводности, тем лучше утеплитель. В сравнении с пенополистиролом и пенопластом, минеральная вата дает менее эффективные энергоемкие показатели. Но, если сравнить огнестойкость и вредность этих утеплителей, то минвата явно выигрывает.

Минеральная вата не горит и не содержит потенциально вредных веществ.

Одинаково сохраняют тепло:

  • пенополистирол экструдированный (40 кг/м3) при толщине слоя 95 мм;
  • минеральная вата (125 мг/м3) — 100 мм;
  • ДСП (400 кг/м3) — 185 мм;
  • дерево (500 кг/м3) — 205 мм.

Минеральная вата имеет низкий коэффициент теплопроводности, поэтому используется везде. Ее используют для утепления фасадов зданий, для внутреннего и наружного утепления.

Выбор минваты и расчет толщины утеплителя

Любое здание имеет свою норму теплосопротивления. Цифры зависят от климатической зоны и отличаются, исходя из региона.

У каждого утеплителя есть свой уровень теплопроводимости. Поэтому важно создать комфортные теплоизоляционные условия, которые сократят потребление энергии на отопление и охлаждение помещения.

Если здание уже построено, расчеты нужно проводить, исходя из типа материала, его сечения, провести расчет теплопроводности, узнать цифры по теплоизоляции. Для домов, которые только строятся, больше возможностей для выбора стройматериалов, утеплителей и отделки.

Для расчетов толщины утеплителя нужно знать три цифры:

  • региональные стандарты теплосопротивления зданий;
  • коэффициент теплосопротивления стройматериала сооружения;
  • коэффициент теплопроводности утеплителя.

Расчет проводите по формуле:

K = R/N,

где K — цифра теплосопротивления стены; R — толщина слоя утеплителя; N — коэффициент теплопроводности.

Эта формула поможет рассчитать теплосопротивление стены. И, на основе полученных данных, можно вычислить, какая нужна теплоизоляция по толщине. Полный расчет толщины утеплителя вы найдете в статье «Толщина утеплителя для стен».

Технические характеристики минеральной ваты как утеплителя

Каждый теплоизоляционный материал хорош по-своему. Минеральная вата в том числе.

Даже больше: она во многом лучше другим утеплителей, т.к. экологична, не вредит здоровью, проста в монтаже и долго сохраняет свои эксплуатационные свойства.

Для примера в таблице 2 сравним технические характеристики минеральной ваты и экструдированного пенополистирола.

Таблица 2. Технические характеристики минеральной ваты и экструдированного пенополистирола
Наименование характеристики Минеральная вата Экструдированный пенополистирол
Прочность на сжатие при 10% линейной деформации, МПа 37-190 (+/- 10%) 28-53 (+/- 10%)
Водопоглощение по объему за 24 часа менее 0,4 0,2-0,4
Время самостоятельного горения, не более, c не горючий материал разгалаются ядовитые газы
Пожарно-технические характеристики по СНиП 21-01-97 НГ, Т2 Г1, Д3, РП1
Диапазон рабочих температур, °С -180 до +650°С

При t ≥ 250°С связующее испаряется. Плавится при 1000°С

-50 до +75 °С

При 200-250°С тепла разлагаются токсичные вещества

Коэффициент паропроницаемости, мг/(м.ч. Па) 0,31-0,032 0,007-0,012
Безопасность +
Тепловое сопротивление 0,036-0,045 0,03-0,033
Звуконепроницаемость и ветрозащитное действие + +
Влагостойкость + +
Высокая стойкость к нагрузкам +
Сохранение стабильных размеров +
Долговечность 50 лет (фактическая — 10-15 лет) 50 лет (фактическая — более 20 лет)
Удобство использования + +
Трудновоспламеняемость +

Популярные производители минеральной ваты

Утеплители из минваты выпускают разные фирмы. Самыми популярными являются: KNAUF, ROCKWOOL, ISOVER, URSA, Технониколь. Продукция этих компаний соответствует стандартам безопасности, не вредит здоровью и подходит для длительного использования с целью теплоизоляции.

Минеральная вата Кнауф является одним из лидеров на рынке продажи утеплителя. Фирма производит стройматериалы более 70 лет. В сфере утепления она делает только один вид утеплителя: минеральную вату.

С ней легко работать, технические характеристики и особенности ее эксплуатации просты. А о ее эффективности можно писать поэмы. Knauf производит качественную минвату, которая не содержит вредных смол.

При нарезке плиты Кнауф не выделяет пыль, поэтому не нужны дополнительные средства защиты. Наличие в ней гидрофобизаторов и водоотталкивающих веществ сделали минвату устойчивой к влаге. Выдерживает температурные перепады, не горит.

Уровень ее теплопроводности — 0,035-0,4 Вт/м (очень низкий коэффициент). Подходит для жилых и коммерческих объектов. Выпускается в листах и матами.

Технониколь выпускают минеральную вату, которая является негорючим, звуко-, теплоизоляционным материалом, в его основе — горные базальтовые породы. Выпускает несколько серий минераловатных утеплителей.

Роклайт — продукция применяется для изоляции мансард, стен с сайдингом, трехслойных или каркасных стен, пола, перекрытий, перегородок. Имеет теплопроводность 0,045-0,048 Вт/м.

Техноблок — гидрофобный негорючий минераловатный утеплитель с теплопроводностью 0,041-0,044 Вт/м. Техновент применяется при строительстве жилья, коммерческих зданий для вентиляции фасадных систем. Обладает теплопроводностью 0,037-0,044 Вт/м.

Технофас используют для внешней изоляции стен с защитно-декоративным тонким слоем штукатурки. Теплопроводность составляет 0,036-0,045 Вт/м.

Минвата ROCKWOOL производится для разных целей. Ее используют в качестве утеплителя в домах, квартирах, для теплоизоляции скатной кровли, чердаков, подвалов, пола, наружных стен, каминов, плоской кровли. Разновидностей продукции компании ROCKWOOL очень много: все зависит от условий и цели эксплуатации.

Средняя теплопроводность материала составляет до 0,036-0,044 Вт/м. Выпускается в виде рулонов, плит, также есть продукция с односторонним алюминиевым фольгированным покрытием.

URSA используется для утепления крыш, стен, вентиляций, коммуникаций. Снижает уровень шума, обладает хорошими теплоизоляционными свойствами. Минвата УРСА подходит для жилых и коммерческих зданий.

В ее производстве участвуют песок, доломит, сода и др. компоненты. Фирма продает продукцию серии URSA GEO из стекловолокна. Ее производят из экологичных материалов, где нет вредных веществ.

Теплопроводность — 0,036-0,045 Вт/метр. Выпускают минвату URSA в плитах и рулонах, есть материалы с дополнительным фольгированным покрытием.

Минвату ISOVER можно применять для вентилируемых и штукатурных фасадов, перегородок, саун, скатных крыш, пола, утепления стен изнутри или снаружи, отопительных систем, вентиляций, каркасных конструкций. Выпускается в плитах, рулонах. Теплопроводность ISOVER составляет 0,032-0,041 Вт/м.

Выбирая минвату для утепления, правильно рассчитайте толщину теплоизоляционного материала, исходя из индивидуальных показателей здания и климатических условий региона. В этом случае вы подберете идеальный утеплитель, который сократит расход на отопление и подарит комфортное тепло зимой, нежную прохладу летом.

О видах и технических характеристиках минваты расскажут профессионалы на видео:

Об особенностях минеральной ваты как утеплителя, ее свойствах и характеристиках смотрите на видео ниже:

EURIMA — Основы теплообмена

Принципы теплопередачи помогают понять, как работает изоляция. Тепло перетекает от теплых поверхностей к более холодным, пока их температура не станет одинаковой.

Эти потоки могут иметь три формы:

  • проводимость
  • конвекция
  • радиация

Проводимость:

Проводимость — это прямой перенос тепла между соседними молекулами.Более теплая молекула передает часть своей энергии более холодным соседям. Хороший пример: когда кто-то садится на холодный металлический стул, он может чувствовать холод от стула, так как тепло от более теплого тела быстро передается к стулу посредством теплопроводности.

Конвекция:

Конвекция — это передача тепла через жидкости и газы. Примером может служить теплый воздух, поднимающийся с горячей поверхности и заменяемый более холодным и плотным воздухом, который опускается вниз. Тепло уносится с поверхности теплым воздухом.

Излучение:

Радиация — это передача энергии через пространство электромагнитными волнами. Излучаемое тепло движется по воздуху со скоростью света, не нагревая пространство между ними, точно так же, как человек ощущает тепло солнца на своем лице, тепло излучается от солнца к земле, не нагревая пространство между ними.

Теплоизоляция из минеральной ваты предотвращает конвекцию, удерживая воздух в матрице ваты. Еще воздух — хороший изолятор. Минеральная вата также задерживает излучение и ограничивает теплопроводность через корпус утеплителя.Эффективность минеральной ваты в снижении теплопередачи зависит от ее структурных свойств, таких как плотность, толщина, состав и тонкость ваты, а также от температуры, при которой она используется.

Теплопередача через изоляцию представляет собой сочетание твердой и газовой проводимости, конвекции и излучения. Это дает нелинейную характеристику зависимости теплопроводности от плотности с минимумом.

Насколько хорошо материал передает тепло через себя, называется теплопроводностью.

Теплопроводность, л (лямбда, измеренная в ваттах на метр на градус Кельвина, Вт / мК) материала представляет собой количество тепла, которое проходит через метр толщины на квадратный метр за единицу времени с разницей в температуре в один градус между лица.

Значение лямбда сравнивает способность материалов передавать тепло через них в этих фиксированных условиях. Чем ниже значение лямбда, тем лучше будет изолятор материала. (Значения лямбда для типичных материалов: медь 380 Вт / мК, алюминий 210 ​​Вт / мК; сталь 46 Вт / мК; древесина 0.21 Вт / мК; Минеральная вата 0,045 Вт / мК; Воздух 0,026 Вт / мК).

В строительных целях материал считается изоляционным, если его теплопроводность менее 0,065 Вт / мК. Типичная минеральная вата имеет 0,035-0,040 л.

Изоляционная способность изделий из минеральной ваты основана на низкой теплопроводности воздуха в карманах шерстяного материала.

Термическое сопротивление или значение R — это мера способности материала заданной толщины предотвращать прохождение тепла.Тепловое сопротивление R материала толщиной d (метры) и теплопроводностью l равно R = d / l (единицы измерения — квадратные метры, градусы Кельвина на ватт (м2 · K / Вт).

Тепловое сопротивление R является обратной величиной коэффициента теплопередачи, в то время как теплопроводность является неотъемлемым свойством материала.

Каменная вата — каменная вата

Пример — теплоизоляция из каменной ваты

Основным источником потери тепла из дома являются стены.Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1,0 Вт / м · К (плохой теплоизолятор). Предположим, что температура внутри и снаружи составляет 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 К соответственно.Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от внешних и внутренних условий (ветер, влажность и т. Д.).

  1. Рассчитайте тепловой поток ( потери тепла ) через эту неизолированную стену.
  2. Теперь предположим, что теплоизоляция на внешней стороне этой стены. Используйте изоляцию из каменной ваты толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,022 Вт / м.К и рассчитайте тепловой поток ( потери тепла ) через эту композитную стену.

Решение:

Как уже было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию как теплопроводности, так и конвекции. С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , , известным как U-фактор . Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии задачи.

  1. голая стена

Предполагая одномерную теплопередачу через плоскую стену и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0,15 / 1 + 1/30) = 3,53 Вт / м 2 K

Тогда тепловой поток можно рассчитать просто как:

q = 3,53 [Вт / м 2 K] x 30 [K] = 105.9 Вт / м 2

Суммарные потери тепла через эту стену будут:

q потери = q. A = 105,9 [Вт / м 2 ] x 30 [м 2 ] = 3177 Вт

  1. композитная стена с теплоизоляцией

Предполагая одномерную теплопередачу через плоскую композитную стену, отсутствие термоконтактного сопротивления и без учета излучения общий коэффициент теплопередачи может быть рассчитан как:

Общий коэффициент теплопередачи тогда равен:

U = 1 / (1/10 + 0.15/1 + 0,1 / 0,022 + 1/30) = 0,207 Вт / м 2 K

Затем тепловой поток можно рассчитать просто как:

q = 0,207 [Вт / м 2 K] x 30 [ K] = 6,21 Вт / м 2

Суммарные потери тепла через эту стену будут:

q потери = q. A = 6,21 [Вт / м 2 ] x 30 [м 2 ] = 186 Вт

Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Его надо добавить, добавление следующего слоя теплоизоляции не дает такой большой экономии.Это лучше всего видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитные стены . Скорость устойчивой теплопередачи между двумя поверхностями равна разнице температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

Исследование изоляционных характеристик стекловаты и минеральной ваты, покрытых полисилоксановым агентом

Изоляция в зданиях очень важна. Изоляция, используемая в здании, в основном делится на органическую и неорганическую изоляцию по изоляционному материалу.Органические изоляционные материалы из пенополистирола или полиуретана чрезвычайно уязвимы к возгоранию. С другой стороны, неорганическая изоляция, такая как минеральная вата и стекловата, очень слаба по отношению к влаге, в то время как она негорючая, поэтому ее использование очень ограничено. Таким образом, в этом исследовании была разработана влагостойкость, применимая к минеральной вате и стекловате, и измерена теплопроводность образцов, которые подвергаются воздействию влаги, путем воздействия влаги на продукт, покрытый влагостойкостью и не имеющим влагостойкости, а также оценено, как влага влияет на теплопроводность путем воздействия влаги. применяя это к неорганической изоляции.

1. Введение

Вопросы экономии энергии и сокращения выбросов углекислого газа являются важными исследовательскими проектами во всех странах. Для этого ведется разработка продукта, обеспечивающего максимальную энергоэффективность, и в последние годы проводятся исследования по разработке новых изоляционных материалов, таких как VIP (вакуумные изоляционные панели) с использованием коллоидного кремнезема и GFP (газонаполненные панели) с использованием аргона ( Ar), криптон (Kr) и ксенон (Xe) газы, которые имеют более низкую теплопроводность, чем воздух, активно развивались [1, 2].

Изоляционные плиты используются в различных областях, таких как современная архитектура и другие отрасли промышленности, и эти изоляционные плиты производятся и используются в различных формах [3]. Тем не менее, большая часть изоляции представляет собой синтетическую изоляцию в виде пенопласта, где внутри изделия создаются пористости, изоляция волоконного типа, в которой используется стекловата или минеральная вата в виде нетканого материала, изготовленного из тканевого материала, и картонные изделия, в которых используются неорганические связующие, такие как цемент с перлитом и керамическим шариком [4].

Хотя изоляцию можно классифицировать по сырью, типу и цели использования, обычно ее классифицируют по материалам. По материалу изоляция делится на органическую изоляцию и неорганическую изоляцию. Что касается органической изоляции, она имеет отличные теплоизоляционные свойства, абсорбцию и удобоукладываемость, поэтому занимает более 90% внутреннего рынка; однако в случае пожара время воспламенения пенополистирола и уретана составляет менее 5 секунд, а время, необходимое для распространения пламени, составляет 50 секунд, так что огонь быстро распространяется и при горении образуются токсичные газы, такие как формальдегид, этиленцианид (CH = CHCN ), соляная кислота и цианистый газ очень важны для человеческого организма [5].

В случае неорганической изоляции она имеет отличные характеристики огнестойкости, но ее впитывающая способность очень высока, поэтому ее недостатком являются плохие изоляционные характеристики [6]. В то время как теплопроводность воздуха составляет 0,026 Вт / мК [7], вода имеет 0,598 Вт / мК, что в 23 раза превышает теплопроводность воздуха [8]. А также лед имеет теплопроводность 1,9 ккал / м · ч ° C, что примерно в 90 или более раз превышает теплопроводность воздуха, так что содержание воды в материале может быть наиболее влиятельным элементом, определяющим теплопроводность [9].

Хотя об изменении теплопроводности изоляционного материала в результате водопоглощения широко сообщалось, об исследованиях сохранения изоляционного эффекта не сообщалось, поэтому в этом исследовании была выявлена ​​влагостойкость и подтверждена водонепроницаемость неорганической изоляции путем обработки неорганических изоляционных материалов. стекловата и минеральная вата с влагостойкостью, подвергая их воздействию влаги и измеряя количество увеличения влажности и теплопроводность [10–12].

В частности, в этом исследовании измерялся процесс, при котором тепло передается на поверхность и возникает температурный шанс поверхности в соответствии с водопоглощением минеральной и стеклянной ваты, с использованием тепловизионной камеры, и наблюдались эффект и процесс, который влага поступает на изоляционный материал [13].

2. Экспериментальный прибор и методы испытаний
2.1. Экспериментальное устройство и образец

Хотя существуют сравнительные методы измерения теплопроводности, такие как измеритель теплопроводности и метод горячей проволоки [14], в этом исследовании проверялось измерение теплопроводности в соответствии с тестом KS L 9016, и испытание проводилось с использованием измеритель теплопроводности (HFM-436) методом теплопроводности теплового потока.Стекловата и минеральная вата, использованные в этом исследовании, использовали продукцию Korea KCC. И размер образца составляет 300 × 300 × 50 мм по стандарту испытаний KS L 9016, KS F 4714. Что касается измерения образца, толщина образца была измерена точно, а теплопроводность была измерена в месте, где температура окружающей среды вокруг экспериментального пространства поддерживалась постоянной. Коэффициент теплопроводности измеряемого образца был рассчитан по закону теплопроводности Фурье или по следующему уравнению [15]: где — тепловой поток / плотность теплового потока =, — указывает, что направление теплового потока — это направление охлаждения, is, — тепловое проводимость и is (движущая сила теплового потока) (К / м).

Если смотреть на (1), количество теплопроводности за единицу времени пропорционально площади поперечного сечения, соприкасающейся с разностью температур, и обратно пропорционально расстоянию.

2.2. Приготовление влагостойкой жидкости

Влагостойкая жидкость в этом исследовании использовала наносиликат собственного производства и фторалкилсилоксановое соединение. Процесс его получения следующий [16].

2.3. Приготовление золя кремнезема

Этанол 1.4 кг (29,8 моль) и 30 г (0,3 моль) концентрированной соляной кислоты помещают в воду 3,0 и смешивают, а затем добавляют смешанный раствор 2,08 кг (10 моль) тетраэтоксисилана и 178 г (1,0 моль) метилтриэтоксисилана. Затем раствор золя кремниевой кислоты получают перемешиванием в течение 4 часов при комнатной температуре. Этот процесс был подтвержден SEM и анализатором размера наночастиц, а формула реакции выглядит следующим образом (Рисунок 1) [17].


2.4. Получение органосилоксана, содержащего фторированную алкильную группу

Тридекафтор-1,1,2,2-тетрагидрооктил-1-триэтоксисилан 2.25 кг (5 моль) добавляют к 3,0 кг очищенной воды, а затем медленно добавляют 1,10 кг (5 моль) аминопропилтриэтоксисилана. При перемешивании этого раствора добавляют 60 г (1 моль) уксусной кислоты и перемешивают в течение 8 часов, а затем получают тридекафтор-1,1,2,2-тетрагидрооктил-1-триэтоксисилан (фторорганический силоксан) (см. Рисунок 2).

Реакцию между тридекафтор-1,1,2,2-тетрагидрооктил-1-триэтоксисиланом и 3-аминопропилтриэтоксисиланом подтверждали с помощью FT-IR.

2,5. Приготовление фторалкилсилоксановой влагостойкости (SH-AF)

Добавляют 10% золь диоксида кремния в 100 мл раствора и 10% органосилоксан в количестве 100 мл и смешивают с 800 мл очищенной воды, а затем готовят 1000 мл влагостойкого раствора.

2.6. Применение влагостойкости

Что касается образцов для измерения теплопроводности, то образцы стекловаты и минеральной ваты размером 300 × 300 × 50 мм пропитывают раствором фторалкилсилоксана в течение 3 секунд, а затем готовят сушкой в ​​течение 3 часов. при 100 ° С.

Когда дело доходит до образцов для измерения скорости абсорбции, их создают размером 50 × 50 × 50 мм для облегчения эксперимента по увлажнению, затем их пропитывают раствором фторалкилсилоксана в течение 3 секунд, а затем готовят сушкой в ​​течение 3 секунд. часов при 100 ° C.

Сравнение было выполнено с помощью SEM для сравнения между образцами с обработкой фторалкилсилоксаном и образцами без обработки фторалкилсилоксаном.

2.7. Измерение абсорбции

Хотя существуют метод заливки и метод распыления для подачи воды для измерения количества абсорбции между образцами минеральной и стеклянной ваты с покрытием и без покрытия и из-за изменения теплопроводности из-за абсорбции и температуры изменения, передаваемые на поверхность, в этом исследовании вода подавалась, помещая увлажнитель в акриловую коробку длиной, шириной и высотой 500 мм, как показано на Рисунке 3, оставляя образец на 4 часа с гигрометром, показывая более 90% влажности. влажность.


2.8. Измерение с помощью тепловизионной камеры

Для наблюдения за распространением тепла через теплопроводность и тепловизионную камеру в зависимости от метода подачи воды и содержания воды в стекловате и изоляционных материалах из минеральной ваты в качестве источника тепла использовалась электрическая плита, а температура была зафиксирована на уровне 80 ° C. Что касается тепловизионной камеры, то для наблюдения использовалась продукция компаний PI и FL. В это время камера была зафиксирована для измерения температуры поверхности и середины образца.

3. Результаты
3.1. Получение фторалкилсилоксана
3.1.1. Приготовление золя кремнезема

Результат наблюдения с помощью просвечивающей электронной микроскопии (просвечивающая электронная микроскопия) при разбавлении синтезированного золя SiO2 этанолом в соотношении 14: 1 показал, что были созданы сферические наночастицы SiO2 с приблизительным размером 15 нм (рис. гранулометрический анализ. Результат измерения синтезированного золя кремниевой кислоты анализатором размера частиц (Zetasizer Nano ZS90, Malvern) подтвердил, что средний размер частиц был 14.6 нм и очень однородные размеры наночастиц SiO2 были синтезированы в пределах ± 0,549 нм в распределении частиц по размерам.

3.2. Фотографии SEM

Результат теста показывает, что SH-AF хорошо покрыт минеральной и стеклянной ватой, как показано на Рисунке 5, на котором сравнивается образец с влагостойкостью, а образец без влагостойкости — с фотографиями, полученными с помощью SEM.

3.3. Теплопроводность

Результат измерения теплопроводности для каждого испытательного образца показывает, что теплопроводность типичной минеральной ваты равна 0.035 Вт / мк, а теплопроводность минеральной ваты с обработкой SH-AF составляет 0,0344 Вт / мк, поэтому она становится ниже. Кроме того, в случае стекловаты теплопроводность типичной стекловаты составляет 0,0343 Вт / мк, а теплопроводность стекловаты с обработкой SH-AF составляет 0,0329 Вт / мк, что означает, что она становится немного ниже, чем минеральная. шерсть. Таким образом, на основе этих результатов было подтверждено, что обработка SH-AF снижает теплопроводность, так что изоляционные характеристики немного повышаются [18] (см. Рисунок 6).


3.4. Величина водопоглощения образца и теплопроводность минеральной ваты с влагой

Изменение веса, показанное при измерении влагопоглощения после подачи влаги в течение 4 часов через увлажнитель, показано в таблицах 1 и 2. Типичная минеральная вата поглощает 4,18% влаги и минерала. шерсть с покрытием SH-AF сделала 1,49% влаги. Типичная стекловата поглощает 8,67% влаги, а стекловата с покрытием SH-AF — только 0,46% влаги. Этот результат подтверждает, что влагостойкость SH-AF, разработанная в этом исследовании, может быть применена к существующим неорганическим изоляционным материалам.


Классификация Вес образца до покрытия SH-AF Вес образца после покрытия SH-AF

до увлажнения (г) 6,3 6,6
После увлажнения (г) 6,58 6,7
Содержание воды (г) 0,28 0,1
(в процентах) 4.18 1,49

Вес покрытия стекловата с влагой имеет теплопроводность 0,136 Вт / мК, так что теплопроводность увеличивается в 4 раза по сравнению с 0,0343 Вт / мК, показанным для типичной стекловаты.

3.5. Изменение температуры неорганического материала

На рис. 7 показан образец стекловаты с обработкой влагостойкости (SH-AF) и без нее, а также изменение температуры образца стекловаты с обработкой влагостойкостью (SH-AF) и без нее.После подачи влаги в течение 4 часов через увлажнитель для каждого образца [19] изменение температуры на боковой и верхней поверхности изоляционного материала было проверено с помощью тепловизионной камеры. Результат показывает, что в то время как обработка стекловолокна с влагостойкостью (SH-AF) не имеет большого изменения температуры поверхности, температура возникает внезапно после того, как вначале поддерживалась на низком уровне с образцом стекловаты без влагостойкого покрытия. Понятно, что влага в неорганическом изоляционном материале испаряется, и тогда характеристики изоляционного материала ухудшаются.Можно обнаружить, что влагостойкая (SH-AF) обработка предотвращает быстрое падение теплопроводности образца под действием влаги [20].


4. Заключение

В этой статье изменение температуры изоляционного материала было измерено после применения фторалкилсилоксановой влагостойкости, разработанной собственными силами к типичным неорганическим изоляционным материалам, и условия, аналогичные условиям летнего сезона дождей, были применены к неорганическому изоляционному материалу. методом увлажнения как способ увлажнения в тесте.Результаты экспериментов следующие: (1) Неорганические изоляционные материалы, такие как стекловолокно или минеральная вата, чрезвычайно уязвимы для влаги, поэтому они поглощают воду на 4 ~ 8% от своего веса, а теплопроводность увеличивается более чем в 4 раза, так что это затруднительно. (2) Влагостойкость фторалкилсилоксана (SH-AF), разработанная в этом исследовании, подавляла поглощение влаги при нанесении на неорганическую изоляцию, чтобы предотвратить повышение теплопроводности под воздействием влаги. недостаток неорганического изоляционного материала.(3) В предыдущих исследованиях в качестве метода подачи воды к неорганическому изоляционному материалу использовался метод заливки или метод распыления, но при оценке воздействия влаги на характеристики изоляции эффективно оценивать влияние влаги с помощью более реалистичный метод увлажнения, так что необходима настройка стандартного метода испытаний. (4) С помощью обычного испытательного устройства для измерения теплопроводности невозможно измерить теплопроводность изоляционного материала с влагой, поэтому для измерения теплопроводности использовался метод горячей проволоки. изоляционного материала влагой.Поэтому должен быть представлен стандартный метод измерения изменения теплопроводности путем поглощения влаги изоляционным материалом.

Конкурирующие интересы

Авторы заявляют, что у них нет конкурирующих интересов.

Благодарности

Это исследование было выполнено при финансовой поддержке Корейского института оценки и планирования энергетических технологий (проект № 20132020102400).

(PDF) Теплопроводность материалов из минеральной ваты, частично насыщенных водой

2

отличается для материалов с гидрофобными и гидрофильными добавками, и опыт

не может быть заменен между этими двумя типами материалов.

В данной работе исследована зависимость теплопроводности от влажности для

нескольких видов материалов на основе минеральной ваты, а именно материалов с гидрофобными добавками

, гидрофильными добавками и без каких-либо примесей. Основная цель этого исследования

— лучшее понимание влияния расположения воды в пористой системе на термические свойства

исследуемых материалов. Поэтому экспериментальные данные анализируются с использованием метода гомогенизации

.

2. Экспериментальные методы

Теплопроводность как основной параметр теплопередачи определялась на коммерческом приборе

ISOMET 104 (Applied Precision, Ltd.). ISOMET 104 — это многофункциональный прибор

для измерения теплопроводности, температуропроводности и объемной теплоемкости

. Он оснащен различными типами дополнительных датчиков, игольчатые датчики предназначены для пористых, волокнистых или мягких материалов

, а поверхностные датчики подходят для твердых материалов.Измерение

основано на анализе температурного отклика анализируемого материала на тепловой поток

импульсов. Тепловой поток индуцируется электрическим нагревом с использованием резистивного нагревателя, имеющего прямой тепловой контакт

с поверхностью образца. Измерения в этой статье были выполнены в зависимости от содержания влаги

, для сравнения

применялись как игольчатые, так и поверхностные датчики.

3. Методы гомогенизации

Определение влажности, зависящей от теплопроводности, также было выполнено с использованием методов гомогенизации

.С точки зрения гомогенизации пористый материал можно рассматривать как смесь

трех фаз, а именно твердой, жидкой и газообразной фазы. Для материалов на основе минеральной ваты

, исследованных в данной работе, твердая фаза представлена ​​базальтовыми волокнами, жидкая фаза

— водой, газообразная фаза — воздухом. В случае сухого материала учитываются только твердая фаза и

газообразная фаза. Объемная доля воздуха в пористом теле определяется измеренной общей открытой пористостью

.В случае проникновения воды часть порового пространства

заполняется водой. Для оценки теплопроводности всего материала необходимо знать

теплопроводности отдельных компонентов, образующих пористое тело.

значений теплопроводности базальта, воды и воздуха, использованные в этой статье, были взяты из

CRC Handbook of Chemistry and Physics [11].

В данной работе использовались три формулы усреднения типа Бруггемана (см. [12]).Первый из них

, исходный, был предложен для сферических включений, второй предполагает игольчатую ориентацию включений

, а третий был получен для ориентации их платы. Применяемые формулы смешивания

описаны в уравнениях (1) — (3), соответственно,

jeff

eff

MjjMeff f

λλ

λλλλ

+

⋅ — + = ∑2 30003

) (, (1)

jeff

jeff

MjjMeff f

λλ

λλλλ

33

5

) (+

⋅ — 2 =

,

effj

MjjMeff f

λ

λλλλ

3

2

) (+

⋅ — + = ∑, (3)

где λeff — теплопроводность исследуемого материала, λM теплопроводность твердой фазы

(базальт, 3.0 Вт / мК)), fj — объемная доля воздуха или воды, λj — тепловая проводимость

воздуха (0,026 Вт / мК) или воды (0,6 Вт / мК).

Экспериментальное исследование значений термического сопротивления (R-значения) строительных изоляционных войлоков низкой плотности из минерального волокна, коммерчески доступных в 1977 г. (Технический отчет)

Тай, Р. П., Десьярле, А. О., Ярбро, Д. У., и МакЭлрой, Д. Л. Экспериментальное исследование значений термического сопротивления (R-значений) строительных изоляционных войлок из минерального волокна низкой плотности, коммерчески доступных в 1977 г. .США: Н. П., 1980. Интернет. DOI: 10,2172 / 5524684.

Тай, Р. П., Десьярле, А. О., Ярбро, Д. В., и МакЭлрой, Д. Л. Экспериментальное исследование значений термического сопротивления (R-значений) строительных изоляционных войлок из минерального волокна низкой плотности, коммерчески доступных в 1977 г. . Соединенные Штаты. https://doi.org/10.2172/5524684

Тай, Р.P., Desjarlais, A.O., Yarbrough, D. W., and McElroy, D. L. Вт. «Экспериментальное исследование значений термического сопротивления (R-значений) строительных изоляционных войлочных плит из минерального волокна низкой плотности, коммерчески доступных в 1977 году». Соединенные Штаты. https://doi.org/10.2172/5524684. https://www.osti.gov/servlets/purl/5524684.

@article {osti_5524684,
title = {Экспериментальное исследование значений термического сопротивления (R-значений) строительных изоляционных войлоков низкой плотности из минерального волокна, имеющихся в продаже в 1977 г.},
author = {Тай, Р.П., Дежарле, А. О. и Ярбро, Д. У. и МакЭлрой, Д. Л.},
abstractNote = {Это исследование было начато в июне 1977 г. с целью получения и оценки данных о тепловых характеристиках на всю толщину минерального волокна, т. е. стекловолокна и минеральной ваты, изоляционных материалов типа войлока. Целью исследования было получение данных о тепловых характеристиках по всей толщине и оценка других свойств строительных изоляционных материалов из минерального волокна. Измерения физических свойств, обсуждаемые в этом отчете, позволяют измерить диапазон значений плотности, толщины и R-значения на основе выборки строительных изоляционных войлоков низкой плотности из минерального волокна, купленных на рынке в 1977 году.Экспериментальные данные были использованы для установления средних значений R при номинальной (этикетке) толщине стекловолокна R-11 и R-19 и войлока из минеральной ваты R-11. Методы испытаний на полную толщину и срезы обеспечили набор значений R на приобретенных образцах, которые были преобразованы в значения R при толщине этикетки с использованием определенной корреляции кажущейся теплопроводности и плотности. Результаты полной толщины показывают удивительно большие процентные значения ниже указанного значения R для этих четырех типов изоляции из минерального волокна.Включен статистический анализ этих данных, основанный на предположении о нормально распределенных свойствах. Это дало оценки аналогичной величины для населения, у которого были приобретены образцы. Была отмечена необходимость продолжения отбора проб и дальнейших испытаний изоляции из минерального волокна во многих лабораториях. Различия между результатами, полученными с помощью метода нарезки, и результатами, полученными при испытании на всю толщину, должны быть полностью поняты и задокументированы, чтобы можно было точно установить поправочные коэффициенты для эффекта толщины.(LCL)},
doi = {10.2172 / 5524684},
url = {https://www.osti.gov/biblio/5524684}, journal = {},
number =,
объем =,
place = {United States},
год = {1980},
месяц = ​​{4}
}

Какова теплопроводность полиуретана?

Теплопроводность — это физическое свойство, которое проявляется в любом материале, включая полиуретан, и оно измеряет способность теплопроводности через него, или, другими словами, перенос тепловой энергии через тело.Это движение энергии создается разницей температур , поскольку, согласно второму закону термодинамики, тепло всегда течет в направлении самой низкой температуры.

Когда изолирует здание , важно знать теплопроводность используемых материалов, так как от этого будет зависеть их энергоэффективность и тепловой комфорт . Например, металлы имеют более высокую теплопроводность, чем дерево, но изоляционные материалы, такие как стекловолокно или полиуретан, имеют более низкую теплопроводность.

Значение теплопроводности в утеплении зданий

Поведение теплоизоляции является ключом к достижению целей Европейского Союза по энергосбережению на 2020 год. . Как в одноэтажных, так и в многоэтажных зданиях материалы, из которых изготовлено ограждение, определяют потребление энергии. Следовательно, если мы хотим, чтобы улучшило энергоэффективность зданий , одним из физических свойств, которые будут определять, является ли материал хорошей теплоизоляцией или нет, является теплопроводность.

Если сравнить теплопроводность основных материалов , используемых в строительстве , можно проверить, как в зависимости от выбора материалов уровень теплопроводности напрямую влияет на теплоизоляцию дома . Например, традиционные материалы, такие как кирпич, древесная стружка или бетон, имеют более высокий уровень теплопроводности, чем изоляционные материалы, такие как полиуретан или полистирол.


Классификация Вес образца до покрытия SH-AF4 AF

Перед увлажнением (г) 4,50 4,38
После увлажнения (г) 4,89 4.40
Содержание воды (г) 0,39 0,02
Процентное содержание влаги (%) 8,67 0,46

Материал

Теплопроводность

Кирпич

0.49-0,87 Вт / м · K

Бетонный блок

0-35-0,79 Вт / м · К

Пенополистирол

0,031-0,050 Вт / м · К

Экструдированный полистирол

0,029-0,033 Вт / м · К

Полиуретановые системы

0,022-0,028 Вт / м · К

Минеральная вата

0.031-0,045 Вт / мК

Вспученный перлит

0,040-0,060 Вт / м · К

Древесная щепа

0,038-0,107 Вт / м · К

Теплопроводность полиуретана

Полиуретановые системы являются одними из материалов на рынке, которые обеспечивают лучшую теплоизоляцию при минимальной толщине . Эта характеристика возможна благодаря низкой теплопроводности полиуретана, так как хотя различия в уровнях теплопроводности между полистиролом (экструдированным и вспененным), минеральной ватой и полиуретановыми системами составляют всего несколько десятых доли бумаги при применении в работе, такие десятичные дроби могут означать разницу в толщине на 3-4 см, чем для достижения такой же энергетической эффективности конверта.

Кроме того, полиуретановые системы (инжектированные, напыленные или пластинчатые) являются оптимальным решением для теплоизоляции зданий. Помимо низкой теплопроводности, они также обеспечивают хорошее уплотнение оболочки, предотвращая проникновение воздуха и токов, возникающих в ее пустых пространствах. Это важно, потому что, если бы эти токи не были уменьшены, теплопроводность полиуретана перестала бы быть такой эффективной.

Изоляция чердаков — Введение

Когда вы начнете рассматривать изоляционные материалы, такие как изоляция чердаков, вы можете быстро увязнуть в некоторых довольно сложных технических терминах.В этой статье мы постараемся упростить их, чтобы вы могли постоять за себя, находясь в местном магазине DIY!

Теплопроводность изоляционных материалов

Теплопроводность, также известная как Лямбда (обозначается греческим символом λ), является мерой того, насколько легко тепло проходит через определенный тип материала, независимо от толщины рассматриваемого материала.

Чем ниже теплопроводность материала, тем лучше тепловые характеристики (т.е.е. медленнее тепло будет перемещаться по материалу).

Измеряется в ваттах на метр по Кельвину (Вт / мК).

Чтобы вы почувствовали изоляционные материалы — их теплопроводность варьируется от 0,008 Вт / мК для панелей с вакуумной изоляцией (так что это лучшие, но очень дорогие!) До примерно 0,061 Вт / мК для некоторых видов древесного волокна. .

>>> НАЖМИТЕ, ЧТОБЫ УЗНАТЬ БОЛЬШЕ ОБ U-ЗНАЧЕНИЯХ ИЗОЛЯЦИОННЫХ ИЗДЕЛИЙ <<<

Если бы вы использовали овечью шерсть для утепления своей собственности, это примерно 0.034 Вт / мК, примерно так же, как и для большинства других изоляционных материалов из шерсти и волокна.

Значения R

R-значение — это мера сопротивления тепловому потоку через материал заданной толщины. Таким образом, чем выше значение R, тем выше термическое сопротивление материала и, следовательно, лучше его изоляционные свойства.

R-значение рассчитывается по формуле

Где:

l — толщина материала в метрах и

λ — коэффициент теплопроводности, Вт / мК.

Значение R измеряется в метрах в квадрате Кельвина на ватт (м 2 K / Вт)

Например, тепловое сопротивление 220 мм монолитной кирпичной стены (с теплопроводностью λ = 1,2 Вт / мК) составляет 0,18 м 2 К / Вт.

Если вы изолируете сплошную кирпичную стену, вы просто найдете коэффициент сопротивления изоляции и затем сложите эти два значения. Если вы изолировали это полиизоциануратом с фольгой толщиной 80 мм (с теплопроводностью λ = 0,022 Вт / мК и значением R 0,08 / 0.022 = 3,64 м 2 K / Вт), у вас будет общее значение R для изолированной стены 0,18 + 3,64 = 3,82 м 2 K / Вт. Следовательно, это улучшит тепловое сопротивление более чем в 21 раз!

Таким образом, значение R — это относительно простой способ сравнить два изоляционных материала, если у вас есть теплопроводность для каждого материала. Это также позволяет увидеть эффект от добавления более толстых слоев того же изоляционного материала.

В реальных зданиях стена состоит из множества слоев различных материалов.Общее тепловое сопротивление всей стены рассчитывается путем сложения теплового сопротивления каждого отдельного слоя.

К сожалению, тепло входит и выходит из вашего дома несколькими различными способами, и значения R учитывают только теплопроводность. Он не включает ни конвекцию, ни излучение.

Таким образом, вы можете использовать значение U, которое учитывает все различные механизмы потери тепла — читайте дальше, чтобы узнать, как это рассчитывается!

U-значения

Значение U строительного элемента является обратной величиной полного теплового сопротивления этого элемента.Показатель U — это мера того, сколько тепла теряется через заданную толщину конкретного материала, но включает три основных способа, которыми происходит потеря тепла — теплопроводность, конвекция и излучение.

Температура окружающей среды внутри и снаружи здания играет важную роль при расчете коэффициента теплопроводности элемента. Если мы представим внутреннюю поверхность участка 1 м² внешней стены отапливаемого здания в холодном климате, то тепло поступает в этот участок за счет излучения от всех частей внутри здания и за счет конвекции от воздуха внутри здания.Таким образом, следует учитывать дополнительные термические сопротивления, связанные с внутренней и внешней поверхностями каждого элемента. Эти сопротивления обозначаются как R si и R , так что соответственно с общими значениями 0,12 км² / Вт и 0,06 км² / Вт для внутренней и внешней поверхностей соответственно.

Это мера, которая всегда находится в пределах Строительных норм. Чем ниже значение U, тем лучше материал как теплоизолятор.

Рассчитывается путем взятия обратной величины R-Value и последующего добавления конвективных и радиационных тепловых потерь, как показано ниже.

U = 1 / [R si + R 1 + R 2 +… + R so ]

На практике это сложный расчет, поэтому лучше всего использовать программное обеспечение для расчета U-Value.

Единицы измерения выражены в ваттах на квадратный метр Кельвина (Вт / м 2 K).

Ориентировочно неизолированная полая стена имеет коэффициент теплопередачи примерно 1,6 Вт / м 2 K, а сплошная стена имеет коэффициент теплопередачи примерно 2 Вт / м 2 K

Использование значений U, R и теплопроводности

Если вы сталкиваетесь с проблемами теплопроводности, R-значений и U-значений в будущем, вот 3 простых вещи, которые следует запомнить, чтобы убедиться, что вы получите лучший изоляционный продукт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *