Теплопроводность — Википедия
Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела, осуществляемому хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.
Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.
Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).
Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.
Закон теплопроводности Фурье
В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:
- q → = − ϰ g r a d ( T ) , {\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}
где q → {\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ {\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T {\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору g r a d ( T ) {\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
- P
=
−
ϰ
S
Δ
T
l
,
{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},}
[Вт/(м·К) · (м
где P {\displaystyle P} — полная мощность тепловых потерь, S {\displaystyle S} — площадь сечения параллелепипеда, Δ T {\displaystyle \Delta T} — перепад температур граней, l {\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.
Связь с электропроводностью
Связь коэффициента теплопроводности ϰ {\displaystyle \varkappa } с удельной электрической проводимостью σ {\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:
- ϰ σ = π 2 3 ( k e ) 2 T , {\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
- где k {\displaystyle k} — постоянная Больцмана;
- e {\displaystyle e} — заряд электрона;
- T {\displaystyle T} — абсолютная температура.
Коэффициент теплопроводности газов
В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]
- ϰ ∼ 1 3 ρ c v λ v ¯ , {\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}
где ρ {\displaystyle \rho } — плотность газа, c v {\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ {\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v ¯ {\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как[3]
- ϰ = i k 3 π 3 / 2 d 2 R T μ , {\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}
где i {\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i = 5 {\displaystyle i=5} , для одноатомного i = 3 {\displaystyle i=3} ), k {\displaystyle k} — постоянная Больцмана, μ {\displaystyle \mu } — молярная масса, T {\displaystyle T} — абсолютная температура, d {\displaystyle d} — эффективный (газокинетический) диаметр молекул, R {\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).
Теплопроводность в сильно разреженных газах
Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ ∼ 1 3 ρ c v l v ¯ ∝ P {\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P} , где l {\displaystyle l} — размер сосуда, P {\displaystyle P} — давление.
Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.
Обобщения закона Фурье
Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]
- τ ∂ q ∂ t = − ( q + ϰ ∇ T ) . {\displaystyle \tau {\frac {\partial \mathbf {q} }{\partial t}}=-\left(\mathbf {q} +\varkappa \,\nabla T\right).}
Если время релаксации τ {\displaystyle \tau } пренебрежимо мало, то это уравнение переходит в закон Фурье.
Коэффициенты теплопроводности различных веществ

Материал | Теплопроводность, Вт/(м·K) |
---|---|
Графен | 4840 ± 440 — 5300 ± 480 |
Алмаз | 1001—2600 |
Графит | 278,4—2435 |
Арсенид бора[en] | 200—2000 |
Карбид кремния | 490 |
Серебро | 430 |
Медь | 401 |
Оксид бериллия | 370 |
Золото | 320 |
Алюминий | 202—236 |
Нитрид алюминия | 200 |
Нитрид бора | 180 |
Кремний | 150 |
Латунь | 97—111 |
Хром | 107 |
Железо | 92 |
Платина | 70 |
Олово | 67 |
Оксид цинка | 54 |
Сталь нелегированная | 47—58 |
Свинец | 35,3 |
Сталь нержавеющая (аустенитная) [6] | 15 |
Кварц | 8 |
Термопасты высокого качества | 5—6 |
Гранит | 2,4 |
Бетон сплошной | 1,75 |
Бетон на гравии или щебне из природного камня | 1,51 |
Базальт | 1,3 |
Стекло | 1—1,15 |
Термопаста КПТ-8 | 0,7 |
Бетон на песке | 0,7 |
Вода при нормальных условиях | 0,6 |
Кирпич строительный | 0,2—0,7 |
Силиконовое масло | 0,16 |
Пенобетон | 0,05—0,3 |
Газобетон | 0,1—0,3 |
Древесина | 0,15 |
Нефтяные масла | 0,12 |
Свежий снег | 0,10—0,15 |
Пенополистирол (горючесть Г1) | 0,038—0,052 |
Экструдированный пенополистирол (горючесть Г3 и Г4) | 0,029—0,032 |
Стекловата | 0,032—0,041 |
Каменная вата | 0,034—0,039 |
Воздух (300 K, 100 кПа) | 0,022 |
Аэрогель | 0,017 |
Аргон (273—320 K, 100 кПа) | 0,017 |
Аргон (240—273 K, 100 кПа) | 0,015 |
Вакуум (абсолютный) | 0 (строго) |
Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.
Примечания
См. также
Ссылки
что это такое + таблица значений
Строительное дело предусматривает использование любых подходящих материалов. Главные критерии – безопасность для жизни и здоровья, тепловая проводимость, надёжность. Далее следуют, цена, свойства эстетичности, универсальность применения и т.д.
Рассмотрим одну из важнейших характеристик стройматериалов – коэффициент теплопроводности, так как именно от этого свойства во многом зависит, к примеру, уровень комфорта в доме.
Содержание статьи:
Что такое КТП строительного материала?
Теоретически, да и практически тоже, строительными материалами, как правило, создаются две поверхности – наружная и внутренняя. С точки зрения физики, теплая область всегда стремится к холодной области.
Применительно к стройматериалу, тепло будет стремиться от одной поверхности (более теплой) к другой поверхности (менее теплой). Вот, собственно, способность материала относительно такого перехода и называется – коэффициентом теплопроводности или в аббревиатуре – КТП.


Схема, поясняющая эффект теплопроводности: 1 – тепловая энергия; 2 – коэффициент теплопроводности; 3 – температура первой поверхности; 4 – температура второй поверхности; 5 – толщина стройматериала
Характеристика КТП обычно строится на основе испытаний, когда берётся экспериментальный экземпляр размерами 100х100 см и к нему применяется тепловое воздействие с учётом разницы температур двух поверхностей в 1 градус. Время воздействия 1 час.
Соответственно, измеряется теплопроводность в Ваттах на метр на градус (Вт/м°C). Коэффициент обозначается греческим символом λ.
По умолчанию, теплопроводность различных материалов для строительства со значением меньше 0,175 Вт/м°C, приравнивает эти материалы к разряду изоляционных.
Современным производством освоены технологии изготовления стройматериалов, уровень КТП которых составляет меньше 0,05 Вт/м°C. Благодаря таким изделиям, удается достичь выраженного экономического эффекта в плане потребления энергетических ресурсов.
Влияние факторов на уровень теплопроводности
Каждый отдельно взятый стройматериал имеет определенное строение и обладает своеобразным физическим состоянием.
Основой этого являются:
- размерность кристаллов структуры;
- фазовое состояние вещества;
- степень кристаллизации;
- анизотропия теплопроводности кристаллов;
- объем пористости и структуры;
- направление теплового потока.
Все это – факторы влияния. Определенное влияние на уровень КТП также оказывает химический состав и примеси. Количество примесей, как показала практика, оказывает особенно выразительное влияние на уровень теплопроводности кристаллических компонентов.


Изоляционные стройматериалы – класс продуктов под строительство, созданных с учётом свойств КТП, приближенных к оптимальным свойствам. Однако достичь идеальной теплопроводности при сохранении других качеств, крайне сложно
В свою очередь влияние на КТП оказывают условия эксплуатации стройматериала – температура, давление, уровень влажности и др.
Стройматериалы с минимальным КТП
Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.
С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.
Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.
Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.


Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить
В современном производстве применяются несколько технологий для получения пористости строительного материала.
В частности, используются технологии:
- пенообразования;
- газообразования;
- водозатворения;
- вспучивания;
- внедрения добавок;
- создания волоконных каркасов.
Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.
Значение теплопроводности может быть рассчитано по формуле:
λ = Q / S *(T1-T2)*t,
Где:
- Q – количество тепла;
- S – толщина материала;
- T1, T2 – температура с двух сторон материала;
- t – время.
Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:
λ = 1,16 √ 0,0196+0,22d2 – 0,16,
Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.
Влияние влаги на теплопроводность стройматериала
Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.


Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала
Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.
Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.
Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.
Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.


Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности
Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.
Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.
Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.
Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.


Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается
Методы определения коэффициента
Используются разные методики в этом направлении, но по факту все технологии измерения объединены двумя группами методов:
- Режим стационарных измерений.
- Режим нестационарных измерений.
Стационарная методика подразумевает работу с параметрами, неизменными с течением времени или изменяющимися в незначительной степени. Эта технология, судя по практическим применениям, позволяет рассчитывать на более точные результаты КТП.
Действия, направленные на измерения теплопроводности, стационарный способ допускает проводить в широком температурном диапазоне – 20 – 700 °C. Но вместе с тем, стационарная технология считается трудоёмкой и сложной методикой, требующей большого количества времени на исполнение.


Пример аппарата, предназначенного под выполнение измерений коэффициента теплопроводности. Это одна из современных цифровых конструкций, обеспечивающая получение быстрого и точного результата
Другая технология измерений – нестационарная, видится более упрощенной, требующей для исполнения работ от 10 до 30 минут. Однако в этом случае существенно ограничен диапазон температур. Тем не менее, методика нашла широкое применение в условиях производственного сектора.
Таблица теплопроводности стройматериалов
Подвергать измерениям многие существующие и широко используемые стройматериалы не имеет смысла.
Все эти продукты, как правило, испытаны неоднократно, на основании чего составлена таблица теплопроводности строительных материалов, куда входят практически все нужные на стройке материалы.
Один из вариантов такой таблицы представлен ниже, где КТП – коэффициент теплопроводности:
Материал (стройматериал) | Плотность, м3 | КТП сухая, Вт/мºC | % влажн._1 | % влажн._2 | КТП при влажн._1, Вт/мºC | КТП при влажн._2, Вт/мºC | |||
Битум кровельный | 1400 | 0,27 | 0 | 0 | 0,27 | 0,27 | |||
Битум кровельный | 1000 | 0,17 | 0 | 0 | 0,17 | 0,17 | |||
Шифер кровельный | 1800 | 0,35 | 2 | 3 | 0,47 | 0,52 | |||
Шифер кровельный | 1600 | 0,23 | 2 | 3 | 0,35 | 0,41 | |||
Битум кровельный | 1200 | 0,22 | 0 | 0 | 0,22 | 0,22 | |||
Лист асбоцементный | 1800 | 0,35 | 2 | 3 | 0,47 | 0,52 | |||
Лист асбестоцементный | 1600 | 0,23 | 2 | 3 | 0,35 | 0,41 | |||
Асфальтобетон | 2100 | 1,05 | 0 | 0 | 1,05 | 1,05 | |||
Толь строительная | 600 | 0,17 | 0 | 0 | 0,17 | 0,17 | |||
Бетон (на гравийной подушке) | 1600 | 0,46 | 4 | 6 | 0,46 | 0,55 | |||
Бетон (на шлаковой подушке) | 1800 | 0,46 | 4 | 6 | 0,56 | 0,67 | |||
Бетон (на щебенке) | 2400 | 1,51 | 2 | 3 | 1,74 | 1,86 | |||
Бетон (на песчаной подушке) | 1000 | 0,28 | 9 | 13 | 0,35 | 0,41 | |||
Бетон (пористая структура) | 1000 | 0,29 | 10 | 15 | 0,41 | 0,47 | |||
Бетон (сплошная структура) | 2500 | 1,89 | 2 | 3 | 1,92 | 2,04 | |||
Пемзобетон | 1600 | 0,52 | 4 | 6 | 0,62 | 0,68 | |||
Битум строительный | 1400 | 0,27 | 0 | 0 | 0,27 | 0,27 | |||
Битум строительный | 1200 | 0,22 | 0 | 0 | 0,22 | 0,22 | |||
Минеральная вата облегченная | 50 | 0,048 | 2 | 5 | 0,052 | 0,06 | |||
Минеральная вата тяжелая | 125 | 0,056 | 2 | 5 | 0,064 | 0,07 | |||
Минеральная вата | 75 | 0,052 | 2 | 5 | 0,06 | 0,064 | |||
Лист вермикулитовый | 200 | 0,065 | 1 | 3 | 0,08 | 0,095 | |||
Лист вермикулитовый | 150 | 0,060 | 1 | 3 | 0,074 | 0,098 | |||
Газо-пено-золо бетон | 800 | 0,17 | 15 | 22 | 0,35 | 0,41 | |||
Газо-пено-золо бетон | 1000 | 0,23 | 15 | 22 | 0,44 | 0,50 | |||
Газо-пено-золо бетон | 1200 | 0,29 | 15 | 22 | 0,52 | 0,58 | |||
Газо-пено-бетон (пенно-силикат) | 300 | 0,08 | 8 | 12 | 0,11 | 0,13 | |||
Газо-пено-бетон (пенно-силикат) | 400 | 0,11 | 8 | 12 | 0,14 | 0,15 | |||
Газо-пено-бетон (пенно-силикат) | 600 | 0,14 | 8 | 12 | 0,22 | 0,26 | |||
Газо-пено-бетон (пенно-силикат) | 800 | 0,21 | 10 | 15 | 0,33 | 0,37 | |||
Газо-пено-бетон (пенно-силикат) | 1000 | 0,29 | 10 | 15 | 0,41 | 0,47 | |||
Строительный гипс плита | 1200 | 0,35 | 4 | 6 | 0,41 | 0,46 | |||
Гравий керамзитовый | 600 | 2,14 | 2 | 3 | 0,21 | 0,23 | |||
Гравий керамзитовый | 800 | 0,18 | 2 | 3 | 0,21 | 0,23 | |||
Гранит (базальт) | 2800 | 3,49 | 0 | 0 | 3,49 | 3,49 | |||
Гравий керамзитовый | 400 | 0,12 | 2 | 3 | 0,13 | 0,14 | |||
Гравий керамзитовый | 300 | 0,108 | 2 | 3 | 0,12 | 0,13 | |||
Гравий керамзитовый | 200 | 0,099 | 2 | 3 | 0,11 | 0,12 | |||
Гравий шунгизитовый | 800 | 0,16 | 2 | 4 | 0,20 | 0,23 | |||
Гравий шунгизитовый | 600 | 0,13 | 2 | 4 | 0,16 | 0,20 | |||
Гравий шунгизитовый | 400 | 0,11 | 2 | 4 | 0,13 | 0,14 | |||
Дерево сосна поперечные волокна | 500 | 0,09 | 15 | 20 | 0,14 | 0,18 | |||
Фанера клееная | 600 | 0,12 | 10 | 13 | 0,15 | 0,18 | |||
Дерево сосна вдоль волокон | 500 | 0,18 | 15 | 20 | 0,29 | 0,35 | |||
Дерево дуба поперек волокон | 700 | 0,23 | 10 | 15 | 0,18 | 0,23 | |||
Металл дюралюминий | 2600 | 221 | 0 | 0 | 221 | 221 | |||
Железобетон | 2500 | 1,69 | 2 | 3 | 1,92 | 2,04 | |||
Туфобетон | 1600 | 0,52 | 7 | 10 | 0,7 | 0,81 | |||
Известняк | 2000 | 0,93 | 2 | 3 | 1,16 | 1,28 | |||
Раствор извести с песком | 1700 | 0,52 | 2 | 4 | 0,70 | 0,87 | |||
Песок под строительные работы | 1600 | 0,035 | 1 | 2 | 0,47 | 0,58 | |||
Туфобетон | 1800 | 0,64 | 7 | 10 | 0,87 | 0,99 | |||
Облицовочный картон | 1000 | 0,18 | 5 | 10 | 0,21 | 0,23 | |||
Многослойный строительный картон | 650 | 0,13 | 6 | 12 | 0,15 | 0,18 | |||
Вспененный каучук | 60-95 | 0,034 | 5 | 15 | 0,04 | 0,054 | |||
Керамзитобетон | 1400 | 0,47 | 5 | 10 | 0,56 | 0,65 | |||
Керамзитобетон | 1600 | 0,58 | 5 | 10 | 0,67 | 0,78 | |||
Керамзитобетон | 1800 | 0,86 | 5 | 10 | 0,80 | 0,92 | |||
Кирпич (пустотный) | 1400 | 0,41 | 1 | 2 | 0,52 | 0,58 | |||
Кирпич (керамический) | 1600 | 0,47 | 1 | 2 | 0,58 | 0,64 | |||
Пакля строительная | 150 | 0,05 | 7 | 12 | 0,06 | 0,07 | |||
Кирпич (силикатный) | 1500 | 0,64 | 2 | 4 | 0,7 | 0,81 | |||
Кирпич (сплошной) | 1800 | 0,88 | 1 | 2 | 0,7 | 0,81 | |||
Кирпич (шлаковый) | 1700 | 0,52 | 1,5 | 3 | 0,64 | 0,76 | |||
Кирпич (глиняный) | 1600 | 0,47 | 2 | 4 | 0,58 | 0,7 | |||
Кирпич (трепельный) | 1200 | 0,35 | 2 | 4 | 0,47 | 0,52 | |||
Металл медь | 8500 | 407 | 0 | 0 | 407 | 407 | |||
Сухая штукатурка (лист) | 1050 | 0,15 | 4 | 6 | 0,34 | 0,36 | |||
Плиты минеральной ваты | 350 | 0,091 | 2 | 5 | 0,09 | 0,11 | |||
Плиты минеральной ваты | 300 | 0,070 | 2 | 5 | 0,087 | 0,09 | |||
Плиты минеральной ваты | 200 | 0,070 | 2 | 5 | 0,076 | 0,08 | |||
Плиты минеральной ваты | 100 | 0,056 | 2 | 5 | 0,06 | 0,07 | |||
Линолеум ПВХ | 1800 | 0,38 | 0 | 0 | 0,38 | 0,38 | |||
Пенобетон | 1000 | 0,29 | 8 | 12 | 0,38 | 0,43 | |||
Пенобетон | 800 | 0,21 | 8 | 12 | 0,33 | 0,37 | |||
Пенобетон | 600 | 0,14 | 8 | 12 | 0,22 | 0,26 | |||
Пенобетон | 400 | 0,11 | 6 | 12 | 0,14 | 0,15 | |||
Пенобетон на известняке | 1000 | 0,31 | 12 | 18 | 0,48 | 0,55 | |||
Пенобетон на цементе | 1200 | 0,37 | 15 | 22 | 0,60 | 0,66 | |||
Пенополистирол (ПСБ-С25) | 15 – 25 | 0,029 – 0,033 | 2 | 10 | 0,035 – 0,052 | 0,040 – 0,059 | |||
Пенополистирол (ПСБ-С35) | 25 – 35 | 0,036 – 0,041 | 2 | 20 | 0,034 | 0,039 | |||
Лист пенополиуретановый | 80 | 0,041 | 2 | 5 | 0,05 | 0,05 | |||
Панель пенополиуретановая | 60 | 0,035 | 2 | 5 | 0,41 | 0,41 | |||
Облегченное пеностекло | 200 | 0,07 | 1 | 2 | 0,08 | 0,09 | |||
Утяжеленное пеностекло | 400 | 0,11 | 1 | 2 | 0,12 | 0,14 | |||
Пергамин | 600 | 0,17 | 0 | 0 | 0,17 | 0,17 | |||
Перлит | 400 | 0,111 | 1 | 2 | 0,12 | 0,13 | |||
Плита перлитоцементная | 200 | 0,041 | 2 | 3 | 0,052 | 0,06 | |||
Мрамор | 2800 | 2,91 | 0 | 0 | 2,91 | 2,91 | |||
Туф | 2000 | 0,76 | 3 | 5 | 0,93 | 1,05 | |||
Бетон на зольном гравии | 1400 | 0,47 | 5 | 8 | 0,52 | 0,58 | |||
Плита ДВП (ДСП) | 200 | 0,06 | 10 | 12 | 0,07 | 0,08 | |||
Плита ДВП (ДСП) | 400 | 0,08 | 10 | 12 | 0,11 | 0,13 | |||
Плита ДВП (ДСП) | 600 | 0,11 | 10 | 12 | 0,13 | 0,16 | |||
Плита ДВП (ДСП) | 800 | 0,13 | 10 | 12 | 0,19 | 0,23 | |||
Плита ДВП (ДСП) | 1000 | 0,15 | 10 | 12 | 0,23 | 0,29 | |||
Полистиролбетон на портландцементе | 600 | 0,14 | 4 | 8 | 0,17 | 0,20 | |||
Вермикулитобетон | 800 | 0,21 | 8 | 13 | 0,23 | 0,26 | |||
Вермикулитобетон | 600 | 0,14 | 8 | 13 | 0,16 | 0,17 | |||
Вермикулитобетон | 400 | 0,09 | 8 | 13 | 0,11 | 0,13 | |||
Вермикулитобетон | 300 | 0,08 | 8 | 13 | 0,09 | 0,11 | |||
Рубероид | 600 | 0,17 | 0 | 0 | 0,17 | 0,17 | |||
Плита фибролит | 800 | 0,16 | 10 | 15 | 0,24 | 0,30 | |||
Металл сталь | 7850 | 58 | 0 | 0 | 58 | 58 | |||
Стекло | 2500 | 0,76 | 0 | 0 | 0,76 | 0,76 | |||
Стекловата | 50 | 0,048 | 2 | 5 | 0,052 | 0,06 | |||
Стекловолокно | 50 | 0,056 | 2 | 5 | 0,06 | 0,064 | |||
Плита фибролит | 600 | 0,12 | 10 | 15 | 0,18 | 0,23 | |||
Плита фибролит | 400 | 0,08 | 10 | 15 | 0,13 | 0,16 | |||
Плита фибролит | 300 | 0,07 | 10 | 15 | 0,09 | 0,14 | |||
Клееная фанера | 600 | 0,12 | 10 | 13 | 0,15 | 0,18 | |||
Плита камышитовая | 300 | 0,07 | 10 | 15 | 0,09 | 0,14 | |||
Раствор цементо-песчаный | 1800 | 0,58 | 2 | 4 | 0,76 | 0,93 | |||
Металл чугун | 7200 | 50 | 0 | 0 | 50 | 50 | |||
Раствор цементно-шлаковый | 1400 | 0,41 | 2 | 4 | 0,52 | 0,64 | |||
Раствор сложного песка | 1700 | 0,52 | 2 | 4 | 0,70 | 0,87 | |||
Сухая штукатурка | 800 | 0,15 | 4 | 6 | 0,19 | 0,21 | |||
Плита камышитовая | 200 | 0,06 | 10 | 15 | 0,07 | 0,09 | |||
Цементная штукатурка | 1050 | 0,15 | 4 | 6 | 0,34 | 0,36 | |||
Плита торфяная | 300 | 0,064 | 15 | 20 | 0,07 | 0,08 | |||
Плита торфяная | 200 | 0,052 | 15 | 20 | 0,06 | 0,064 |
Рекомендуем также прочесть и другие наши статьи, где мы рассказываем о том как правильно выбирать утеплитель:
Выводы и полезное видео по теме
Видеоролик тематически направленный, где достаточно подробно разъясняется – что такое КТП и «с чем его едят». Ознакомившись с материалом, представленным в ролике, появляются высокие шансы стать профессиональным строителем.
Очевидный момент – потенциальному строителю обязательно необходимо знать о теплопроводности и ее зависимости от различных факторов. Эти знания помогут строить не просто качественно, но с высокой степенью надежности и долговечности объекта. Использование коэффициента по существу – это реальная экономия денег, допустим, на оплате за те же коммунальные услуги.
Если у вас появились вопросы или есть ценная информация по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.
Материал | Коэффициент теплопроводности, Вт/м*К |
Алебастровые плиты | 0,47 |
Алюминий | 230 |
Асбест (шифер) | 0,35 |
Асбест волокнистый | 0,15 |
Асбестоцемент | 1.76 |
Асбоцементные плиты | 0,35 |
Асфальт | 0,72 |
Асфальт в полах | 0,8 |
Бакелит | 0,23 |
Бетон на каменном щебне | 1,3 |
Бетон на песке | 0,7 |
Бетон пористый | 1,4 |
Бетон сплошной | 1,75 |
Бетон термоизоляционный | 0,18 |
Битум | 0,47 |
Бумага | 0,14 |
Вата минеральная легкая | 0,045 |
Вата минеральная тяжелая | 0,055 |
Вата хлопковая | 0,055 |
Вермикулитовые листы | 0,1 |
Войлок шерстяной | 0,045 |
Гипс строительный | 0,35 |
Глинозем | 2,33 |
Гравий (наполнитель) | 0,93 |
Гранит, базальт | 3,5 |
Грунт 10% воды | 1,75 |
Грунт 20% воды | 2,1 |
Грунт песчаный | 1,16 |
Грунт сухой | 0,4 |
Грунт утрамбованный | 1,05 |
Гудрон | 0,3 |
Древесина — доски | 0,15 |
Древесина — фанера | 0,15 |
Древесина твердых пород | 0,2 |
Древесно-стружечная плита ДСП | 0,2 |
Дюралюминий | 160 |
Железобетон | 1,7 |
Зола древесная | 0,15 |
Известняк | 1,7 |
Известь-песок раствор | 0,87 |
Иней | 0,47 |
Ипорка (вспененная смола) | 0,038 |
Камень | 1,4 |
Картон строительный многослойный | 0,13 |
Картон теплоизолированный БТК-1 | 0,04 |
Каучук вспененный | 0,03 |
Каучук натуральный | 0,042 |
Каучук фторированный | 0,055 |
Керамзитобетон | 0,2 |
Кирпич кремнеземный | 0,15 |
Кирпич пустотелый | 0,44 |
Кирпич силикатный | 0,81 |
Кирпич сплошной | 0,67 |
Кирпич шлаковый | 0,58 |
Кремнезистые плиты | 0,07 |
Латунь | 110 |
Лед 0°С -20°С -60°С | 2.21 2.44 2.91 |
Липа, береза, клен, дуб (15% влажности) | 0,15 |
Медь | 380 |
Мипора | 0,085 |
Опилки — засыпка | 0,095 |
Опилки древесные сухие | 0,065 |
ПВХ | 0,19 |
Пенобетон | 0,3 |
Пенопласт ПС-1 | 0,037 |
Пенопласт ПС-4 | 0,04 |
Пенопласт ПХВ-1 | 0,05 |
Пенопласт резопен ФРП | 0,045 |
Пенополистирол ПС-Б | 0,04 |
Пенополистирол ПС-БС | 0,04 |
Пенополиуретановые листы | 0,035 |
Пенополиуретановые панели | 0,025 |
Пеностекло легкое | 0,06 |
Пеностекло тяжелое | 0,08 |
Пергамин | 0,17 |
Перлит | 0,05 |
Перлито-цементные плиты | 0,08 |
Песок 0% влажности 10% влажности 20% влажности | 0.33 0.97 1.33 |
Песчаник обожженный | 1,5 |
Плитка облицовочная | 105 |
Плитка термоизоляционная ПМТБ-2 | 0,036 |
Полистирол | 0,082 |
Поролон | 0,04 |
Портландцемент раствор | 0,47 |
Пробковая плита | 0,043 |
Пробковые листы легкие | 0,035 |
Пробковые листы тяжелые | 0,05 |
Резина | 0,15 |
Рубероид | 0,17 |
Сланец | 2,1 |
Снег | 1,5 |
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) | 0,15 |
Сосна смолистая (600…750 кг/куб.м, 15% влажности) | 0,23 |
Сталь | 52 |
Стекло | 1,15 |
Стекловата | 0,05 |
Стекловолокно | 0,036 |
Стеклотекстолит | 0,3 |
Стружки — набивка | 0,12 |
Тефлон | 0,25 |
Толь бумажный | 0,23 |
Цементные плиты | 1,92 |
Цемент-песок раствор | 1,2 |
Чугун | 56 |
Шлак гранулированный | 0,15 |
Шлак котельный | 0,29 |
Шлакобетон | 0,6 |
Штукатурка сухая | 0,21 |
Штукатурка цементная | 0,9 |
Эбонит | 0,16 |
Эбонит вспученный | 0,03 |
Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность.
|
Теплопрово́дность — это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.
Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.
В установившемся режиме поток энергии, передающейся посредством теплопроводности, пропорционален градиенту температуры:
где — вектор потока тепла — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,
— коэффициент теплопроводности (иногда называемый просто теплопроводностью), T — температура. Это выражение известно как закон теплопроводности Фурье.
В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):
где P — полная мощность тепловых потерь, S — площадь сечения параллелепипеда, ΔT — перепад температур граней, h — длина параллелепипеда, то есть расстояние между гранями.
Коэффициент теплопроводности измеряется в Вт/(м·K).
Коэффициенты теплопроводности различных веществ
Материал | Теплопроводность, Вт/(м·K) |
---|---|
Алмаз | 1001—2600 |
Серебро | 430 |
Медь | 382—390 |
Золото | 320 |
Алюминий | 202—236 |
Латунь | 97—111 |
Железо | 92 |
Платина | 70 |
Олово | 67 |
Сталь | 47 |
Кварц | 8 |
Стекло | 1 |
Вода | 0,6 |
Кирпич строительный | 0,2—0,7 |
Пенобетон | 0,14—0,3 |
Газобетон | 0,1—0,3 |
Дерево | 0,15 |
Шерсть | 0,05 |
Минеральная вата | 0,045 |
Пенополистирол | 0,04 |
Пеноизол | 0,035 |
Воздух (300 K, 100 кПа) | 0,026 |
Воздух (сухой неподвижный) | 0,024—0,031 |
Аргон | 0,0177 |
Ксенон | 0,0057 |
Аэрогель | 0,003 |
Вакуум (абсолютный) | 0 (строго) |
На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы).
Коэффициент теплопроводности вакуума
Коэффициент теплопроводности вакуума стремится к нулю. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тепло в вакууме передаётся только излучением. Поэтому для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность хуже излучает и лучше отражает), а воздух между ними откачивают.
Связь с электропроводностью
Связь коэффициента теплопроводности K с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:
где k — постоянная Больцмана, e — заряд электрона.
Обобщения закона Фурье
Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. д. Инерционность в уравнения переноса первым ввел Максвелл[1], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[2]
Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.
Примечания
- ↑ J. C. Maxwell, Philos. Trans. Roy. Soc. London 157 (1867) 49.
- ↑ C. Cattaneo, Atti Seminario Univ. Modena 3 (1948) 33.
См. также
Другие способы теплопередачи
Wikimedia Foundation. 2010.
Коэффициент теплопроводности, формула и примеры
Определение и формула коэффициента теплопроводности
Коэффициентом теплопроводности является физическая величина, которая характеризует способность вещества проводить тепло.
Обозначают коэффициент теплопроводности по-разному. Встречаются обозначения: K, и некоторые другие.
Коэффициент теплопроводности газа
В соответствии с кинетической теорией для газа коэффициент теплопроводности равен:
где — средняя скорость теплового движения молекул, — средняя длин свободного пробега молекулы, — плотность газа, — удельная теплоемкость газа в изохорном процессе.
Коэффициент теплопроводности металлов
Металлы являются хорошими проводниками тепла. Теплопроводность в металлах реализуется при помощи (в основном) посредством того, что энергию переносят свободные электроны. Коэффициент электронной теплопроводности металлов вычисляют при помощи формулы:
где — постоянная Больцмана, — концентрация электронов в металле, — длина свободного пробега, которая соответствует границе энергии Ферми () для распределения электронов по температурам при T=0K, — масса электрона, — средняя скорость свободного пробега для тех же условий, что и .
Для идеального электронного газа выражение (2) преобразуется к виду:
где — средняя длина свободного пробега, — средняя скорость теплового движения электронов.
Надо отметить, что теплопроводность, которая осуществляется кристаллической решеткой металлов существенно меньше, чем электронная. Ее можно рассчитать для кристаллов, рассматривая перемещение фотонов по кристаллу, при помощи формулы:
где с — теплоемкость единицы объема, — скорость звука, — длина свободного пробега фотона
Коэффициент теплопроводности и уравнение Фурье
Коэффициент теплопроводности входит в основное уравнение, которое описывает явление переноса тепла или уравнение Фурье. Явление теплопроводности появляется , если имеется градиент температуры. В одномерном стационарном случае уравнение Фурье можно записать как:
где помимо коэффициента теплопроводности () имеются: — количество теплоты, которое переносится через площадку в направлении, которое совпадает с направлением нормали к , в направлении уменьшения температуры, — градиент температуры. В нашем случае
Единицы измерения
Основной единицей измерения коэффициента теплопроводности в системе СИ является:
=Вт/м•К
Примеры решения задач
ABS (АБС пластик) | 1030…1060 | 0.13…0.22 | 1300…2300 |
Аглопоритобетон и бетон на топливных (котельных) шлаках | 1000…1800 | 0.29…0.7 | 840 |
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 | 1100…1200 | 0.21 | — |
Альфоль | 20…40 | 0.118…0.135 | — |
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 897 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцемент | 1500…1900 | 1.76 | 1500 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбозурит | 400…650 | 0.14…0.19 | — |
Асбослюда | 450…620 | 0.13…0.15 | — |
Асботекстолит Г ( ГОСТ 5-78) | 1500…1700 | — | 1670 |
Асботермит | 500 | 0.116…0.14 | — |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Асфальт в полах | — | 0.8 | — |
Ацеталь (полиацеталь, полиформальдегид) POM | 1400 | 0.22 | — |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Бальза | 110…140 | 0.043…0.052 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон легкий с природной пемзой | 500…1200 | 0.15…0.44 | — |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на вулканическом шлаке | 800…1600 | 0.2…0.52 | 840 |
Бетон на доменных гранулированных шлаках | 1200…1800 | 0.35…0.58 | 840 |
Бетон на зольном гравии | 1000…1400 | 0.24…0.47 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на котельном шлаке | 1400 | 0.56 | 880 |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон на топливных шлаках | 1000…1800 | 0.3…0.7 | 840 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон сплошной | — | 1.75 | — |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумоперлит | 300…400 | 0.09…0.12 | 1130 |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бронза | 7500…9300 | 22…105 | 400 |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 100…150 | 0.055 | 920 |
Вата стеклянная | 155…200 | 0.03 | 800 |
Вата хлопковая | 30…100 | 0.042…0.049 | — |
Вата хлопчатобумажная | 50…80 | 0.042 | 1700 |
Вата шлаковая | 200 | 0.05 | 750 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Воздух сухой при 20°С | 1.205 | 0.0259 | 1005 |
Войлок шерстяной | 150…330 | 0.045…0.052 | 1700 |
Газо- и пенобетон, газо- и пеносиликат | 280…1000 | 0.07…0.21 | 840 |
Газо- и пенозолобетон | 800…1200 | 0.17…0.29 | 840 |
Гетинакс | 1350 | 0.23 | 1400 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Гипсошлак | 1000…1300 | 0.26…0.36 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Глиногипс | 800…1800 | 0.25…0.65 | — |
Глинозем | 3100…3900 | 2.33 | 700…840 |
Гнейс (облицовка) | 2800 | 3.5 | 880 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Гудрон | 950…1030 | 0.3 | — |
Доломит плотный сухой | 2800 | 1.7 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.7 | 840 |
Железобетон набивной | 2400 | 1.55 | 840 |
Зола древесная | 780 | 0.15 | 750 |
Золото | 19320 | 318 | 129 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия вулканитовые | 350…400 | 0.12 | — |
Изделия диатомитовые | 500…600 | 0.17…0.2 | — |
Изделия ньювелитовые | 160…370 | 0.11 | — |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Изделия перлитофосфогелевые | 200…300 | 0.064…0.076 | — |
Изделия совелитовые | 230…450 | 0.12…0.14 | — |
Иней | — | 0.47 | — |
Ипорка (вспененная смола) | 15 | 0.038 | — |
Каменноугольная пыль | 730 | 0.12 | — |
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ | 810…840 | 0.14…0.185 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камни полнотелые из природного туфа или вспученной глины | 500…2000 | 0.29…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Карболит черный | 1100 | 0.23 | 1900 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон облицовочный | 1000 | 0.18 | 2300 |
Картон парафинированный | — | 0.075 | — |
Картон плотный | 600…900 | 0.1…0.23 | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0.033 | — |
Каучук вулканизированный твердый серый | — | 0.23 | — |
Каучук вулканизированный мягкий серый | 920 | 0.184 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Каучук твердый | — | 0.16 | — |
Каучук фторированный | 180 | 0.055…0.06 | — |
Кедр красный | 500…570 | 0.095 | — |
Кембрик лакированный | — | 0.16 | — |
Керамзит | 800…1000 | 0.16…0.2 | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон на кварцевом песке с поризацией | 800…1200 | 0.23…0.41 | 840 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0.14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Керамика теплая | — | 0.12 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич диатомовый | 500 | 0.8 | — |
Кирпич изоляционный | — | 0.14 | — |
Кирпич карборундовый | 1000…1300 | 11…18 | 700 |
Кирпич красный плотный | 1700…2100 | 0.67 | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич кремнеземный | — | 0.15 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0.44 | — |
Кирпич силикатный | 1000…2200 | 0.5…1.3 | 750…840 |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич сплошной | — | 0.67 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кирпич трепельный | 700…1300 | 0.27 | 710 |
Кирпич шлаковый | 1100…1400 | 0.58 | — |
Кладка бутовая из камней средней плотности | 2000 | 1.35 | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0.56 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе | 1700 | 0.52 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.64 | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе | 1000…1200 | 0.29…0.35 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Кладка из шлакового кирпича на цементно-песчаном растворе | 1500 | 0.52 | 880 |
Кладка «Поротон» | 800 | 0.31 | 900 |
Клен | 620…750 | 0.19 | — |
Кожа | 800…1000 | 0.14…0.16 | — |
Композиты технические | — | 0.3…2 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Кремний | 2000…2330 | 148 | 714 |
Кремнийорганический полимер КМ-9 | 1160 | 0.2 | 1150 |
Латунь | 8100…8850 | 70…120 | 400 |
Лед -60°С | 924 | 2.91 | 1700 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2.21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы вермикулитовые | — | 0.1 | — |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.035 | — |
Листы пробковые тяжелые | 260 | 0.05 | — |
Магнезия в форме сегментов для изоляции труб | 220…300 | 0.073…0.084 | — |
Мастика асфальтовая | 2000 | 0.7 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) | 150 | 0.061 | 840 |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) | 50…125 | 0.048…0.056 | 840 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.045 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Миканит | 2000…2200 | 0.21…0.41 | 250 |
Мипора | 16…20 | 0.041 | 1420 |
Морозин | 100…400 | 0.048…0.084 | — |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Накипь котельная (богатая известью, при 100°С) | 1000…2500 | 0.15…2.3 | — |
Накипь котельная (богатая силикатом, при 100°С) | 300…1200 | 0.08…0.23 | — |
Настил палубный | 630 | 0.21 | 1100 |
Найлон | — | 0.53 | — |
Нейлон | 1300 | 0.17…0.24 | 1600 |
Неопрен | — | 0.21 | 1700 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Пакля | 150 | 0.05 | 2300 |
Панели стеновые из гипса DIN 1863 | 600…900 | 0.29…0.41 | — |
Парафин | 870…920 | 0.27 | — |
Паркет дубовый | 1800 | 0.42 | 1100 |
Паркет штучный | 1150 | 0.23 | 880 |
Паркет щитовой | 700 | 0.17 | 880 |
Пемза | 400…700 | 0.11…0.16 | — |
Пемзобетон | 800…1600 | 0.19…0.52 | 840 |
Пенобетон | 300…1250 | 0.12…0.35 | 840 |
Пеногипс | 300…600 | 0.1…0.15 | — |
Пенозолобетон | 800…1200 | 0.17…0.29 | — |
Пенопласт ПС-1 | 100 | 0.037 | — |
Пенопласт ПС-4 | 70 | 0.04 | — |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) | 65…125 | 0.031…0.052 | 1260 |
Пенопласт резопен ФРП-1 | 65…110 | 0.041…0.043 | — |
Пенополистирол (ГОСТ 15588-70) | 40 | 0.038 | 1340 |
Пенополистирол (ТУ 6-05-11-78-78) | 100…150 | 0.041…0.05 | 1340 |
Пенополистирол Пеноплэкс | 22…47 | 0.03…0.036 | 1600 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) | 40…80 | 0.029…0.041 | 1470 |
Пенополиуретановые листы | 150 | 0.035…0.04 | — |
Пенополиэтилен | — | 0.035…0.05 | — |
Пенополиуретановые панели | — | 0.025 | — |
Пеносиликальцит | 400…1200 | 0.122…0.32 | — |
Пеностекло легкое | 100..200 | 0.045…0.07 | — |
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) | 200…400 | 0.07…0.11 | 840 |
Пенофол | 44…74 | 0.037…0.039 | — |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1.55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Перлитобетон | 600…1200 | 0.12…0.29 | 840 |
Перлитопласт-бетон (ТУ 480-1-145-74) | 100…200 | 0.035…0.041 | 1050 |
Перлитофосфогелевые изделия (ГОСТ 21500-76) | 200…300 | 0.064…0.076 | 1050 |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песок речной мелкий (влажный) | 1650 | 1.13 | 2090 |
Песчаник обожженный | 1900…2700 | 1.5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плита огнеупорная теплоизоляционная Avantex марки Board | 200…500 | 0.04 | — |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плитка термоизоляционная ПМТБ-2 | — | 0.04 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 | 0.082 | — |
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) | 40…100 | 0.038…0.047 | 1680 |
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) | 50 | 0.056 | 840 |
Плиты из ячеистого бетона ГОСТ 5742-76 | 350…400 | 0.093…0.104 | — |
Плиты камышитовые | 200…300 | 0.06…0.07 | 2300 |
Плиты кремнезистые | 0.07 | — | |
Плиты льнокостричные изоляционные | 250 | 0.054 | 2300 |
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 | 150…200 | 0.058 | — |
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 | 225 | 0.054 | — |
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) | 170…230 | 0.042…0.044 | — |
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 | 200 | 0.052 | 840 |
Плиты минераловатные повышенной жесткости на органофосфатном связующем (ТУ 21-РСФСР-3-72-76) | 200 | 0.064 | 840 |
Плиты минераловатные полужесткие на крахмальном связующем | 125…200 | 0.056…0.07 | 840 |
Плиты минераловатные на синтетическом и битумном связующих | — | 0.048…0.091 | — |
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) | 50…350 | 0.048…0.091 | 840 |
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 | 80…100 | 0.045 | — |
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые | 30…35 | 0.038 | — |
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 | 32 | 0.029 | — |
Плиты перлито-битумные ГОСТ 16136-80 | 300 | 0.087 | — |
Плиты перлито-волокнистые | 150 | 0.05 | — |
Плиты перлито-фосфогелевые ГОСТ 21500-76 | 250 | 0.076 | — |
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 | 150 | 0.044 | — |
Плиты перлитоцементные | — | 0.08 | — |
Плиты строительный из пористого бетона | 500…800 | 0.22…0.29 | — |
Плиты термобитумные теплоизоляционные | 200…300 | 0.065…0.075 | — |
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) | 200…300 | 0.052…0.064 | 2300 |
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе | 300…800 | 0.07…0.16 | 2300 |
Покрытие ковровое | 630 | 0.2 | 1100 |
Покрытие синтетическое (ПВХ) | 1500 | 0.23 | — |
Пол гипсовый бесшовный | 750 | 0.22 | 800 |
Поливинилхлорид (ПВХ) | 1400…1600 | 0.15…0.2 | — |
Поликарбонат (дифлон) | 1200 | 0.16 | 1100 |
Полипропилен (ГОСТ 26996– 86) | 900…910 | 0.16…0.22 | 1930 |
Полистирол УПП1, ППС | 1025 | 0.09…0.14 | 900 |
Полистиролбетон (ГОСТ 51263) | 150…600 | 0.052…0.145 | 1060 |
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе | 200…500 | 0.057…0.113 | 1060 |
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах | 200…500 | 0.052…0.105 | 1060 |
Полистиролбетон модифицированный монолитный на портландцементе | 250…300 | 0.075…0.085 | 1060 |
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах | 200…500 | 0.062…0.121 | 1060 |
Полиуретан | 1200 | 0.32 | — |
Полихлорвинил | 1290…1650 | 0.15 | 1130…1200 |
Полиэтилен высокой плотности | 955 | 0.35…0.48 | 1900…2300 |
Полиэтилен низкой плотности | 920 | 0.25…0.34 | 1700 |
Поролон | 34 | 0.04 | — |
Портландцемент (раствор) | — | 0.47 | — |
Прессшпан | — | 0.26…0.22 | — |
Пробка гранулированная техническая | 45 | 0.038 | 1800 |
Пробка минеральная на битумной основе | 270…350 | 0.073…0.096 | — |
Пробковое покрытие для полов | 540 | 0.078 | — |
Ракушечник | 1000…1800 | 0.27…0.63 | 835 |
Раствор гипсовый затирочный | 1200 | 0.5 | 900 |
Раствор гипсоперлитовый | 600 | 0.14 | 840 |
Раствор гипсоперлитовый поризованный | 400…500 | 0.09…0.12 | 840 |
Раствор известковый | 1650 | 0.85 | 920 |
Раствор известково-песчаный | 1400…1600 | 0.78 | 840 |
Раствор легкий LM21, LM36 | 700…1000 | 0.21…0.36 | — |
Раствор сложный (песок, известь, цемент) | 1700 | 0.52 | 840 |
Раствор цементный, цементная стяжка | 2000 | 1.4 | — |
Раствор цементно-песчаный | 1800…2000 | 0.6…1.2 | 840 |
Раствор цементно-перлитовый | 800…1000 | 0.16…0.21 | 840 |
Раствор цементно-шлаковый | 1200…1400 | 0.35…0.41 | 840 |
Резина мягкая | — | 0.13…0.16 | 1380 |
Резина твердая обыкновенная | 900…1200 | 0.16…0.23 | 1350…1400 |
Резина пористая | 160…580 | 0.05…0.17 | 2050 |
Рубероид (ГОСТ 10923-82) | 600 | 0.17 | 1680 |
Руда железная | — | 2.9 | — |
Сажа ламповая | 170 | 0.07…0.12 | — |
Сера ромбическая | 2085 | 0.28 | 762 |
Серебро | 10500 | 429 | 235 |
Сланец глинистый вспученный | 400 | 0.16 | — |
Сланец | 2600…3300 | 0.7…4.8 | — |
Слюда вспученная | 100 | 0.07 | — |
Слюда поперек слоев | 2600…3200 | 0.46…0.58 | 880 |
Слюда вдоль слоев | 2700…3200 | 3.4 | 880 |
Смола эпоксидная | 1260…1390 | 0.13…0.2 | 1100 |
Снег свежевыпавший | 120…200 | 0.1…0.15 | 2090 |
Снег лежалый при 0°С | 400…560 | 0.5 | 2100 |
Сосна и ель вдоль волокон | 500 | 0.18 | 2300 |
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) | 500 | 0.09 | 2300 |
Сосна смолистая 15% влажности | 600…750 | 0.15…0.23 | 2700 |
Сталь стержневая арматурная (ГОСТ 10884-81) | 7850 | 58 | 482 |
Стекло оконное (ГОСТ 111-78) | 2500 | 0.76 | 840 |
Стекловата | 155…200 | 0.03 | 800 |
Стекловолокно | 1700…2000 | 0.04 | 840 |
Стеклопластик | 1800 | 0.23 | 800 |
Стеклотекстолит | 1600…1900 | 0.3…0.37 | — |
Стружка деревянная прессованая | 800 | 0.12…0.15 | 1080 |
Стяжка ангидритовая | 2100 | 1.2 | — |
Стяжка из литого асфальта | 2300 | 0.9 | — |
Текстолит | 1300…1400 | 0.23…0.34 | 1470…1510 |
Термозит | 300…500 | 0.085…0.13 | — |
Тефлон | 2120 | 0.26 | — |
Ткань льняная | — | 0.088 | — |
Толь (ГОСТ 10999-76) | 600 | 0.17 | 1680 |
Тополь | 350…500 | 0.17 | — |
Торфоплиты | 275…350 | 0.1…0.12 | 2100 |
Туф (облицовка) | 1000…2000 | 0.21…0.76 | 750…880 |
Туфобетон | 1200…1800 | 0.29…0.64 | 840 |
Уголь древесный кусковой (при 80°С) | 190 | 0.074 | — |
Уголь каменный газовый | 1420 | 3.6 | — |
Уголь каменный обыкновенный | 1200…1350 | 0.24…0.27 | — |
Фарфор | 2300…2500 | 0.25…1.6 | 750…950 |
Фанера клееная (ГОСТ 3916-69) | 600 | 0.12…0.18 | 2300…2500 |
Фибра красная | 1290 | 0.46 | — |
Фибролит (серый) | 1100 | 0.22 | 1670 |
Целлофан | — | 0.1 | — |
Целлулоид | 1400 | 0.21 | — |
Цементные плиты | — | 1.92 | — |
Черепица бетонная | 2100 | 1.1 | — |
Черепица глиняная | 1900 | 0.85 | — |
Черепица из ПВХ асбеста | 2000 | 0.85 | — |
Чугун | 7220 | 40…60 | 500 |
Шевелин | 140…190 | 0.056…0.07 | — |
Шелк | 100 | 0.038…0.05 | — |
Шлак гранулированный | 500 | 0.15 | 750 |
Шлак доменный гранулированный | 600…800 | 0.13…0.17 | — |
Шлак котельный | 1000 | 0.29 | 700…750 |
Шлакобетон | 1120…1500 | 0.6…0.7 | 800 |
Шлакопемзобетон (термозитобетон) | 1000…1800 | 0.23…0.52 | 840 |
Шлакопемзопено- и шлакопемзогазобетон | 800…1600 | 0.17…0.47 | 840 |
Штукатурка гипсовая | 800 | 0.3 | 840 |
Штукатурка известковая | 1600 | 0.7 | 950 |
Штукатурка из синтетической смолы | 1100 | 0.7 | — |
Штукатурка известковая с каменной пылью | 1700 | 0.87 | 920 |
Штукатурка из полистирольного раствора | 300 | 0.1 | 1200 |
Штукатурка перлитовая | 350…800 | 0.13…0.9 | 1130 |
Штукатурка сухая | — | 0.21 | — |
Штукатурка утепляющая | 500 | 0.2 | — |
Штукатурка фасадная с полимерными добавками | 1800 | 1 | 880 |
Штукатурка цементная | — | 0.9 | — |
Штукатурка цементно-песчаная | 1800 | 1.2 | — |
Шунгизитобетон | 1000…1400 | 0.27…0.49 | 840 |
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка | 200…600 | 0.064…0.11 | 840 |
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка | 400…800 | 0.12…0.18 | 840 |
Эбонит | 1200 | 0.16…0.17 | 1430 |
Эбонит вспученный | 640 | 0.032 | — |
Эковата | 35…60 | 0.032…0.041 | 2300 |
Энсонит (прессованный картон) | 400…500 | 0.1…0.11 | — |
Эмаль (кремнийорганическая) | — | 0.16…0.27 | — |
* Большинство из Янга, Хью Д., Физика университета, 7-е изд. Таблица 15-5. Значения для алмазного и кремнеземного аэрогеля из Справочника по химии и физике CRC. Обратите внимание, что 1 (кал / с) / (см 2 С / см) = 419 Вт / м К. С учетом этого два приведенных выше столбца не всегда соответствуют друг другу. Все значения взяты из опубликованных таблиц, но их нельзя считать достоверными. Значение 0,02 Вт / мК для полиуретана можно принять за номинальное значение, которое определяет пенополиуретан как один из лучших изоляторов. NIST опубликовал процедуру численного аппроксимации для расчета теплопроводности полиуретана на http://cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для наполненного фреоном полиуретана с плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0,022 Вт / мК. Расчет по СО 2, заполненный полиуретаном плотностью 2.00 фунт / фут 3 дает 0,035 Вт / мК. | Index Tables Reference |
- Классы
- Класс 1 — 3
- Класс 4 — 5
- Класс 6 — 10
- Класс 11 — 12
- КОНКУРСНЫЕ СУЩНОСТИ
- BBS
- 000000000000 Книги
- NCERT Книги для 5 класса
- NCERT Книги Класс 6
- NCERT Книги для 7 класса
- NCERT Книги для 8 класса
- NCERT Книги для 9 класса 9
- NCERT Книги для 10 класса
- NCERT Книги для 11 класса
- NCERT Книги для 12-го класса
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
- NCERT Exemplar Class 12 9000al Aggar
Agaris Agard Agard Agard Agard Agard 2000 12000000- Классы
- RS Решения Aggarwal класса 10
- RS Решения Aggarwal класса 11
- RS Решения Aggarwal класса 10 90 003 Решения RS Aggarwal класса 9
- Решения RS Aggarwal класса 8
- Решения RS Aggarwal класса 7
- Решения RS Aggarwal класса 6
- Решения RD Sharma
- Решения класса RD Sharma
- Решения класса 9 Шарма 7 Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- ФИЗИКА
- Механика
- 000000 Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- МАТС
- Теорема Пифагора
- Отношения и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убыток
- Полиномиальные уравнения
- Делительные дроби
- 000000
- 000000
- 000000
- ФОРМУЛЫ Математика Формулы
- Алгебра Формулы Тригонометрия формулы
- Геометрия Формулы
-
- КАЛЬКУЛЯТОРЫ Калькуляторы Математика Физика
- Калькулятор химии Калькуляторы
Теплопроводность и коэффициент расширения
Теплопроводность склонность любого материала переносить тепло из одной точки в другую. Конечно, для тепла, чтобы «течь», это необходимо, чтобы разница температур существовала в непрерывном сечении материала. термический проводимость аналогична электропроводности. Точно так же тепловое сопротивление является обратным тепловому проводимость как электрическое сопротивление является обратной к электрической проводимости.Коэффициент расширения это скорость, с которой материал будет расти в длину с повышением температуры. Большая часть материала растет в довольно линейная мода, особенно в определенном диапазоне температур. Положительный коэффициент расширения указывает на то, что материал становится длиннее с ростом его температуры. Большинство металлов такие. Лед общеизвестный пример отрицательного коэффициента расширения, так как он сжимается в длину с увеличением температура (другими словами, лед расширяется, когда становится холоднее).
Воздух (неподвижно) | 0.0003 | |||
Глинозем | 0,276 | |||
Глинозем (85%) | 0.118 | |||
Алюминий | 2.165 | 0,23 | 2,7 | 0,81 |
Берилия (99,5%) | 1.969 | |||
Берилия (97%) | 1.575 | |||
Берилия (95%) | 1,161 | |||
Бериллий | 1.772 | |||
Бериллий-Медь | 1.063 | |||
нитрид бора | 0,394 | |||
латунь (70/30) | 1.220 | |||
Медь | 3.937 | 0,17 | 8,9 | 0,45 |
Copper / Inv c / Copper | 1,64 | 0,084 | 8,4 | .020 |
Медь / Мо d / Медь | 1,82 | 0,060 | 9.9 | 0,18 |
Медь / Мо d -Cu / Медь | 2,45-2,80 | 0,60-0,10 | 9,4 | 0,26-0,30 |
Diamond (комнатная температура) | 6.299 | |||
эпоксидная смола | 0.002 | |||
Эпоксидная смола (теплопроводящая) | 0,008 | |||
FR-4 (G-10) | 0,003 | |||
GaAs | 0.591 | |||
Стекло | 0,008 | |||
Золото | 2.913 | |||
Соединение радиатора | 0.004 | |||
Гелий (жидкий) | 0.000307 | |||
Инвар | 0,11 | 0,013 | 8.1 | 0,014 |
Железо | 0.669 | |||
Ковар | 0,17 | 0,59 | 8,3 | 0,020 |
Свинец | 0,343 | |||
Магний | 1.575 | |||
Слюда | 0,007 | |||
молибден | 1,299 | |||
Монель | 0.197 | |||
майлара | 0,002 | |||
никель | 0,906 | |||
Азот (жидкий) | 0.001411 | |||
Фенолик | 0,002 | |||
Платина | 0,734 | |||
Сапфир (ось) | 0.32 | |||
Сапфир (ось C) | 0,35 | |||
Кремний (чистый) | 1.457 | |||
Кремний (0.0025 Ом-см) | 1.457 | |||
Карбид кремния | 0,90 | |||
Двуокись кремния (аморфная) | 0,014 | |||
Двуокись кремния (кварц, ось) | 0.059 | |||
Диоксид кремния (кварц, ось C) | 0,11 | |||
Силиконовая смазка | 0,002 | |||
Силиконовая резина | 0.002 | |||
нитрид кремния | 0,16 — 0,33 | |||
Серебро | 4,173 | |||
Нержавеющая сталь (321) | 0.146 | |||
Нержавеющая сталь (410) | 0,240 | |||
Сталь (низкоуглеродистая) | 0,669 | |||
Тефлон | 0.002 | |||
Олово | 0,630 | |||
Титан | 0,219 | 0,086 | 4,4 | 0,016 |
вольфрам | 1.969 | |||
Вода | 0,0055 | |||
Цинк | 1,024 | |||
a: Приблизительные значения от 0 ° C до 100 ° C |
,