Как поменять вращение на однофазном двигателе с конденсатором: Как поменять вращение на однофазном двигателе с конденсатором

Как поменять вращение однофазного двигателя

Рис. 1 Схема подключения двигателя однофазного асинхронного двигателя с пусковым конденсатором.

Возьмем за основу уже подключенный однофазный асинхронный двигатель, с направлением вращения по часовой стрелке (рис.1).

  • точками A, B условно обозначены начало и конец пусковой обмотки, для наглядности к этим точкам подключены провода коричневого и зеленого цвета соответственно.
  • точками С, В условно обозначены начало и конец рабочей обмотки, для наглядности к этим точкам подключены провода красного и синего цвета соответственно.
  • стрелками указано направление вращения ротора асинхронного двигателя

Задача.

Изменить направление вращения однофазный асинхронный двигатель в другую сторону – против часовой стрелки. Для этого достаточно переподключить одну из обмоток однофазного асинхронного двигателя – либо рабочую либо пусковую.

Вариант №1

Меняем направление вращения однофазного асинхронного двигателя, путем переподключения рабочей обмотки.

Рис.2 При таком подключении рабочей обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

Вариант №2

Меняем направление вращения однофазного асинхронного двигателя, путем переподключения пусковой обмотки.

Рис.3 При таком подключении пусковой обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

Важное замечание.

Такой способ изменить направление вращения однофазного асинхронного двигателя возможен только в том случае, если на двигателе имеется отдельные отводы пусковой и рабочей обмотки.

Рис.4 При таком подключении обмоток двигателя, реверс невозможен.

На рис. 4 изображен довольно распространенный вариант однофазного асинхронного двигателя, у которого концы обмоток В и С, зеленый и красный провод соответственно, соединены внутри корпуса.

У такого двигателя три вывода, вместо четырех как на рис. 4 коричневый, фиолетовый, синий провод.

UPD 03/09/2014 Наконец то удалось проверить на практике, не очень правильный, но все же используемый метод смены направления вращения асинхронного двигателя. Для однофазного асинхронного двигателя, который имеет только три вывода, возможно заставить ротор вращаться в обратном направлении, достаточно поменять местами рабочую и пусковую обмотку. Принцип такого включения изображен на рис.5

Рис. Нестандартный реверс асинхронного двигателя

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
  • три жилы при внутренней сборке схемы треугольника;
  • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
  • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

    Техническое состояние изоляции обмоток

    Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

    В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

    Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

    Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

    Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

    Как видите, промышленностью массово выпущены модели с:

    • повышенным сопротивлением пусковой обмотки;
    • пусковым конденсатором;
    • рабочим конденсатором;
    • пусковым и рабочим конденсатором;
    • экранированными полюсами.

    А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

    • значительное снижение реактивной мощности;
    • повышение КПД;
    • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

    Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

    Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

    Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

    Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

    Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

    Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

    Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

    Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

    Помечаем эти 3 конца уже понятной нам маркировкой:

    Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

    Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

    Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

    Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

    С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

    При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

    Тогда кнопку запуска отпускают:

    • пусковая обмотка отключается самовозвратом среднего контакта;
    • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

    Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

    Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

    Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

    С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

    Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

    Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

    Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

    Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

    2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

    Конденсатор подключают к выводам пусковой и рабочей обмоток.

    В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

    Здесь получается, что:

    • главная обмотка работает напрямую от 220 В;
    • вспомогательная — только через емкость конденсатора.

    Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

    Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

    Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

    Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

    Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

    Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

    При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

    В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

    Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

    Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

    Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

    Где взять номиналы главного и вспомогательного конденсаторов?

    Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

    Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

    Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

    Владелец
    видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

    Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

    Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

    Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

    Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

    В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

    Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

    Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

    Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

    Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

    Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

    Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

    Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

    Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

    Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?

    Постановка задачи

    Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

    Уточним важные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
    • Направление вращения ротора обозначено с помощью стрелок.

    Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

    Вариант 1: переподключение рабочей намотки

    Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

    В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

    Вариант 2: переподключение пусковой намотки

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготовлены из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

    Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

    Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

    Как у однофазного двигателя определить рабочую и пусковую обмотки

    Как у однофазного двигателя определить рабочую и пусковую обмотки

    Однофазный двигатель — электродвигатель, конструктивно предназначенный для подключения к однофазной сети переменного тока.

    Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

    Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные  двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

    У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

    У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

    То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

    Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

    Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

    Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

    А теперь несколько примеров, с которыми вы можете столкнуться:

    Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

    Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

    Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

    Ранее ЭлектроВести писали, калифорнийская компания HyPoint утверждает, что ее новая конструкция топливного элемента с турбонаддувом позволяет в три раза увеличить мощность и в четыре раза срок службы обычного топливного элемента, открывая возможность создания высокоскоростных дальнемагистральных электрических самолетов VTOL с водородным двигателем. Плотность энергии новой системы в 3 раза выше, чем у литий-ионных аккумуляторов.

    По материалам: electrik.info.

    Подключение однофазного электрического двигателя

    Однофазный асинхронный двигатель с замкнутым ротором состоит из ротора — вращающейся части с неподвижно закрепленном на нем замкнутым контуром и статора — корпуса с неподвижно закрепленными на нем двумя обмотками. Существует несколько способов подключения : без конденсатора, с одним или двумя конденсаторами, с постоянно работающими двумя обмотками или с одной из обмоток работающей только при старте. Здесь описан простейший вариант, который подойдет в большинстве случаев.

    Найти обмотки

    Из клеммной коробки двигателя торчит 3 или 4 конца провода. Если выводов 3, то значит два вывода соединены внутри, что немного усложнит нам задачу. В любом случае нам потребуется мультиметр.

    Четыре провода

    Ставим мультиметр на «прозвон» и находим концы обмоток, они звонятся попарно. Замеряем сопротивление каждой обмотки. Та, у которой сопротивление меньше — рабочая, та, у которой сопротивление больше — разгонная.

    Три провода

    Замеряем сопротивление между тремя выводами. Наименьшее значение — рабочая обмотка, среднее значение — разгонная.

    Подключение

    Подключение без конденсатора

    Если сопротивление отличается в разы, то разгонная обмотка должна работать кратковременно, только при пуске двигателя. В таком случае конденсатор не нужен. Достаточно коммутирующего устройства, которое бы обеспечивало подачу напряжения на разгонную обмотку в момент запуска двигателя. В простейшем случае это кнопка без фиксации.

    Подключение через конденсатор

    Если сопротивление рабочей и разгонной обмоток примерно одинаковое, то при работе двигателя должны быть подключены обе обмотки, одна из которых подключена через конденсатор.

    Параметры конденсатора зависят от мощности двигателя, нужен неполярный конденсатор, расчитанный на напряжение 450 Вольт, с емкостью 80 мкФ на каждый киловатт мощности двигателя.

    К выводам рабочей обмотки подключаем ноль и фазу, к разгонной обмотке подключаем конденсатор, а потом ноль и фазу. Если требуется изменить направление вращения двигателя, необходимо поменять местами ноль и фазу на разгонной обмотке. В случае, если постоянно менять направление вращения, в схеме нужно предусмотреть коммутационный блок, который бы менял местами ноль и фазу на выводах разгонной обмотки.

    Подключение однофазного двигателя: схемы, проверка, видео

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

    Содержание статьи

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

    Со всеми этими 

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Как все может выглядеть на практике

    Управление скоростью вращения однофазных двигателей

     

    Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

    Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

    Регулировать скорость вращения таких двигателей необходимо, например, для:

    • изменения расхода воздуха в системе вентиляции
    • регулирования производительности насосов
    • изменения скорости движущихся деталей, например в станках, конвеерах

    В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

     

    Способы регулирования

    Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

    Рассмотрим способы с изменением электрических параметров:

    • изменение напряжения питания двигателя
    • изменение частоты питающего напряжения

     

    Регулирование напряжением

    Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

    S=(n1-n2)/n2

    n1 — скорость вращения магнитного поля

    n2 — скорость вращения ротора

    При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

    Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

    При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

    Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

    На практике для этого применяют различные схемы регуляторов.

     

    Автотрансформаторное регулирование напряжения

     

    Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

     

     На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

    Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

     

     Преимущества данной схемы:

        • неискажённая форма выходного напряжения (чистая синусоида)
        • хорошая перегрузочная способность трансформатора

     Недостатки:

        • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
        • все недостатки присущие регулировке напряжением

     

     

    Тиристорный регулятор оборотов двигателя

     

    В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

    Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

    Таким образом изменяется среднеквадратичное значение напряжения.

    Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

    Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

    Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

    • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
    • добавляют на выходе конденсатор для корректировки формы волны напряжения
    • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
    • используют тиристоры с током в несколько раз превышающим ток электромотора

      

     Достоинства тиристорных регуляторов:

        • низкая стоимость
        • малая масса и размеры 

      Недостатки:

        • можно использовать для двигателей небольшой мощности
        • при работе возможен шум, треск, рывки двигателя 
        • при использовании симисторов на двигатель попадает постоянное напряжение
        • все недостатки регулирования напряжением

      

     

    Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.  

     

    Транзисторный регулятор напряжения

     

    Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

    Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

    Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

    Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

    Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

     

      Плюсы электронного автотрансформатора:

          • Небольшие габариты и масса прибора
          • Невысокая стоимость
          • Чистая, неискажённая форма выходного тока
          • Отсутствует гул на низких оборотах
          • Управление сигналом 0-10 Вольт

     Слабые стороны:

          • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
          • Все недостатки регулировки напряжением

     

    Частотное регулирование

    Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

    Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

    На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

    Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

    Однофазные двигатели могут управляться:

    • специализированными однофазными ПЧ
    • трёхфазными ПЧ с исключением конденсатора

     

    Преобразователи для однофазных двигателей

     

    В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

    Это модель Optidrive E2

     

    Для стабильного запуска и работы двигателя используются специальные алгоритмы.

    При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

    Xc=1/2πfC

    f — частота тока

    С — ёмкость конденсатора

     В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

    Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

     

     Преимущества специализированного частотного преобразователя:

          • интеллектуальное управление двигателем
          • стабильно устойчивая работа двигателя
          • огромные возможности современных ПЧ:
            • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
            • многочисленные защиты (двигателя и самого прибора)
            • входы для датчиков (цифровые и аналоговые)
            • различные выходы
            • коммуникационный интерфейс (для управления, мониторинга)
            • предустановленные скорости
            • ПИД-регулятор

     Минусы использования однофазного ПЧ:

          • ограниченное управление частотой
          • высокая стоимость

     

    Использование ЧП для трёхфазных двигателей

     

     

    Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

     

    Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

    Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

    В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

    При работе без конденсатора это приведёт к:

    • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
    • разному току в обмотках

    Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

     

     Преимущества:

            • более низкая стоимость по сравнению со специализированными ПЧ
            • огромный выбор по мощности и производителям
            • более широкий диапазон регулирования частоты
            • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

     Недостатки метода:

            • необходимость предварительного подбора ПЧ и двигателя для совместной работы
            • пульсирующий и пониженный момент
            • повышенный нагрев
            • отсутствие гарантии при выходе из строя, т. к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

     

     

    Однофазный асинхронный электродвигатель

    Дмитрий Левкин

    Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

    Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

    Основными компонентами любого электродвигателя являются ротор и статор. Ротор — вращающаяся часть электродвигателя, статор — неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

    Основные части однофазного двигателя: ротор и статор

    Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

    Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

    Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой «беличьей клеткой». Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

    Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

    Принцип работы однофазного асинхронного двигателя

    Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

    Проанализируем случай с двумя обмотками имеющими по оному витку

    Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

    Запустить

    Остановить

    Пульсирующее магнитное поле

    Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

    Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

    ,

    • где nпр – частота вращения магнитного поля в прямом направлении, об/мин,
    • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
    • f1 – частота тока статора, Гц,
    • p – количество пар полюсов,
    • n1 – скорость вращения магнитного потока, об/мин

    Запустить

    Остановить

    Разложение пульсирующего магнитного потока на два вращающихся

    Действие пульсирующего поля на вращающийся ротор

    Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

    Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Фобр — в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

    ,

    • где sпр – скольжение ротора относительно прямого магнитного потока,
    • n2 – частота вращения ротора, об/мин,
    • s – скольжение асинхронного двигателя

    Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

    Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

    ,

    • где sобр – скольжение ротора относительно обратного магнитного потока

    Запустить

    Остановить

    Вращающееся магнитное поле пронизывающее ротор

    Ток индуцируемый в роторе переменным магнитным полем

    Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

    ,

    • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

    ,

    • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

    Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

    Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

    скольжение ротора относительно прямого магнитного потока sпр = 0,04;
    частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
    скольжение ротора относительно обратного магнитного потока sобр = 1,96;
    частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

    Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

    ,

    • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
    • сM — постоянный коэффициент, определяемый конструкцией двигателя

    Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

    ,

    • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

    Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

    ,

    Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

    Тормозящее действие обратного поля

    При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

    ,

    • где r2 — активное сопротивление стержней ротора, Ом,
    • x2обр — реактивное сопротивление стержней ротора, Ом.

    Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

    С помощью одной фазы нельзя запустить ротор

    Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

    Действие пульсирующего поля на неподвижный ротор

    При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

    Пуск однофазного двигателя. Как создать начальное вращение?

    Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

    После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

    Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

    Подключение однофазного двигателя

    С пусковым сопротивлением

    Двигатель с расщепленной фазой — однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

    Однофазный асинхронный двигатель с пусковым сопротивлением — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

    Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

    Разное сопротивление и индуктивность обмоток

    Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

    Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

    Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

    С конденсаторным пуском

    Двигатель с конденсаторным пуском — двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

    Ёмкостной сдвиг фаз с пусковым конденсатором

    Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

    Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

    Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются — конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

    Двигатель с экранированными полюсами — двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

    Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.

    При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

    Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.

    Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

    Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор — короткозамкнутый типа «беличья клетка».

    Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


    Как сменить вращение трехфазного двигателя. Как поменять направление вращения однофазного двигателя

    Из большого числа типов электродвигателей переменного тока, применяющихся в современной электротехнике, наиболее широко распространенным, удобным и экономичным является двигатель с вращающимся магнитным полем, основанный на применении трехфазного тока.

    Чтобы понять основную идею, лежащую в основе конструкции этих двигателей, вернемся снова к опыту, изображенному на рис. 264. Мы видели там, что металлическое кольцо, помещенное во вращающееся магнитное поле, приходит во вращение в ту же сторону, в какую вращается поле. Причиной этого вращения является то обстоятельство, что при вращении поля изменяется магнитный поток через кольцо и при этом в кольце индуцируются токи, на которые поле действует с уже знакомыми нам силами, создающими вращающий момент.

    При наличии трехфазного тока, т. е. системы трех токов, сдвинутых по фазе друг относительно друга на (треть периода), очень легко получить вращающееся магнитное поле без механического вращения магнита и без всяких дополнительных устройств. Рис. 351,а показывает, как это осуществляется. Мы имеем здесь три надетые на железные сердечники катушки, расположенные друг относительно друга под углом 120°. Через каждую из этих катушек проходит один из токов системы, составляющей трехфазный ток. В катушках создаются магнитные поля, направления которых отмечены стрелками . Магнитная индукция же каждого из этих полей изменяется с течением времени по тому же синусоидальному закону, что и соответствующий ток (рис. 351,б). Таким образом, магнитное поле в пространстве между катушками представляет собой результат наложения трех переменных магнитных полей, которые, с одной стороны, направлены под углом 120° друг относительно друга, а с другой стороны, смещены по фазе на . Мгновенное значение результирующей магнитной индукции представляет собой векторную сумму трех составляющих полей в данный момент времени:

    .

    Если мы теперь станем искать, как изменяется со временем результирующая магнитная индукция , то расчет показывает, что по модулю магнитная индукция результирующего поля не изменяется ( сохраняет постоянное значение), но направление вектора равномерно поворачивается, описывая полный оборот за время одного периода тока.

    Рис. 351. Получение вращающегося магнитного поля при сложении трех синусоидальных полей, направленных под углом 120° друг относительно друга и смещенных по фазе на : а) расположение катушек, создающих вращающееся поле; б) график изменения индукции полей со временем; в) результирующая индукция постоянна по модулю и за периода поворачивается на окружности

    Не входя в подробности расчета, поясним, каким образом сложение трех полей дает постоянное по модулю вращающееся поле. На рис. 351,б стрелками отмечены значения магнитной индукции трех полей в момент , когда , в момент , когда , и в момент , когда , а на рис. 351,в выполнено сложение по правилу параллелограмма магнитных индукций и в эти три момента, причем направления стрелок и , и , и соответствуют рис. 351,а. Мы видим, что результирующая магнитная индукция имеет во все три указанных момента один и тот же модуль, но направление ее поворачивается за каждую треть периода на одну треть окружности.

    Если в такое вращающееся поле поместить металлическое кольцо (или, еще лучше, катушку), то в нем будут индуцироваться токи так же, как если бы кольцо (катушка) вращалось в неподвижном поле. Взаимодействие магнитного поля с этими токами и создает силы, приводящие во вращение кольцо (катушку). В этом заключается основная идея трехфазного двигателя с вращающимся полем, впервые осуществленного М. О. Доливо-Добровольским.

    Устройство такого двигателя ясно из рис. 352. Его неподвижная часть – статор – представляет собой собранный из листовой стали цилиндр, на внутренней поверхности которого имеются пазы, параллельные оси цилиндра. В эти пазы укладываются провода, соединяющиеся между собой по торцовым сторонам статора так, что они образуют три повернутые друг относительно друга на 120° катушки, о которых шла речь в предыдущем параграфе. Начала этих катушек 1, 2, 3 и концы их 1″, 2″, 3″ присоединены к шести зажимам, находящимся на щитке, укрепленном на станине машины. Расположение зажимов показано на рис. 353.

    Рис. 352. Трехфазный двигатель переменного тока в разобранном виде: 1 – статор, 2 – ротор, 3 – подшипниковые щитки, 4 – вентиляторы, 5 – вентиляционные отверстия

    Рис. 353. Расположение зажимов на щитке двигателя

    Внутри статора помещается вращающаяся часть двигателя – его ротор. Это – также набранный из отдельных листов стали цилиндр, укрепленный на валу, вместе с которым он может вращаться в подшипниках, находящихся в боковых щитках (крышках) двигателя. На краях этого цилиндра имеются вентиляционные лопасти, которые при вращении ротора создают в двигателе сильную струю воздуха, охлаждающую его. На цилиндрической поверхности ротора, в пазах, параллельных его оси, расположен ряд проводов, соединенных кольцами на торцах цилиндра. Такой ротор, изображенный отдельно на рис. 354, носит название «короткозамкнутого» (иногда его называют «беличьим колесом»). Он приходит во вращение, когда в пространстве внутри статора возникает вращающееся магнитное поле.

    Рис. 354. Короткозамкнутый ротор трехфазного двигателя

    Вращающееся поле создается трехфазной системой токов, подводимых к обмоткам статора, которые могут быть соединены между собой либо звездой (рис. 355), либо треугольником (рис. 356). В первом случае (§ 170) напряжение на каждой обмотке в раз меньше линейного напряжения сети, а во втором – равно ему. Если, например, напряжение между каждой парой проводов трехфазной сети (линейное напряжение) равно 220 В, то при соединении обмоток треугольником каждая из них находится под напряжением 220 В, а если они соединены звездой, то каждая обмотка находится под напряжением 127 В.

    Рис. 355. Включение обмоток статора звездой: а) схема включения двигателя; б) соединение зажимов на щитке. Зажимы 1″, 2″, 3″ соединены «накоротко» металлическими шинами; к зажимам 1, 2, 3 присоединены провода трехфазной сети

    Рис. 356. Включение обмоток статора треугольником: а) схема включения двигателя; б) соединение зажимов на щитке. Металлическими шинами соединены зажимы 1 и 3″, 2 и 1″, 3 и 2″; к зажимам 1, 2, 3 присоединены провода трехфазной сети

    Таким образом, если обмотки двигателя рассчитаны на напряжение 127 В, то двигатель может работать с нормальной мощностью как от сети 220 В при соединении его обмоток звездой, так и от сети 127 В при соединении его обмоток треугольником. На табличке, прикрепленной к станине каждого двигателя, указываются поэтому два напряжения сети, при которых данный двигатель может работать, например 127/220 В или 220/380 В. При включении в сеть с меньшим линейным напряжением обмотки двигателя соединяют треугольником, а при питании от сети с более высоким напряжением их соединяют звездой.

    Вращающий момент двигателя создается силами взаимодействия магнитного поля и токов, индуцируемых им в роторе, а сила этих токов (или соответствующая э. д. с.) определяется относительной частотой вращения поля по отношению к ротору, который сам вращается в ту же сторону, что и поле. Поэтому, если бы ротор вращался с той же частотой, что и поле, то никакого относительного движения их не было бы. Тогда ротор находился бы в покое относительно поля и в нем не возникала бы никакая индуцированная э. д. с., т. е. в роторе не было бы тока и не могли бы возникнуть, силы, приводящие его во вращение. Отсюда ясно, что двигатель описываемого типа может работать только при частоте вращения ротора, несколько отличающейся от частоты вращения поля, т. е. от частоты тока. Поэтому такие двигатели в технике принято называть «асинхронными» (от греческого слова «синхронос» – совпадающий или согласованный во времени, частица «а» означает отрицание).

    Таким образом, если поле вращается с частотой , а ротор – с частотой , то вращение поля относительно ротора происходит с частотой , и именно этой частотой определяются индуцируемые в роторе э. д. с. и ток.

    Величина называется в технике «скольжением». Она играет очень важную роль во всех расчетах. Обычно скольжение выражается в процентах.

    Когда мы включаем в сеть ненагруженный двигатель, то в первые моменты равно или близко к нулю, частота вращения поля относительно ротора велика и индуцированная в роторе э. д. с. соответственно также велика – она раз в 20 превосходит ту э. д. с., которая возникает в роторе при работе двигателя с нормальной мощностью. Ток в роторе при этом тоже значительно превосходит нормальный. Двигатель развивает в момент пуска довольно значительный вращающий момент, и так как инерция его сравнительно невелика, то частота вращения ротора быстро нарастает и почти сравнивается с частотой вращения поля, так что относительная частота их становится почти равной нулю и ток в роторе быстро спадает. Для двигателей малой и средней мощности кратковременная перегрузка их при пуске не представляет опасности, при запуске же очень мощных двигателей (десятки и сотни киловатт) применяются специальные пусковые реостаты, ослабляющие ток в обмотке; по мере достижения нормальной частоты вращения ротора эти реостаты постепенно выключают.

    По мере того как возрастает нагрузка двигателя, частота вращения ротора несколько уменьшается, частота вращения поля относительно ротора возрастает, и вместе с тем растут ток в роторе и развиваемый двигателем вращающий момент. Однако для изменения мощности двигателя от нуля до нормального значения требуется очень небольшое изменение частоты вращения ротора, примерно до 6 % от максимального значения. Таким образом, асинхронный трехфазный двигатель сохраняет почти постоянную частоту вращения ротора при очень широких колебаниях нагрузки. Регулировать эту частоту в принципе возможно, но соответствующие устройства сложны и неэкономичны и потому на практике применяются очень редко. Если машины, приводимые в действие двигателем, требуют иной частоты вращения, чем этот двигатель дает, то предпочитают применять зубчатые или ременные передачи с различными передаточными числами.

    Само собой разумеется, что при возрастании нагрузки двигателя, т. е. отдаваемой им механической мощности, должен возрастать не только ток в роторе, но и ток в статоре для того, чтобы двигатель мог поглощать из сети соответствующую электрическую мощность. Это осуществляется автоматически вследствие того, что ток в роторе также создает в окружающем пространстве свое магнитное поле, воздействующее на обмотки статора и индуцирующее в них некоторую э. д. с. Связь между магнитным потоком ротора и статора, или, как говорят, «реакция якоря», обусловливает изменения тока в статоре и обеспечивает согласование электрической мощности, отбираемой из сети, с механической мощностью, отдаваемой двигателем. Детали этого процесса довольно сложны, и мы в них входить не будем.

    Очень важно, однако, помнить, что хотя недогруженный двигатель и отбирает от сети такое количество энергии, которое соответствует совершаемой им работе, но при недогрузке его, когда ток в статоре падает, это обусловлено возрастанием индуктивного сопротивления статора, т. е. уменьшением коэффициента мощности (§ 163), что портит условия эксплуатации сети в целом. Если, например, для работы станка достаточно мощности 3 кВт, а мы установим на нем мотор 10 кВт, то данное предприятие почти не понесет ущерба – мотор все равно возьмет только ту мощность, которая требуется для его работы, плюс потери в самом двигателе. Но такой недогруженный мотор имеет большое индуктивное сопротивление и уменьшает коэффициент мощности сети. Он убыточен с точки зрения народного хозяйства в целом. Чтобы стимулировать борьбу за повышение коэффициента мощности, организации, отпускающие потребителям электроэнергию, применяют систему штрафов за слишком низкий по сравнению с установленной нормой коэффициент мощности и поощрений за его повышение.

    Поэтому при работе с двигателями необходимо твердо соблюдать следующие правила:

    1. Необходимо всегда подбирать двигатель такой мощности, какую фактически требует приводимая им в действие машина.

    2. Если нагрузка двигателя не достигает 40 % нормальной, а обмотки статора включены треугольником, то целесообразно переключить их на звезду. При этом напряжение на обмотках уменьшается в раз, а намагничивающий ток – почти в три раза. В тех случаях, когда такое переключение приходится производить часто, двигатель включают в сеть при помощи перекидного рубильника по схеме, изображенной на рис. 357. В одном положении рубильника обмотки включены треугольником, в другом — звездой.

    Рис. 357. Схема переключения обмоток двигателя с треугольника (положение рубильника I, I, I) на звезду (положение рубильника II, II, II)

    Для того чтобы изменить направление вращения вала двигателя на обратное, необходимо поменять местами два линейных провода, присоединенных к двигателю. Это легко осуществить при помощи двухполюсного переключателя, как показано на рис. 358. Переводя переключатель из положения I-I в положение II-II, мы меняем направление вращения магнитного поля и вместе с тем направление вращения вала двигателя.

    Рис. 358. Схема включения для изменения направления вращения трехфазного двигателя

    Мы видели, что при наличии в статоре двигателя трех катушек, смещенных друг относительно друга на 120°, магнитное поле вращается с частотой тока, т. е. совершает один оборот за часть секунды, или 3000 оборотов в минуту. Почти с такой же частотой будет вращаться и вал двигателя. Во многих случаях такая частота вращения является чрезмерно большой. Чтобы уменьшить ее, в статоре двигателя размещают не три катушки, а шесть или двенадцать и соединяют их так, чтобы северные и южные полюсы по окружности статора чередовались. При этом поле поворачивается за каждый период тока только на половину или четверть оборота, т. е. вал машины вращается c частотой около 1500 или 750 оборотов в минуту.

    Наконец, еще одно практически важное замечание. При повреждении (пробое) изоляции станины и кожухи электрических машин и трансформаторов оказываются под напряжением относительно Земли. Прикосновение к этим частям машин может при таких условиях быть опасным для людей. Для предупреждения этой опасности следует при напряжениях свыше 150 В относительно Земли заземлять станины и кожухи электрических машин и трансформаторов, т. е. надежно соединять их металлическими проводами или стержнями с Землей. Это выполняется по специальным правилам, которые необходимо строго соблюдать во избежание несчастных случаев.

    Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?

    Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

    Уточним важные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
    • Направление вращения ротора обозначено с помощью стрелок.

    Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

    Вариант 1: переподключение рабочей намотки

    Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

    В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

    Вариант 2: переподключение пусковой намотки

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготовлены из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

  • 15. Мощность трехфазной электрической цепи.
  • 16. Соединение трехфазного потребителя электрической энергии звездой с N-проводом (схема и формула для расчета напряжения UN).
  • 18. Измерение активной мощности трехфазных электрических цепей методом двух ваттметров.
  • 19. Основные понятия о магнитных цепях и методах их расчета.
  • 20. Магнитные цепи с постоянной магнитодвижущей силой.
  • 21. Магнитные цепи с переменной магнитодвижущей силой
  • 22. Катушка с ферромагнитным сердечником.
  • 2. Полупроводниковые диоды, их свойства и область применения.
  • 3. Принцип действия транзистора.
  • 4, 5, 6. Схема включения транзистора с общей базой и ее коэффициенты усиления по току Ki, напряжению KU и мощности KP.
  • 7, 8, 9. Схема включения транзистора с общим эмиттером и ее коэффициенты усиления по току Ki, напряжению KU и мощности KP.
  • 10, 11, 12. Схема включения транзистора с общим коллектором и ее коэффициенты усиления по току Ki, напряжению KU и мощности KP.
  • 13. Однополупериодный выпрямитель, принцип действия, коэффициент пульсации выпрямленного тока.
  • 14. Двухполупериодный выпрямитель, принцип действия, коэффициент пульсации выпрямленного тока.
  • 15. Емкостной электрический фильтр в выпрямительной схеме и его влияние на коэффициент пульсации выпрямленного тока.
  • 16. Индуктивный электрический фильтр в выпрямительной схеме и его влияние на коэффициент пульсации выпрямленного тока.
  • III. Электрооборудование промышленных предприятий.
  • 1. Устройство и принцип действия трансформатора.
  • 2. Схема замещения и приведение параметров трансформатора.
  • 3. Потери мощности и КПД трансформатора.
  • 4. Опыт холостого хода трансформатора и его назначение.
  • 5. Опыт короткого замыкания трансформатора и его назначение.
  • 6. Внешняя характеристика трансформатора и ее влияние на режим работы потребителя электроэнергии.
  • 7. Устройство трехфазного асинхронного электродвигателя.
  • 8. Принцип действия и реверс (изменение направления вращения) трехфазного асинхронного двигателя.
  • 9. Схема замещения и механическая характеристика трехфазного асинхронного двигателя.
  • 10. Способы пуска трехфазного асинхронного двигателя.
  • 11. Способы регулирования частоты (скорости) вращения трехфазного асинхронного электродвигателя с короткозамкнутой обмоткой ротора.
  • 13. Устройство и принцип действия синхронного генератора и его применение в промышленности.
  • 14. Внешняя характеристика синхронного генератора.
  • 15. Регулировочные характеристики синхронного генератора.
  • 17. Способы пуска синхронного двигателя.
  • 18. Угловая и механическая характеристики синхронного двигателя.
  • 19. U-образные характеристики синхронного двигателя (регулирование реактивного тока и реактивной мощности).
  • 20. Устройство и принцип действия генератора постоянного тока.
  • 21. Классификация генераторов постоянного тока по способу возбуждения и их электрические схемы.
  • 22. Сравнение внешних и характеристик генераторов постоянного тока с различными схемами возбуждения.
  • 23. Устройство и принцип действия двигателя постоянного тока.
  • 24. Способы пуска в ход двигателей постоянного тока.
  • 26. Способы регулирования частоты вращения двигателей постоянного тока.
  • На рисунке представлена электромагнитная схема АД с короткозамкнутой обмоткой ротора в разрезе, включающая статор (1), в пазах которого расположены три фазные обмотки статора (2), представленные одним витком. Начала фазных обмоток A, B, C, а концы соответственно X, Y, Z. В цилиндрическом роторе (3) двигателя расположены стержни (4) короткозамкнутых обмоток, замкнутых по торцам ротора пластинами.

    При подаче на фазные обмотки статора трехфазного напряжения в витках обмотки статора протекают токи статора iA , iB , iC , создающие вращающееся магнитное поле с частотой вращения n1 . Это поле пересекает стержни короткозамкнутой обмотки ротора и в них индуцируются ЭДС, направление которых определяется по правилу правой руки. ЭДС в стержнях ротора создают токи ротора i2 и магнитное поле ротора, которое вращается с частотой магнитного поля статора. Результирующее магнитное поле АД равно сумме магнитных полей статор и ротора. На проводники с током i2 , расположенные в результирующем магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарное усиление Fрез , приложенное ко всем проводникам ротора, образует вращающий эле5ктромагнитный момент M асинхронного двигателя.

    Вращающий электромагнитный момент М, преодолевая момент сопротивления Мс на валу, принуждает вращаться ротор с частотой n2 . Ротор вращается с ускорением, если момент М больше момента сопротивления Мс , или с постоянной частотой, если моменты равны.

    Частота вращения ротора n2 всегда меньше частоты вращения магнитного поля машины n1 , т. к. только в этом случае возникает вращающий электромагнитный момент. Если частота вращения ротора будет равна частоте вращения МП статора, то ЭМ момент равен нулю (стержни ротора не пересекают МП двигателя, и ток равен нулю). Разница частот вращения МП статора и ротора в относительных единицах называется скольжением двигателя:

    s = n 1− n 2. n 1

    Скольжение измеряется в относительных единицах или процентах по отношению к n1 . В рабочем режиме близком к номинальному скольжение двигателя составляет 0.01-0.06. Частота вращения ротораn 2 = n 1 (1− s ) .

    Таким образом, характерной особенностью асинхронной машины является наличие скольжения — неравенства частот вращения магнитного поля двигателя и ротора. Поэтому машину называют асинхронной.

    При работе асинхронной машины в двигательном режиме частота вращения ротора меньше частоты вращения МП и 0

    Если ротор АД заторможен (s = 1) – это режим короткого замыкания. В случае, если частота вращения ротора совпадает с частотой вращения МП, то вращающий момент двигателя не возникает. Это режим идеального холостого хода.

    Чтобы изменить направление вращения ротора (реверсировать двигатель), нужно изменить направление вращения МП. Для реверса двигателя нужно изменить порядок чередования фаз подведенного напряжения, т. е. Переключить две фазы.

    9. Схема замещения и механическая характеристика трехфазного асинхронного двигателя.

    Rн =R» ——

    Rн =R» ——

    E =E»

    В схеме асинхронная машина с электромагнитной связью статорной и роторной цепей заменена эквивалентной приведенной схемой замещения. При этом параметры обмотки ротора R2 и x2 приводятся к обмотке статора при условии равенства E1 = E2 » . E2 » , R2 » , x2 » – приведенные параметры ротора.

    включенное в обмотку неподвижного ротора, т. е. машина имеет активную нагрузку.

    Величина этого сопротивления определяется скольжением, а, следовательно, механической нагрузкой на валу двигателя. Если момент сопротивления на валу двигателя Мс = 0, то скольжение s = 0; при этом величинаR н =∞ и I2 » = 0, что соответствует работе

    двигателя в режиме холостого хода.

    В режиме холостого хода ток статора равен току намагничивания I 1 =I 0 . Магнитная цепь машины представляется намагничивающим контуром с параметрами x0 , R0 – индуктивное и активное сопротивления намагничивания обмотки статора. Если момент сопротивления на валу двигателя превышает его вращающий момент, то ротор останавливается. При этом величина Rн = 0, что соответствует режиму короткого замыкания.

    Первая схема называется Т-образной схемой замещения АД. Она может быть преобразована в более простой вид. С этой целью намагничивающий контурZ 0 = R 0 + jx 0

    выносят на общие зажимы. Чтобы при этом намагничивающий ток I 0 не изменял своей величины, в этот контур последовательно включают сопротивления R1 и x1 . В полученной Г- образной схеме замещения сопротивления контуров статора и ротора соединены последовательно. Они образуют рабочий контур, параллельно которому включен намагничивающий контур.

    Величина тока в рабочем контуре схемы замещения:

    I» 2 =

    Где U1 – фазное

    » 1 − s 2

    √ (R 1 +

    R» 2

    √ (R 1+ R 2+ R 2s

    ) +(x 1 +x 2 )

    ) +(x 1 +x 2 )

    напряжение сети.

    Электромагнитный момент АД создается взаимодействием тока в обмотке ротора с вращающимся МП машины. Электромагнитный момент М определяется через электромагнитную мощность:

    P эм

    2 πn 1

    Угловая частота вращения МП статора.

    P э2

    m1 I2 » 2 R» 2

    Т. е. ЭМ момент пропорционален мощности электрических

    ω 1s

    ω 1s

    потерь в обмотке ротора.

    2 R 2″

    2 ω 1 [(R 1 +

    ) +(x 1 +X 2 » )2 ]

    Приняв в уравнении число фаз двигателя m1 = 3; x1 + x2 » = xк , исследуем его на экстремум. Для этого приравниваем производную dM / ds к нулю и получаем две экстремальные точки. В этих точках момент Мк и скольжение sк называются критическими и соответственно равны:

    ±R » 2

    √ R1 2 + sк 2

    Где «+» при s > 0, “-” при s

    M к =

    3U 1 2

    2 ω 1 (R 1 ±√

    R1 2 + Xк 2

    Зависимость ЭМ момента от скольжения M(s) или от частоты вращения ротора M(n2 ) называется механической характеристикой АД.

    Если разделить M на Mк , получим удобную форму записи уравнения механической характеристики АД:

    2 Mк (1 + asк )

    2asк

    R2 »

    2 Mк

    3 Uф 2

    R2 »

    2 ω 1x к

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    Со всеми этими

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайн ие (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском ( , например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Реверсивное подключение однофазового асинхронного мотора своими руками

    Перед выбором схемы подключения однофазового асинхронного мотора принципиально найти, сделать ли реверс. Если для настоящей работы для вас нередко необходимо будет поменять направление вращения ротора, то целенаправлено организовать реверсирование с внедрением кнопочного поста. Если однобокого вращения для вас будет довольно, то подойдет самая обычная схема без способности переключения. Но что делать, если после подсоединения по ней вы решили, что направление необходимо все таки поменять?

    Постановка задачи

    Представим, что у уже подсоединенного с внедрением пускозарядной емкости асинхронного однофазового мотора вначале вращение вала ориентировано по часовой стрелке, как на картинке ниже.

    Уточним принципиальные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К исходной клемме A подсоединен провод кофейного, а к конечной – зеленоватого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К исходному контакту подсоединен провод красноватого, а к конечному – голубого цвета.
    • Направление вращения ротора обозначено при помощи стрелок.

    Ставим впереди себя задачку – сделать реверс однофазового мотора без вскрытия его корпуса так, чтоб ротор начал крутиться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить 3-мя методами. Разглядим их подробнее.

    Вариант 1: переподключение рабочей намотки

    Чтоб изменить направление вращения мотора, можно только поменять местами начало и конец рабочей (неизменной включенной) обмотки, как это показано на рисунке. Можно поразмыслить, что для этого придется вскрывать корпус, доставать намотку и крутить ее. Этого делать не надо, так как довольно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из их соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Обусловьте, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединены две полосы: фаза и ноль. При отключенном движке произведите реверс методом перекидывания фазы с исходного контакта намотки на конечный, а нуля – с конечного на исходный. Либо напротив.

    В итоге получаем схему, где точки С и D изменяются меж собой местами. Сейчас ротор асинхронного мотора будет крутиться в другую сторону.

    КАК ИЗМЕНИТЬ НАПРАВЛЕНИЕ ВРАЩЕНИЕ ВАЛА В ОДНОФАЗНОМ ДВИГАТЕЛЕ

    Моторчик взят от бытовой мясорубки. Направление движения нас не устраивало, пришлось его поменять Всю инфо.

    Как изменить направление вращения трехфазного асинхронного двигателя?

    Разберемся, как просто поменять направление вращения трехфазного двигателя на противоположное.

    Вариант 2: переподключение пусковой намотки

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготовлены из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

    Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

    Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

    sis26.ru

    Как изменить направление вращения однофазного асинхронного двигателя

    Рис. 1 Схема подключения двигателя однофазного асинхронного двигателя с пусковым конденсатором.

    Возьмем за основу уже подключенный однофазный асинхронный двигатель, с направлением вращения по часовой стрелке (рис.1).

    На рисунке 1

    • точками A, B условно обозначены начало и конец пусковой обмотки, для наглядности к этим точкам подключены провода коричневого и зеленого цвета соответственно.
    • точками С, В условно обозначены начало и конец рабочей обмотки, для наглядности к этим точкам подключены провода красного и синего цвета соответственно.
    • стрелками указано направление вращения ротора асинхронного двигателя

    Изменить направление вращения однофазный асинхронный двигатель в другую сторону – против часовой стрелки. Для этого достаточно переподключить одну из обмоток однофазного асинхронного двигателя – либо рабочую либо пусковую.

    Вариант №1

    Меняем направление вращения однофазного асинхронного двигателя, путем переподключения рабочей обмотки.

    Рис.2 При таком подключении рабочей обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

    Вариант №2

    Меняем направление вращения однофазного асинхронного двигателя, путем переподключения пусковой обмотки.

    Рис.3 При таком подключении пусковой обмотки, относительно рис. 1, однофазный асинхронный двигатель будет вращаться в противоположную сторону.

    Важное замечание.

    Такой способ изменить направление вращения однофазного асинхронного двигателя возможен только в том случае, если на двигателе имеется отдельные отводы пусковой и рабочей обмотки.

    Рис.4 При таком подключении обмоток двигателя, реверс невозможен.

    На рис. 4 изображен довольно распространенный вариант однофазного асинхронного двигателя, у которого концы обмоток В и С, зеленый и красный провод соответственно, соединены внутри корпуса. У такого двигателя три вывода, вместо четырех как на рис. 4 коричневый, фиолетовый, синий провод.

    UPD 03/09/2014 Наконец то удалось проверить на практике, не очень правильный, но все же используемый метод смены направления вращения асинхронного двигателя. Для однофазного асинхронного двигателя, который имеет только три вывода, возможно заставить ротор вращаться в обратном направлении, достаточно поменять местами рабочую и пусковую обмотку. Принцип такого включения изображен на рис.5

    Рис. Нестандартный реверс асинхронного двигателя

    zival.ru

    Как уменьшить обороты электродвигателя схемы и описание | ProElectrika.com

    егулировка оборотов электродвигателя часто бывает необходима как в производственных, так и каких то бытовых целях. В первом случае для уменьшения или увеличения частоты вращения применяются промышленные регуляторы напряжения – инверторные частотные преобразователи. А с вопросом, как регулировать обороты электродвигателя в домашних условиях, попробуем разобраться подробнее.

    Необходимо сразу сказать, что для разных типов однофазных и трехфазных электрических машин должны применяться разные регуляторы мощности. Т.е. для асинхронных машин применение тиристорных регуляторов, являющихся основными для изменения вращения коллекторных двигателей, недопустимо.

    Лучший способ уменьшить обороты вашего устройства – не в регулировке частоты вращения самого движка, а посредством редуктора или ременной передачи. При этом сохранится самое главное – мощность устройства.

    Немного теории об устройстве и области применения коллекторных электродвигателей

    Электродвигатели этого типа могут быть постоянного или переменного тока, с последовательным, параллельным или смешанным возбуждением (для переменного тока применяется только первые два вида возбуждения).

    Коллекторный электродвигатель состоит из ротора, статора, коллектора и щеток. Ток в цепи, проходящий через соединенные определенным образом обмотки статора и ротора, создает магнитное поле, заставляющее последний вращаться. Напряжение на ротор передается при помощи щеток из мягкого электропроводного материала, чаще всего это графит или медно-графитовая смесь. Если изменить направление тока в роторе или статоре, вал начнет вращаться в другую сторону, причем это всегда делается с выводами ротора, что бы не происходило перемагничивание сердечников.

    При одновременном изменении подключения и ротора и статора реверсирования не произойдет. Существуют также трехфазные коллекторные электродвигатели, но это уже совсем другая история.

    Электродвигатели постоянного тока с параллельным возбуждением

    Обмотка возбуждения (статорная) в двигателе с параллельным возбуждением состоит из большого количества витков тонкого провода и включена параллельно ротору, сопротивление обмотки которого намного меньше. Поэтому для уменьшения тока во время запуска электродвигателей мощностью более 1 Квт в цепь ротора включают пусковой реостат. Управление оборотами электродвигателя при такой схеме включения производится путем изменения тока только в цепи статора, т.к. способ понижения напряжения на клеммах очень не экономичен и требует применение регулятора большой мощности.

    Если нагрузка мала, то при случайном обрыве обмотки статора при использовании такой схемы частота вращения превысит максимально допустимую и электродвигатель может пойти “вразнос”

    Электродвигатели постоянного тока с последовательным возбуждением

    Обмотка возбуждения такого электродвигателя имеет небольшое число витков толстого провода, и при ее последовательном включении в цепь якоря ток во всей цепи будет одинаков. Электродвигатели этого типа более выносливы при перегрузках и поэтому наиболее часто встречаются в бытовых устройствах.

    Регулировка оборотов электродвигателя постоянного тока с последовательно включенной обмоткой статора может производиться двумя способами:
    1. Подключением параллельно статору регулировочного устройства, изменяющего магнитный поток. Однако этот способ довольно сложен в реализации и не применяется в бытовых устройствах.
    2. Регулирование (снижение) оборотов с помощью уменьшения напряжения. Этот способ применяется практически во всех электрических устройствах – бытовых приборах, инструменте и т.д.
    Электродвигатели коллекторные переменного тока

    Эти однофазные моторы имеют меньший КПД, чем двигатели постоянного тока, но из за простоты изготовления и схем управления нашли наиболее широкое применение в бытовой технике и электроинструменте. Их можно назвать “универсальными”, т.к. они способны работать как при переменном, так и при постоянном токе. Это обусловлено тем, что при включении в сеть переменного напряжение направление магнитного поля и тока будет изменяться в статоре и роторе одновременно, не вызывая изменения направления вращения. Реверс таких устройств осуществляется переполюсовкой концов ротора.

    Для улучшения характеристик в мощных (промышленных) коллекторных электродвигателях переменного тока применяются дополнительные полюса и компенсационные обмотки. В двигателях бытовых устройств таких приспособлений нет.

    Регуляторы оборотов электродвигателя

    Схемы изменения частоты вращения электродвигателей в большинстве случаев построены на тиристорных регуляторах, ввиду своей простоты и надежности.

    Принцип работы представленной схемы следующий: конденсатор С1 заряжается до напряжения пробоя динистора D1 через переменный резистор R2, динистор пробивается и открывает симистор D2, управляющий нагрузкой. Напряжение на нагрузке зависит от частоты открывания D2, зависящее в свою очередь от положения движка переменного сопротивления. Данная схема не снабжена обратной связью, т.е. при изменении нагрузки обороты также будут меняться и их придется подстраивать. По такой же схеме происходит управление оборотами импортных бытовых пылесосов.

    Вот так работает хороший регулятор оборотов двигателя:

    Изменение скорости вращения вала двигателя в стиральной машине, например, происходит с задействованием обратной связи от таходатчика, поэтому ее обороты при любой нагрузке постоянны.

    proelectrika.com

    Управление скоростью вращения однофазных двигателей

    Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

    Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.


    Регулировать скорость вращения таких двигателей необходимо, например, для:

    • изменения расхода воздуха в системе вентиляции
    • регулирования производительности насосов
    • изменения скорости движущихся деталей, например в станках, конвеерах

    В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

    Способы регулирования

    Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

    Рассмотрим способы с изменением электрических параметров:

    • изменение напряжения питания двигателя
    • изменение частоты питающего напряжения

    Регулирование напряжением

    Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

    n1 — скорость вращения магнитного поля

    n2 — скорость вращения ротора

    При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

    Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

    При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

    Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

    На практике для этого применяют различные схемы регуляторов.

    Автотрансформаторное регулирование напряжения

    Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

    На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

    Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

    Преимущества данной схемы:

        • неискажённая форма выходного напряжения (чистая синусоида)
        • хорошая перегрузочная способность трансформатора

    Недостатки:

        • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
        • все недостатки присущие регулировке напряжением


    Тиристорный регулятор оборотов двигателя

    В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

    Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

    Таким образом изменяется среднеквадратичное значение напряжения.

    Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

    Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

    Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

    • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
    • добавляют на выходе конденсатор для корректировки формы волны напряжения
    • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
    • используют тиристоры с током в несколько раз превышающим ток электромотора

    Достоинства тиристорных регуляторов:

        • низкая стоимость
        • малая масса и размеры

    Недостатки:

        • можно использовать для двигателей небольшой мощности
        • при работе возможен шум, треск, рывки двигателя
        • при использовании симисторов на двигатель попадает постоянное напряжение
        • все недостатки регулирования напряжением

    Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом.

    Транзисторный регулятор напряжения

    Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

    Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

    Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

    Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

    Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

    Плюсы электронного автотрансформатора:

          • Небольшие габариты и масса прибора
          • Невысокая стоимость
          • Чистая, неискажённая форма выходного тока
          • Отсутствует гул на низких оборотах
          • Управление сигналом 0-10 Вольт

    Слабые стороны:

          • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
          • Все недостатки регулировки напряжением

    Частотное регулирование

    Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

    Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

    На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

    Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

    Однофазные двигатели могут управляться:

    • специализированными однофазными ПЧ
    • трёхфазными ПЧ с исключением конденсатора
    Преобразователи для однофазных двигателей

    В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

    Это модель Optidrive E2

    Для стабильного запуска и работы двигателя используются специальные алгоритмы.

    При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

    f — частота тока

    С — ёмкость конденсатора

    В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

    Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

    Преимущества специализированного частотного преобразователя:

          • интеллектуальное управление двигателем
          • стабильно устойчивая работа двигателя
          • огромные возможности современных ПЧ:
            • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
            • многочисленные защиты (двигателя и самого прибора)
            • входы для датчиков (цифровые и аналоговые)
            • различные выходы
            • коммуникационный интерфейс (для управления, мониторинга)
            • предустановленные скорости
            • ПИД-регулятор

    Минусы использования однофазного ПЧ:

          • ограниченное управление частотой
          • высокая стоимость
    Использование ЧП для трёхфазных двигателей

    Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

    Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

    Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое, а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

    В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

    При работе без конденсатора это приведёт к:

    • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
    • разному току в обмотках

    Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

    Преимущества:

            • более низкая стоимость по сравнению со специализированными ПЧ
            • огромный выбор по мощности и производителям
            • более широкий диапазон регулирования частоты
            • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

    Недостатки метода:

            • необходимость предварительного подбора ПЧ и двигателя для совместной работы
            • пульсирующий и пониженный момент
            • повышенный нагрев
            • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

    masterxoloda.ru

    Cпособы регулирования скорости асинхронного двигателя

    Асинхронные двигатели переменного тока являются самыми применяемыми электродвигателями абсолютно во всех хозяйственных сферах. В их преимуществах отмечается конструктивная простота и небольшая цена. При этом немаловажное значение имеет регулирование скорости асинхронного двигателя. Существующие способы показаны ниже.

    Согласно структурной схеме скоростью электродвигателя можно управлять в двух направлениях, то есть изменением величин:

    1. скорость электромагнитного поля статора;
    2. скольжение двигателя.

    Первый вариант коррекции, используемый для моделей с короткозамкнутым ротором, осуществляется за счет изменения:

    • частоты,
    • количества полюсных пар,
    • напряжения.

    В основе второго варианта, применяемого для модификации с фазным ротором, лежат:

    • изменение напряжения питания;
    • присоединение элемента сопротивления в цепь ротора;
    • использование вентильного каскада;
    • применение двойного питания.

    Вследствие развития силовой преобразовательной техники на текущий момент в широком масштабе изготовляются всевозможные виды частотников, что определило активное применение частотно-регулируемого привода. Рассмотрим наиболее распространённые методы.

    Частотное регулирование

    Всего десять лет назад в торговой сети регуляторов частоты вращения скорости ЭД было небольшое количество. Причиной тому служило то, что тогда ещё не производились дешёвые силовые высоковольтные транзисторы и модули.

    На сегодня частотное преобразование – самый распространённый способ регулирования скорости двигателей. Трёхфазные преобразователи частоты создаются для управления 3-фазными электродвигателями.

    Однофазные же двигатели управляются:

    • специальными однофазными преобразователями частоты;
    • 3-фазными преобразователями частоты с устранением конденсатора.

    Схемы регуляторов оборотов асинхронного двигателя

    Для двигателей повседневного предназначения легко можно выполнить необходимые расчеты, и своими руками произвести сборку устройства на полупроводниковой микросхеме. Пример схемы регулятора электродвигателя приведён ниже. Такая схема позволяет добиться контроля параметров приводной системы, затрат на техническое обслуживание, снижения потребления электричества наполовину.

    Принципиальная схема регулятора оборотов вращения ЭД для повседневных нужд значительно упрощается, если применить так называемый симистор.

    Обороты вращения ЭД регулируются с помощью потенциометра, определяющего фазу входного импульсного сигнала, открывающего симистор. На изображении видно, что в качестве ключей применяются два тиристора, подключённых встречно-параллельно. Тиристорный регулятор оборотов ЭД 220 В достаточно часто применяется для регулирования такой нагрузки, как диммеры, вентиляторы и нагревательная техника. От оборотов вращения асинхронного ЭД зависят технические показатели и эффективность работы двигательного оборудования.

    Заключение

    На технорынке сегодня предлагаются в большом ассортименте регуляторы и частотные преобразователи для асинхронных электродвигателей переменного тока.

    Управление способом варьирования частоты на данный момент – самый оптимальный способ, т. к. он позволяет плавно регулировать скорость асинхронного ЭД в широчайшем диапазоне, без значительных потерь и снижения перегрузочных способностей.

    Тем не менее, на основе расчёта, можно самостоятельно собрать простое и эффективное устройство с регулированием оборотов вращения однофазных электродвигателей с помощью тиристоров.

    electricdoma.ru


    Реверсивные однофазные асинхронные двигатели

    Реверсивные однофазные асинхронные двигатели

    Начиная с моей статьи о двигателях переменного тока, Меня часто спрашивают о том, как изменить асинхронный двигатель переменного тока. Раньше я подробно не рассказывал, как запускаются асинхронные двигатели. потому что это обширная тема сама по себе.

    Ротор асинхронного двигателя представляет собой проницаемый железный сердечник. с залитой алюминиевой обмоткой короткого замыкания. Ты можешь видеть алюминий на обоих концах ротора.Алюминий также проходит через продольные отверстия в роторе для укорочения типа «беличья клетка» обмотка цепи. Линии едва видны под небольшим углом на роторе где проходят обмотки.

    Обмотка короткого замыкания заставляет ротор сопротивляться быстрым изменениям магнитного поля. полей, поэтому, если он подвергается воздействию вращающегося магнитного поля, он будет пытаться следовать за ним. (подробнее об этом здесь)

    В трехфазном двигателе, естественно, три фазы на трех обмотках. создать вращающееся магнитное поле.Но для однофазных двигателей переменного тока магнитное поле только чередуется вперед и назад. Нужны некоторые хитрости для создания вращающегося поля.

    Реверс двигателя с расщепленной фазой

    В этом двигателе с расщепленной фазой основная обмотка (метка ‘M’) подключается непосредственно к источнику переменного тока 60 Гц, а другая обмотка (метка ‘O’) подключена последовательно с конденсатор (С). Взаимодействие индуктивности двигателя обмотки и емкость конденсатора приводят к тому, что обмотка составляет около 90 градусы не совпадают по фазе с основной обмоткой.

    Основная обмотка создает магнитное поле, чередующееся по вертикали, а другая обмотка создает магнитное поле, чередующееся по горизонтали. но не в фазе, в сумме это вращающееся магнитное поле. Ротор пытается следовать за ним, заставляя его вращаться.

    Реверс двигателя — это просто перестановка силового соединения. так что другая обмотка находится непосредственно на переменном токе. По сути, перемещение одна сторона силового соединения от (A) до (B), в результате чего обмотка (O) быть основной обмоткой, а обмотка (М) — фазосдвинутой.

    На двигателях мощностью более 1/4 л.с. две обмотки обычно имеют разные числа оборотов, поэтому этот метод реверсирования может быть неприменим. Сначала убедитесь, что сопротивление двух обмоток одинаково.

    Если обмотки не одинакового сопротивления, вы все равно можете его поменять местами. поменяв полярность одной из обмоток, при условии, что винты не связаны друг с другом внутри двигателя (например, более трех провода выходящие из обмоток).

    Обмотки стартера на более мощных двигателях

    Теперь, если мы заглянем внутрь более крупного двигателя, такого как этот двигатель мощностью 3/4 лошадиных сил, обмотки выглядят намного сложнее.Обмотки распределены по множеству пазов. в статоре двигателя (C). Таким образом, там меньше резкого перехода от одного полюса к другому. Этот делает магнитное поле более гладким, что делает его тише, более эффективный мотор.

    Этот двигатель имеет толстую главную обмотку (M), а также обмотку стартера. из более тонкой проволоки (S). Основная обмотка создает горизонтальную магнитное поле, а обмотка стартера создает вертикальное.

    Эта обмотка стартера включена последовательно с конденсатором (C) и центробежным переключатель (S).В этом моторе установлен пусковой конденсатор. внутри основного корпуса. Обычно пусковой конденсатор монтируется сверху корпуса под металлическим куполом.

    Центробежный выключатель (S) установлен на задней панели. и активируется диском (P), который нажимает на выступ на переключатель (слева от буквы S на фото).

    Сняв ротор и посмотрев на диск, можно увидеть два металлических выступа. Когда двигатель вращается, центробежная сила толкает их наружу, что по очереди вытягивает диск обратно.Это освободит пластиковый язычок на переключателе, вызывая размыкание переключателя и отключение обмотки стартера. Диск отодвигается достаточно далеко, чтобы больше не контактировать с язычком, сводящим к минимуму трение и износ. Это умный способ активировать переключатель на основе центробежной силы без необходимости переключается на вращение.

    Расположение центробежного переключателя издает отчетливый «щелчок». когда он сбрасывается после выключения двигателя. Щелчок переключателя вовлечение, когда оно начинается, различить гораздо труднее.

    Если обмотка стартера помогает запускать двигатель, это обязательно поможет. мотор тоже работает. Так почему бы просто не оставить стартер обмотка подключена? Ну а Вся штука с фазовым сдвигом не так уж и элегантна. Размер конденсатора вы потребность очень сильно зависит от нагрузки двигателя. Для быстрого запуска мотора, вам нужна большая емкость, чем для эффективного непрерывного операция. Кроме того, конденсатор является электролитическим конденсатором и не является рассчитан на постоянную нагрузку. И потому что обмотка стартера только используется недолго, поэтому для экономии денег он сделан из более тонкой проволоки, потому что медь стоит дорого.

    Некоторые двигатели используют большой конденсатор для запуска и конденсатор меньшего размера для непрерывной работы. Такие моторы часто имеют два внешних конденсатора (C), как видно на этой в моей настольной пиле. Эти двигатели называются двигателями с конденсаторным запуском и запуском конденсатора. Конденсаторные двигатели с конденсаторным запуском обычно имеют более одного Лошадиные силы. Это 1,75 лошадиных сил.

    Двигатели можно удешевить, заменив их конденсатор на резистор. Хотя обычно отдельный резистор не добавляется.Вместо, обмотка стартера сделана из более тонкой (дешевой) медной проволоки, поэтому у него большее сопротивление в самой обмотке.

    Это приводит к гораздо меньшему фазовый сдвиг, чем у конденсатора, но достаточный для запуска двигателя. Обмотки двигателя по существу образуют индуктор, а когда синусоидальная волна переменного тока (например, мощность переменного тока) подается на катушку индуктивности, ток отстает от напряжения на 90 градусов. И магнитное поле строго зависит от тока.

    Для резистора ток синфазен с напряжением.Если бы у нас был большой последовательное сопротивление и малая индуктивность, падение напряжения и ток будет во многом определяться резистором. Итак, ток и магнитный поле будет в значительной степени синфазным с приложенным напряжением. С участием тока в основной обмотке, отставая на 90 градусов, мы имели бы Разница между ними 90 градусов, но обмотка стартера было бы крайне неэффективно.

    На самом деле компромисс гораздо меньше. фазового сдвига и большей мощности. Этого достаточно, чтобы мотор заработал.Как бы то ни было, стартер на этих моторах довольно неэффективен, но он не имеет большого значения, когда двигатель работает. Однако лишний ток требуемый для стартера может сработать автоматический выключатель, поэтому этот метод обычно используется только для двигателей меньшего размера, от 1/4 до 1/2 л.с. В двигателях мощностью 3/4 или больше обычно используется пусковой конденсатор.

    Если вы не знакомы с аналоговой электроникой, приведенное выше объяснение вероятно, неадекватен, и вы можете узнать больше об индукции моторы, если вы этого не понимаете.

    В асинхронных двигателях изнашиваются только подшипники, выключатель стартера и конденсатор. Без конденсатора есть один меньше вещей потерпеть неудачу.

    Совсем недавно я случайно зажал выключатель стартера на Мотор с резистивным запуском мощностью 1/4 л.с. от сушилки для белья (тот, что на этот вентилятор), и для отключения двигателя потребовалось всего около 15 секунд. его схема тепловой защиты из-за перегрева обмотки стартера.

    Реверс конденсаторного пускового двигателя

    Так как же нам поменять местами конденсаторный пусковой двигатель? Как только началось, однофазная индукция мотор с радостью будет вращаться в любом направлении.Чтобы обратить это вспять, нам нужно изменить направление вращающегося магнитного поля, создаваемого основным и стартерные обмотки. И это можно сделать, изменив положение полярность стартерной обмотки. По сути, нам нужно поменять местами соединения на обоих концах обмотки стартера. Иногда это только обмотка, Иногда обмотка, переключатель и конденсатор наоборот. Порядок выключателя и конденсатора не имеет значение, если вы подключены последовательно.

    Вы также можете перевернуть двигатель, перевернув основную обмотку. (тот же эффект).

    Если бы вам пришлось поменять местами основную и стартерную обмотки, как это делают с двигателем с расщепленной фазой двигатель также будет реверсировать. Тем не мение, он не будет работать на полную мощность и также может сгореть. В обмотка стартера не предназначена для продолжительной работы.

    Наклейка на этом двигателе указывает: «ДВИГАТЕЛЬ НЕРЕВЕРСИРУЕТСЯ».

    Если вы посмотрите на предыдущие фотографии этого двигателя, вы увидите, что только три провода (красный, желтый и синий) выходят из обмоток.Один конец основной и пусковой обмоток соединен между собой. прямо на обмотках.

    Чтобы перевернуть обмотку стартера, мне пришлось бы разорвать это соединение внутрь обмоток и вытащить другой конец стартера обмотка. Но я действительно не могу понять это из-за как это внутри мотора. Мне пришлось бы проделать дыру в ограждение, чтобы добраться даже до точки, где они связаны вместе. Это не то, чтобы этот двигатель нельзя было реверсировать, просто для экономии средств меры, они сделали его поворот более трудным, чем того стоит беда.

    Но на реверсивных двигателях этикетка всегда указывает, что нужно поменять местами два провода, чтобы перевернуть его

    Провода для реверса — это всегда провода, ведущие к обмотке стартера.

    Если у вас двигатель, на котором отсутствует этикетка, обмотка стартера обычно имеет электрическое сопротивление примерно в три раза больше, чем основное обмотка и всегда включена последовательно с выключателем стартера и конденсатором (если есть). Если вы можете изолировать оба конца этой обмотки и поменять их местами, вы можете перевернуть мотор.Если, однако, есть только три провода выходят из обмоток, затем основная и пусковая обмотки один конец связан вместе, и двигатель не реверсивный.

    Для 120-вольтного двигателя мощностью 1/2 л.с. основная обмотка обычно имеет около 1,5 Ом, а обмотка стартера около 4 Ом. Для 240 вольт 1/2 л.с. двигатели (только 240 вольт), вы должны ожидать около 6 Ом на основной обмотке и 16 Ом на обмотке стартера. Ожидайте, что сопротивление обмоток будет обратно пропорционально мощности.

    У многих двигателей от обмоток отходят несколько дополнительных проводов. Часто к обмоткам прикрепляют термовыключатель, и этот выключатель может быть частично привязан к одной из обмоток. Также, если мотор можно переподключить на 120 и 240 вольт, основная обмотка будет состоять двух обмоток на 120 В, которые можно соединить последовательно или параллельно. Так что от обмоток может выходить довольно много проводов. Это может занять немного времени и поисков, чтобы понять это.

    Для двигателей, которые могут быть подключены как на 120 В, так и на 240 В, стартер обмотка — обмотка на 120 вольт.Когда эти двигатели подключены к 240 вольт, основная обмотка используется как автотрансформатор, чтобы сделать 120 вольт для обмотки стартера. В противном случае переподключение мотора от 120 до 240 вольт было бы намного сложнее!

    Как вы реверсируете конденсаторный пусковой конденсаторный двигатель?

    После запуска однофазный асинхронный двигатель будет успешно вращать в любом направлении. Чтобы перевернуть , нам нужно изменить направление вращающегося магнитного поля, создаваемого основной обмоткой и обмоткой пускателя .И это можно сделать, поменяв на противоположную полярность обмотки пускателя .

    Нажмите, чтобы увидеть полный ответ


    Просто так, можно ли реверсировать двигатель переменного тока?

    Чтобы изменить направление двигателя переменного тока , необходимо изменить магнитные поля, чтобы вызвать движение в противоположном направлении. Поскольку каждый провод состоит из положительного и отрицательного тока в магнитных полях, переключение основного и стартового проводов заставляет двигатель вращаться в обратном вращении .

    Аналогично, что заставит однофазный двигатель вращаться в обратном направлении? Изменение полярности входного напряжения заставит простой двигатель постоянного тока работать в обратном направлении. Переключение проводов обмотки стартера заставит однофазный двигатель AC вращаться в обратном направлении. Электродвигатель с фазой 3 будет вращать в обратном направлении, переключая одну ветвь входной мощности.

    Принимая это во внимание, может ли неисправный конденсатор привести к вращению двигателя в обратном направлении?

    Причина в том, что изменение полярности щупов также меняет полярность батареи в омметре.Есть также ряд симптомов, которые сообщит , если конденсатор на двигателе неисправен : Двигатель не запустит свою нагрузку , но если вы раскрутите нагрузку вручную, двигатель будет работать правильно.

    Можно ли реверсировать двигатель на 120 в?

    После запуска однофазный асинхронный двигатель будет работать в любом направлении. Чтобы перевернуть это, нам нужно изменить направление вращающегося магнитного поля, создаваемого основной и пусковой обмотками.И это может быть выполнено , если поменять местами полярность обмотки стартера.

    Однофазные двигатели переменного тока (часть 2)




    (продолжение части 1)

    ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ РАЗДЕЛЕННОЙ ФАЗЫ

    ==


    FGR. 26 Определение направления вращения для двигателя с расщепленной фазой.

    ==


    FGR.27 А конденсаторный двигатель с конденсаторным запуском.

    ==


    FGR. 28 Конденсаторный пуск Конденсаторный двигатель с дополнительным пуском конденсатор.

    ==


    FGR. 29 Потенциальные пусковые реле.

    ==


    FGR. 30 Подключение реле потенциала.

    ==

    Направление вращения однофазного двигателя в целом можно определить когда мотор подключен.

    Направление вращения определяется обращением к задней или задней части мотор. FGR. 26 показана схема подключения для вращения. Если по часовой стрелке желательно вращение, T5 должен быть соединен с T1. Если вращение против часовой стрелки желательно, T8 (или T6) должен быть подключен к T1. Эта схема подключения Предполагается, что двигатель содержит два набора рабочих и два набора пусковых обмоток. Тип используемого двигателя будет определять фактическое подключение.

    Например, FGR.24 показано подключение двигателя с двумя рабочими обмотками. и только одна пусковая намотка. Если бы этот двигатель был подключен по часовой стрелке вращения, клемма T5 должна быть подключена к T1, а клемма T8 должен быть подключен к Т2 и Т3. Если вращение против часовой стрелки желательно, клемма T8 должна быть подключена к T1, а клемма T5 должен быть подключен к Т2 и Т3.

    КОНДЕНСАТОРНО-ПУСКОВЫЕ МОТОРЫ КОНДЕНСАТОРА

    Хотя двигатель с конденсаторным пуском работает от конденсатора, это двигатель с расщепленной фазой, он работает по другому принципу, чем индукционный пуск с сопротивлением. двигатель или асинхронный двигатель с конденсаторным пуском.Конденсатор-пуск, конденсатор-бег. двигатель сконструирован таким образом, что его пусковая обмотка остается под напряжением всегда. Конденсатор включен последовательно с обмоткой для обеспечения постоянный ведущий ток в пусковой обмотке (FGR.27). Поскольку пусковая обмотка все время находится под напряжением, центробежный переключатель не работает. необходимо для отключения пусковой обмотки при приближении двигателя к полной скорости.

    Конденсатор, используемый в этом типе двигателя, обычно заполнен маслом. типа, так как он предназначен для постоянного использования.Исключение из этого общего Правило — это небольшие двигатели с дробной мощностью, используемые в реверсивном потолке поклонники. Эти вентиляторы имеют низкое потребление тока и используют электролитический конденсатор переменного тока. чтобы сэкономить место.

    Конденсаторный двигатель с конденсаторным пуском на самом деле работает по принципу вращающегося магнитного поля в статоре. Поскольку и запускающие, и пусковые обмотки остаются под напряжением все время, магнитное поле статора продолжает вращаться и двигатель работает как двухфазный двигатель.У этого мотора отличный запуск и рабочий крутящий момент. Он тих в работе и имеет высокий КПД. Поскольку конденсатор все время остается подключенным к цепи, коэффициент мощности двигателя близок к единице.

    Хотя конденсаторный двигатель с конденсаторным пуском не требует центробежного выключатель для отключения конденсатора от пусковой обмотки, некоторые двигатели используйте второй конденсатор во время пускового периода, чтобы улучшить пуск крутящий момент (FGR.28).

    Хороший пример этого можно найти на компрессоре системы кондиционирования. Блок кондиционирования предназначен для работы от однофазной сети. Если двигатель не герметичен, для отключения используется центробежный выключатель пусковой конденсатор из цепи, когда двигатель достигает примерно 75% номинальной скорости. Однако для герметичных двигателей необходимо использовать некоторые тип внешнего переключателя для отключения пускового конденсатора от цепи.

    Конденсаторный двигатель, работающий от конденсатора, или постоянный разделенный конденсатор двигатель, как его обычно называют в системах кондиционирования и охлаждения промышленность, как правило, использует потенциальное пусковое реле для отключения пусковой конденсатор, когда нельзя использовать центробежный выключатель.Потенциал пусковое реле, FGR. 29A и B, работает, обнаруживая увеличение напряжение, возникающее в пусковой обмотке при работе двигателя. Схема Схема потенциальной цепи пускового реле приведена на FGR. 30. Внутри схемы реле потенциала используется для отключения пускового конденсатора от цепи когда двигатель достигает 75% своей полной скорости. Пусковое реле Катушка SR подключена параллельно пусковой обмотке двигателя.Нормально замкнутый контакт SR включен последовательно с пусковым конденсатором. Когда контакт термостата замыкается, питание подается как на рабочий, так и на рабочий цикл. пусковые обмотки. На этом этапе подключены как пусковой, так и рабочий конденсаторы. в цепи.

    Когда ротор начинает вращаться, его магнитное поле индуцирует напряжение в пусковая обмотка, создавая более высокое напряжение на пусковой обмотке чем приложенное напряжение. Когда двигатель разогнался примерно до 75% от на полной скорости, напряжение на пусковой обмотке достаточно высокое, чтобы подать напряжение на катушку реле потенциала.Это вызывает нормально закрытый Контакт SR для размыкания и отключения пускового конденсатора от цепи. Поскольку пусковая обмотка этого двигателя никогда не отключается от линия питания, катушка потенциального пускового реле остается под напряжением пока двигатель работает.

    ===


    FGR. 31 Затененный полюс.


    FGR. 32 Затеняющая катушка противодействует изменению магнитного потока при увеличении тока.


    FGR.34 Затеняющая катушка препятствует изменению магнитного потока при уменьшении тока.


    FGR. 33 Существует противодействие магнитному потоку, когда ток не меняется.

    ====

    ИНДУКЦИОННЫЕ ДВИГАТЕЛИ С ТЕНЕННЫМИ ПОЛЮСАМИ

    Асинхронный двигатель с расщепленными полюсами популярен благодаря своей простоте. и долгая жизнь. Этот двигатель не содержит пусковых обмоток или центробежного переключателя. Он содержит ротор с короткозамкнутым ротором и работает по принципу вращающегося магнитное поле, создаваемое затеняющей катушкой, намотанной на одной стороне каждого полюса кусок.

    Двигатели с расщепленными полюсами обычно представляют собой двигатели с дробной мощностью, используемые для приложения с низким крутящим моментом, такие как работающие вентиляторы и воздуходувки.

    КАТУШКА ОТТЕНОК

    Затеняющая катушка намотана на один конец полюсного наконечника (FGR. 31). На самом деле это большая петля из медной проволоки или медной ленты. Два конца соединены, чтобы сформировать полную цепь. Затеняющая катушка действует как трансформатор с закороченной вторичной обмоткой.Когда ток переменного тока форма волны увеличивается от нуля к своему положительному пику, магнитное поле создается в полюсе. Когда магнитные линии потока прорезают затеняющая катушка, в катушке индуцируется напряжение. Поскольку катушка низкая сопротивление короткому замыканию, в шлейфе протекает большое количество тока. Этот ток вызывает сопротивление изменению магнитного потока (FGR. 32). Пока в затеняющей катушке наведено напряжение, будет противодействие изменению магнитного потока.

    Когда переменный ток достигает своего пикового значения, он больше не меняется, и никакое напряжение не индуцируется в затеняющей катушке. Поскольку нет ток в затеняющей катушке отсутствует противодействие магнитному поток. Магнитный поток полюсного наконечника теперь однороден по полюсу. лицо (ЛГР. 33).

    Когда переменный ток начинает уменьшаться от пикового значения обратно в сторону нуля магнитное поле полюсного наконечника начинает схлопываться.Напряжение снова вводится в затеняющую катушку. Это индуцированное напряжение создает ток, противодействующий изменению магнитного потока (FGR. 34). Это вызывает магнитный поток, который должен быть сосредоточен в заштрихованной части полюса кусок.

    Когда переменный ток проходит через ноль и начинает увеличиваться отрицательное направление, происходит тот же набор событий, за исключением того, что полярность магнитного поля обратное. Если бы эти события были просмотрены в быстрый порядок, магнитное поле будет видно, чтобы вращаться поперек лица полюса.

    ==


    FGR. 35 Четырехполюсный асинхронный двигатель с расщепленными полюсами.

    ==


    FGR. 36 Обмотка статора и ротор асинхронного двигателя с экранированными полюсами ..

    ===

    СКОРОСТЬ

    Скорость асинхронного двигателя с расщепленными полюсами определяется тем же Факторы, определяющие синхронную скорость других асинхронных двигателей: частота и количество полюсов статора.

    Двигатели с расщепленными полюсами обычно имеют четырех- или шестиполюсные двигатели.FGR. 35 показан чертеж четырехполюсного асинхронного двигателя с расщепленными полюсами.

    ОБЩИЕ РАБОЧИЕ ХАРАКТЕРИСТИКИ

    Двигатель с расщепленными полюсами содержит стандартный ротор с короткозамкнутым ротором. Количество крутящего момента определяется силой магнитного поля статора, напряженности магнитного поля ротора и разность фазовых углов между магнитным потоком ротора и статора. Индукция заштрихованного полюса двигатель имеет низкий пусковой и рабочий крутящий момент.

    Направление вращения определяется направлением, в котором вращающееся магнитное поле движется по лицевой стороне полюса. Ротор поворачивается направление показано стрелкой в ​​FGR. 35.

    Направление можно изменить, сняв обмотку статора и повернув это вокруг. Однако это не обычная практика. Как правило, Асинхронный двигатель с расщепленными полюсами считается нереверсивным. FGR. 36 показаны обмотка статора и ротор асинхронного двигателя с экранированными полюсами.

    ==


    FGR. 37 Трехскоростной мотор.

    ==

    МНОГОСКОРОСТНЫЕ ДВИГАТЕЛИ

    Есть два основных типа многоскоростных однофазных двигателей. Один из них последовательный тип полюса, а другой — запуск конденсатора со специальной обмоткой. конденсаторный двигатель или асинхронный двигатель с экранированными полюсами. Последующий полюс однофазный двигатель работает, реверсируя ток через переменный полюсов и увеличение или уменьшение общего количества полюсов статора.В последующий полюсный двигатель используется там, где необходимо поддерживать высокий крутящий момент. на разных скоростях; например, в двухскоростных компрессорах для центрального кондиционеры.

    МНОГОСКОРОСТНЫЕ ДВИГАТЕЛИ ВЕНТИЛЯТОРА

    Многоскоростные двигатели вентиляторов используются уже много лет. Они вообще намотать от двух до пяти ступеней скорости и задействовать вентиляторы и беличью клетку воздуходувки. Схематический чертеж трехскоростного двигателя показан на FGR. 37. Обратите внимание, что обмотка хода была выбрана для получения низкого, среднего и высокоскоростной.Пусковая обмотка подключена параллельно ходовой обмотке. раздел. Другой конец провода пусковой обмотки подсоединяется к внешнему маслонаполненный конденсатор. Этот двигатель изменяет скорость, добавляя индуктивность последовательно с ходовой обмоткой. Фактическая рабочая обмотка для этого двигателя между выводами отмечены высокий и общий. Обмотка, показанная между высокий и средний соединены последовательно с обмоткой главного хода.

    Когда поворотный переключатель установлен в положение средней скорости, индуктивное сопротивление этой катушки ограничивает количество тока, протекающего через обмотка хода.При уменьшении тока обмотки хода сила его магнитного поля уменьшается, и двигатель производит меньший крутящий момент. Этот вызывает большее скольжение, и скорость двигателя снижается.

    Если поворотный переключатель установлен в нижнее положение, индуктивность увеличивается. вставлены последовательно с ходовой обмоткой. Это приводит к меньшему току протекания через обмотку хода и очередное снижение крутящего момента. Когда крутящий момент уменьшается, скорость двигателя снова уменьшается.

    Обычные скорости для четырехполюсного двигателя этого типа: 1625, 1500 и 1350. Об / мин. Обратите внимание, что этот двигатель не имеет широких диапазонов между скоростями, поскольку было бы в случае с последующим полюсным двигателем. Большинство асинхронных двигателей перегрев и повреждение обмотки двигателя, если скорость была снижена до этого степень. Однако этот тип двигателя имеет гораздо более высокое сопротивление обмоток. чем у большинства моторов. Ходовые обмотки большинства электродвигателей с расщепленной фазой имеют провод сопротивление от 1 до 4 Ом.Этот двигатель обычно имеет сопротивление От 10 до 15 Ом в обмотке. Это высокий импеданс обмоток что позволяет двигателю работать таким образом без повреждений.

    Поскольку этот двигатель предназначен для замедления при добавлении нагрузки, он не используется для работы с нагрузками с высоким крутящим моментом — только с нагрузками с низким крутящим моментом, такими как вентиляторы и воздуходувки.

    ОДНОФАЗНЫЕ СИНХРОННЫЕ ДВИГАТЕЛИ

    Однофазные синхронные двигатели малы и развивают только дробную Лошадиные силы.Они работают по принципу вращающегося магнитного поля. разработан статором с расщепленными полюсами. Хотя они будут работать синхронно скорости, они не требуют постоянного тока возбуждения. Они используются там, где постоянная требуется скорость, например, в часовых двигателях, таймерах и записывающих приборах, и как движущая сила для маленьких вентиляторов, потому что они маленькие и недорогие. для производства. Есть два основных типа синхронных двигателей: Уоррен, или двигатель General Electric, и двигатель Holtz.Эти двигатели также упоминаются как гистерезисные двигатели.

    ==


    FGR. 38 Мотор Уоррена.

    ==


    FGR. 39 Мотор Holtz.

    ==


    FGR. 40 Якорь и щетки универсального двигателя.

    ==


    FGR. 41 Компенсирующая обмотка включена последовательно с последовательным обмотка возбуждения.

    ==

    WARREN MOTORS

    Двигатель Уоррена состоит из ламинированного сердечника статора и одного катушка.Катушка обычно намотана для работы на переменном токе 120 В. Ядро содержит две опоры, каждая из которых разделена на две секции.

    Половина каждого полюсного наконечника содержит затеняющую катушку для вращения магнитное поле (FGR. 38). Поскольку статор разделен на два полюса, скорость синхронного поля составляет 3600 об / мин при подключении к 60 Гц.

    Разница между двигателями Уоррена и Хольца заключается в типе ротора. использовал. Ротор двигателя Уоррена построен путем укладки закаленных стальные пластины на валу ротора.Эти диски имеют высокий гистерезис. потеря. Пластины образуют две поперечины для ротора. Когда питание подключено к двигателю вращающееся магнитное поле индуцирует напряжение в роторе, и создается сильный пусковой крутящий момент, заставляющий ротор ускоряться до почти синхронной скорости. Как только двигатель разгонится до почти синхронного скорости, поток вращающегося магнитного поля следует по пути минимума реактивное сопротивление (магнитное сопротивление) через две поперечины.Это вызывает ротор синхронизируется с вращающимся магнитным полем, а двигатель работает со скоростью 3600 об / мин. Эти двигатели часто используются с небольшими зубчатыми передачами. снизить скорость до желаемого уровня.

    МОТОРЫ HOLTZ

    В двигателе Holtz используется ротор другого типа (FGR. 39). Этот ротор вырезан таким образом, чтобы образовалось шесть прорезей. Эти слоты образуют шесть выступающие (выступающие или выступающие) полюса ротора. Обмотка типа «беличья клетка» создается путем вставки металлической планки в нижнюю часть каждого слота.Когда питание подключено к двигателю, обмотка с короткозамкнутым ротором обеспечивает крутящий момент, необходимый для начала вращения ротора. Когда ротор приближается синхронная скорость, выступающие полюса будут синхронизироваться с полюсами поля каждый полупериод. Это обеспечивает скорость ротора 1200 об / мин (одна треть от синхронная скорость) для двигателя.

    УНИВЕРСАЛЬНЫЕ ДВИГАТЕЛИ

    Универсальный двигатель часто называют двигателем переменного тока. это очень похож на двигатель серии постоянного тока по своей конструкции в том, что он содержит раневая арматура и кисти (FGR.40). Однако универсальный двигатель имеет добавление компенсирующей обмотки. Если был подключен двигатель постоянного тока к переменному току двигатель будет плохо работать по нескольким причинам. Обмотки якоря будут иметь большое индуктивное сопротивление. при подключении к переменному току. Кроме того, полевые столбы большинство машин постоянного тока содержат цельнометаллические полюсные наконечники. Если бы поле было подключено к переменному току большое количество энергии будет потеряно из-за индукции вихревых токов в полюсах.Универсальные двигатели содержат ламинированный сердечник для предотвращения Эта проблема. Компенсирующая обмотка намотана на статор и функционирует для противодействия индуктивному сопротивлению обмотки якоря.

    Универсальный двигатель назван так потому, что он может работать от переменного или постоянного тока. Напряжение. При работе от постоянного тока компенсирующая обмотка включен последовательно с последовательной обмоткой возбуждения (FGR. 41).

    ==


    FGR.42 Компенсация проводимости.

    ==


    FGR. 43 Индуктивная компенсация.

    ==


    FGR. 44 Использование поля серии для установки кистей в нейтральной плоскости должность.

    ==

    ПОДКЛЮЧЕНИЕ КОМПЕНСАЦИОННОЙ ОБМОТКИ ПЕРЕМЕННОГО ТОКА

    Когда универсальный двигатель работает от сети переменного тока, компенсирующий обмотку можно подключить двумя способами. Если он подключен последовательно с якорь, как показано на FGR.42, это называется компенсацией проводимости.

    Компенсирующая обмотка также может быть соединена путем короткого замыкания ее выводов вместе. как показано в FGR. 43. При таком подключении обмотка действует как закороченная вторичная обмотка трансформатора. Наведенный ток позволяет обмотка должна работать при таком подключении. Эта связь известна как индуктивная компенсация. Индуктивная компенсация не может использоваться, когда двигатель подключен к постоянному току.

    НЕЙТРАЛЬНАЯ ПЛОСКОСТЬ

    Так как универсальный двигатель содержит намотанный якорь, коллектор и щетки, щетки должны быть установлены в положение нейтральной плоскости. Этот может быть выполнено в универсальном двигателе аналогично настройке нейтральная плоскость машины постоянного тока. При установке щеток на нейтраль положение плоскости в универсальном двигателе, последовательное или компенсирующее можно использовать обмотку. Чтобы установить кисти в нейтральную плоскость, используйте последовательная обмотка (FGR.44), переменный ток подключен к якорю. ведет. К последовательной обмотке подключают вольтметр. Напряжение тогда наносится на арматуру. Затем положение щетки перемещается до тех пор, пока вольтметр не подключенное к серии поле достигает нулевой позиции. (Нулевая позиция достигается, когда вольтметр достигает своей нижней точки.)

    ===


    FGR. 45: Использование компенсирующей обмотки для установки щеток в нейтральную плоскость должность.

    ===

    Если компенсирующая обмотка используется для установки нейтральной плоскости, то попеременно на якорь снова подключается ток и подключается вольтметр к компенсационной обмотке (FGR. 45). Затем применяется переменный ток. к якорю, а щетки перемещают до тех пор, пока вольтметр не покажет его максимальное или пиковое напряжение.

    РЕГУЛИРОВКА СКОРОСТИ

    Очень плохая регулировка скорости универсального двигателя.Поскольку это у серийного двигателя такая же плохая регулировка скорости, как у серийного двигателя постоянного тока. Если универсальный двигатель подключен к малой нагрузке или без нагрузки, его скорость практически неограничен. Этот двигатель нередко эксплуатируется при несколько тысяч оборотов в минуту. Универсальные двигатели используются в количество портативных устройств, отличающихся высокой мощностью и малым весом. необходимо, например, буровые электродвигатели, пилы для профессионального использования и пылесосы. Универсальный двигатель способен производить высокую мощность в лошадиных силах для своего размера и веса, потому что его высокой рабочей скорости.

    ИЗМЕНЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ

    Направление вращения универсального двигателя можно изменить в таким же образом, как и изменение направления вращения двигателя постоянного тока. Чтобы изменить направление вращения, измените выводы якоря относительно к полю ведет.

    РЕЗЮМЕ

    • Не все однофазные двигатели работают по принципу вращающегося магнитного поле.

    • Двигатели с разделенной фазой запускаются как двухфазные двигатели, создавая противофазу. условие тока в обмотке хода и тока в пуске обмотка.

    • Сопротивление провода в пусковой обмотке пускового резистора. Асинхронный двигатель используется для создания разности фаз между ток в пусковой обмотке и ток в пусковой обмотке.

    • В асинхронном двигателе с конденсаторным пуском используется электролитический конденсатор переменного тока. для увеличения разности фаз между пусковым и рабочим током. Это вызывает увеличение пускового момента.

    • Максимальный пусковой крутящий момент для двигателя с расщепленной фазой достигается, когда ток пусковой обмотки и рабочий ток обмотки сдвинуты по фазе на 90 ° с друг с другом.

    • Большинство асинхронных двигателей с резистивным пуском и индукционных двигателей с конденсаторным пуском. двигатели используют центробежный переключатель для отключения пусковых обмоток, когда двигатель достигает примерно 75% скорости при полной нагрузке.

    • Конденсаторный двигатель с конденсаторным пуском работает как двухфазный двигатель. потому что и пусковая, и пусковая обмотки остаются под напряжением во время работы двигателя.

    • В большинстве электродвигателей с конденсаторным пуском используется масляный конденсатор переменного тока. соединены последовательно с пусковой обмоткой.

    • Конденсатор конденсаторного пускового конденсаторного двигателя помогает исправить коэффициент мощности.

    • Асинхронные двигатели с расщепленными полюсами работают по принципу вращающегося магнитное поле.

    • Вращающееся магнитное поле асинхронного двигателя с экранированными полюсами создается. размещая затемняющие петли или катушки на одной стороне полюсного наконечника.

    • Синхронная скорость возбуждения однофазного двигателя определяется количество полюсов статора и частота приложенного напряжения.

    • Последовательные полюсные двигатели используются, когда требуется изменение скорости двигателя. и должен поддерживаться высокий крутящий момент.

    • Двигатели многоскоростных вентиляторов состоят из последовательного соединения обмоток. с обмоткой главного хода.

    • Двигатели многоскоростных вентиляторов имеют обмотки статора с высоким сопротивлением для предотвращения их от перегрева при уменьшении их скорости.

    • Направление вращения двигателей с расщепленной фазой изменяется реверсированием. пусковая обмотка по отношению к ходовой обмотке.

    • Двигатели с расщепленными полюсами обычно считаются нереверсивными.

    • Есть два типа однофазных синхронных двигателей: Уоррена и Holtz.

    • Однофазные синхронные двигатели иногда называют двигателями с гистерезисом.

    • Двигатель Уоррена работает со скоростью 3600 об / мин.

    • Двигатель Holtz работает со скоростью 1200 об / мин.

    • Универсальные двигатели работают от постоянного или переменного тока.

    • Универсальные двигатели содержат намотанный якорь и щетки.

    • Универсальные двигатели также называются двигателями серии переменного тока.

    • Универсальные двигатели имеют компенсирующую обмотку, которая помогает преодолевать индукционные реактивное сопротивление.

    • Направление вращения универсального двигателя можно изменить реверсированием. якорь ведет относительно проводов возбуждения.

    ВИКТОРИНА

    1. Какие три основных типа двигателей с расщепленной фазой?

    2.Напряжения в двухфазной системе на сколько градусов не совпадают по фазе. друг с другом?

    3. Как соединены пусковая и рабочая обмотки двигателя с расщепленной фазой? по отношению друг к другу?

    4. Для создания максимального пускового момента в двигателе с расщепленной фазой, на сколько градусов не совпадает по фазе должны запускаться и запускаться токи обмотки быть друг с другом?

    5. В чем преимущество асинхронного двигателя с конденсаторным пуском перед индукционный двигатель с резистивным пуском?

    6.В среднем, на сколько градусов не совпадают по фазе друг с другом пусковые и управляющие токи обмоток в асинхронном двигателе с резистивным пуском?

    7. Какое устройство используется для отключения пусковых обмоток цепи? в большинстве негерметичных асинхронных двигателей с конденсаторным пуском?

    8. Почему двигатель с расщепленной фазой продолжает работать после пусковых обмоток были отключены от цепи?

    9. Как можно изменить направление вращения двигателя с расщепленной фазой?

    10.Если двигатель с двойным напряжением и расщепленной фазой должен работать от высокого напряжения, как связаны друг с другом ходовые обмотки?

    11. При определении направления вращения двигателя с расщепленной фазой, следует ли смотреть на двигатель спереди или сзади?

    12. Какой тип двигателя с расщепленной фазой обычно не содержит центробежного? выключатель?

    13. Каков принцип работы конденсаторно-пускового конденсатора? запустить мотор?

    14.Что заставляет магнитное поле вращаться по индукции с заштрихованными полюсами мотор?

    15. Как изменить направление вращения асинхронного двигателя с экранированными полюсами? быть изменен?

    16. Как изменяется скорость последующего полюсного двигателя?

    17. Почему многоскоростной вентиляторный двигатель может работать на более низкой скорости, чем большинство других? асинхронные двигатели без вреда для обмоток двигателя?

    18. Какая скорость работы мотора Уоррена?

    19.Какая скорость работы мотора Хольца?

    20. Почему электродвигатель серии переменного тока часто называют универсальным электродвигателем?

    21. Какова функция компенсирующей обмотки?

    22. Как изменить направление вращения универсального двигателя?

    23. Когда двигатель подключен к постоянному напряжению, как должна компенсировать обмотку подключать? 24. Объясните, как установить положение нейтральной плоскости. кистей, используя поле серии.

    25. Объясните, как установить положение нейтральной плоскости с помощью компенсирующего обмотка.

    ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ:

    Вы — подрядчик по электрике, и вас вызвали на дом. установить скважинный насос. Домовладелец купил насос, но делает не знаю как это подключить. Вы открываете крышку клеммной коробки и обнаружите, что двигатель имеет 8 клеммных выводов, помеченных с T1 по T8. Двигатель должен быть подключен к напряжению 240 В.В настоящее время Т-выводы подключены следующим образом: T1, T3, T5 и T7 соединены вместе; и T2, T4, T6 и Т8 соединены вместе. Линия L1 подключена к группе клемм с T1, а линия L2 подключена к группе клемм с T2. Является нужно ли поменять провода для работы от 240 В? Если да, то как следует они связаны?

    Как изменить направление вращения однофазного двигателя вентилятора?

    Как изменить направление вращения однофазного двигателя вентилятора? — Обмен электротехнического стека
    Сеть обмена стеков

    Сеть Stack Exchange состоит из 177 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

    Посетить Stack Exchange
    1. 0
    2. +0
    3. Авторизоваться Зарегистрироваться

    Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.

    Зарегистрируйтесь, чтобы присоединиться к этому сообществу

    Кто угодно может задать вопрос

    Кто угодно может ответить

    Лучшие ответы голосуются и поднимаются наверх

    Спросил

    Просмотрено 20к раз

    \ $ \ begingroup \ $

    У меня однофазный двигатель переменного тока.Я нашел его на фотокопировальной машине. Тот же мотор, что и вентилятор. В нем есть конденсатор для определения фазового угла. Я не знаю, как называется мой мотор.

    Могу ли я изменить направление вращения этого двигателя?

    редактировать:
    Это фото моего мотора.

    Ник Алексеев

    35.2k1414 золотых знаков8383 серебряных знака204204 бронзовых знака

    Создан 23 янв.

    user_fs10user_fs10

    68133 золотых знака1414 серебряных знаков3535 бронзовых знаков

    \ $ \ endgroup \ $ 5 \ $ \ begingroup \ $

    Если у вас есть доступ к внутренним соединениям между катушками, вы можете реверсировать двигатель, поменяв местами соединение одной катушки по отношению к другой.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *