Что такое теплопроводность строительных материалов: Таблица теплопроводности строительных материалов, рекомендации

Таблица теплопроводности строительных материалов, рекомендации

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Чем ниже теплопроводность строительных материалов, тем теплее в доме

Содержание статьи

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

ИСТ-1 – прибор для определения теплопроводности

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

  1. Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

    Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

  2. Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

    Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  3. Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

Таблица проводимости тепла воздушных прослоек

Калькулятор расчёта толщины стены по теплопроводности

На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

Окно расчёта калькулятора

В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

Расчёт проводимости тепла всех прослоек стен

Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

 

Предыдущая

Строительные материалыИз чего делают цемент: от теории к практике

Следующая

Строительные материалыКрепкий пол в каждый дом: ламинат или линолеум — что лучше

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

теплопроводность строительных материалов

Теплопроводность строительных материалов это своего рода оценка , которая описывает способность того или иного тела проводить тепло. В данной статье пойдет речь именно об этом, а для большего представления о теплопроводности различных материалов и не только, ниже будет приведена таблица.

Как вы понимаете все материалы обладают разными свойствами и соответственно разную теплопроводность, которая в свою очередь влияет на температуру внутри помещения. Если теплопроводность низкая, значит и теплообмен будет низким. Другими словами, дома зимой тепло будет сохраняться, а летом будет прохладно.

Кстати, очень удобно что теперь все обувные интернет-магазины нижнего новгорода (http://rmau. ru/obuv) собраны на одном сайте. Перейдите по указанной ссылке и выберите обувь для себя и близких из очень большого ассортимента с разными ценовыми категориями.


Существует три вида процессов теплообмена

— Первое — конечно теплопроводность,
— Второе — конвекция,
— Третье — будет тепловым излучением.

Говоря о первом виде теплопроводности можно сказать что, это своего рода передача тепла от тела к телу либо частицами находящиеся внутри тела с разной температурой, за счет активного движения молекулы обмениваются энергией наименьших частиц в теле.

Все это проходит благодаря беспорядочному движению атомов и молекул. Так как данный теплообмен может протекать в разных физических телах, которые имеют неравномерное распределение температуры. Теплопередача будет зависеть от состояния тела в конкретный период времени.
Говоря о втором виде теплопроводности, а именно о конвекции, можно сказать что очень часто все виды теплопередачи протекают вместе.

В этом процессе обязательно частицы с различными температурами будут соприкасаться, из чего следует, что конвекция сопровождается теплопроводностью. Конвекция происходит от перемещения участков среды с разными температурами. Само тепло переноситься только совместно с данной средой и зависит от нее. Так же данный процесс иногда называют конвективным теплообменом.

Теплоотдачу можно объяснить как конвективный теплообмен проходящий между стеной которая стоит неподвижно и меняющейся средой.

Третий вид тепловое излучение — благодаря которому происходит процесс передачи тепла между телами с участием электромагнитных волн.

Для того чтобы строить различного вида постройки необходимо обязательно знать теплопроводность утеплителей и строительных материалов, чтобы в итоге получить то что планировалось. Теплопроводность стен зависит от материалов из которых эти стены состоят.

Единицей измерения способности к проведению тепла, является коэффициент теплопроводности. Он равен такому количеству тепла которое пройдет через различные материалы или тела с толщиной 1 м и имеющий площадь 1кв.м/сек с одной температурой по периметру.

Интересный факт: теплопроводность кирпича в отличие от дерева ниже. К примеру- для того чтобы получить с помощью кирпича тот же эффект что от дерева, нужно выложить стену из кирпича толщиной в три раза превышающую толщину стены из дерева.

Теплопроводность пенопласта равна 0,31-0,33 Вт/м*К, с плотностью 15 кг/м3- 50 кг/м3

Теплопроводность стали равна 58 Вт/м*К, с плотностью 7850 кг/м3

Для более расширенного представления о теплопроводности разных материалов, обобщим все в таблицу.


Если материал был полезен, вы можете отправить донат
или поделиться данным материалом в социальных сетях:

Значение теплопроводности в строительстве — Информио

В холодную, дождливую, ветреную погоду мы всегда стремимся вернуться в теплый дом, где можно, сняв пальто, почувствовать себя в тепле и уюте. Наружные стены, окна, крыша (т.е. ограждающие конструкции) защищают наш дом от низких температур, сильного ветра, осадков в виде дождя и снега и других атмосферных воздействий. При этом они препятствуют прониканию тепла из внутреннего помещения наружу вследствие своего сопротивления теплопередаче. В зависимости от толщины материала конструкция может иметь различное сопротивление теплопередаче: чем больше толщина материала, тем лучшими теплозащитными свойствами обладает ограждение.

 

Тепло может передаваться разными способами: теплопроводностью, конвекцией, излучением.

 

В чистом виде теплопроводность наблюдается только в сплошных твердых телах. Тепло передается непосредственно через материал или от одного материала другому при их соприкосновении. Высокой теплопроводностью обладают плотные материалы — металл, железобетон, мрамор. Воздух имеет низкую теплопроводность. Поэтому через материалы с большим количеством замкнутых пор, заполненных воздухом, тепло передается плохо, и они могут использоваться как теплоизоляционные (семищелевой кирпич, пенобетон, вспененный полиуретан, пенопласт).

 

Конвекция характерна для жидких и газообразных сред, где перенос тепла происходит в результате движения молекул. Конвективный теплообмен наблюдается у поверхности стен при наличии температурного перепада между конструкцией и соприкасающимся с ней воздухом. В окнах жилых домов конвективный теплообмен происходит между поверхностями остекления, обращенными внутрь воздушной прослойки. Нагреваясь от внутреннего стекла, теплый воздух поднимается вверх. При соприкосновении с холодным наружным стеклом воздух отдает свое тепло и, охлаждаясь, опускается вниз. Такая циркуляция воздуха в воздушной прослойке обусловливает конвективный теплообмен. Чем больше разность температур поверхностей, тем интенсивнее теплообмен между ними.

 

Излучение происходит в газообразной среде путем передачи тепла с поверхности тела через пространство (в виде энергии электромагнитных волн). Благодаря лучистому теплообмену поверхность Земли обогревается Солнцем, находящимся от нее на расстоянии многих световых лет.

 

Аналогичным образом осуществляется передача тепла излучением между двумя поверхностями, расположенными в стене и разделенными воздушной прослойкой. Нагретая поверхность радиатора излучает тепло и обогревает помещение. Чем выше температура поверхности отопительного прибора, тем сильнее обогревается помещение.

 

Все тела, имеющие температуру выше абсолютного нуля, излучают тепло, которое частично отражается, частично поглощается. Если вся падающая на тело лучистая энергия отражается, то такое тело называется абсолютно белым. Если вся падающая энергия поглощается, то тело называется абсолютно черным.

 

Строительные материалы также частично отражают и частично поглощают энергию, хотя и в меньшей степени, чем абсолютное белое и абсолютно черное тела. Они называются серыми телами.

 

Светлая и гладкая поверхность отражает большую часть падающей энергии. Чем темнее и шершавее поверхность тела, тем больше энергии она поглощает. Поглощенная телом лучистая энергия превращается в тепловую и вызывает повышение температуры.

Поэтому для уменьшения перегрева помещений верхнего этажа в летнее время целесообразно покрытие крыши делать из оцинкованной кровельной стали, а не из рубероида. Благодаря блестящей светлой поверхности сталь отражает значительную часть излучения и нагревается меньше, чем рубероид, имеющий темную поверхность и интенсивнее поглощающий лучистую энергию.

 

Утеплять помещения идеальнее всего на стадии его строительства.


Рисунок 1  — Приведенное сопротивление теплопередачи для различных конструкций стен.

 

Теплопроводность строительных материалов – это возможность через свою толщу проводить тепловой поток от одной поверхности к другой.Но это свойство действует лишь в том случае, если в изделии есть градиент потенциала переноса. Если мы имеем дело с пористыми веществами, на теплопроводность влияет характер пор, показатель пористости, вид вещественного состава изделия, температура и влажность.

 

Стоит отметить что у плотных материалов  теплопроводность выше,  чем у пористых, дело в том, что у последних тепловой поток может идти не только через поры, заполненные воздухом, но и через вещество изделия.

Тепловой поток получает сопротивление из-за низкой теплопроводности воздуха. Но чем меньше размер пор, тем меньшую теплопроводность можно отметить у пористых материалов. А если присутствуют сообщающиеся большие поры, можно говорить об увеличении переноса теплоты движением воздуха. Таким образом, изделия, где есть сообщающиеся поры – отличаются большей теплопроводностью.

 

Некоторые нюансы вносит структура материалов и условия их теплопроводности. В частности, если при строительстве замечено увлажнение, в таком случае резко увеличивается теплопроводность изделий. Дело в том, что тепловой поток проходит быстрее и лучше, если поры заполнены водой.

 

Кроме того, особое влияние на теплопроводность оказывает структура материалов. Неодинаковые свойства у изделий со слоистым и волокнистым строением. К примеру, теплопроводность пола из деревянной торцовой шашки выше подобного образца из щитового и дощатого паркетного пола. Это объясняется тем, что у древесных материалов термическое сопротивление поперек вдвое больше, чем при направлении теплового потока вдоль волокон. Такие особенности зафиксированы и при работе со слоистыми искусственными изделиями.

 

Сейчас на рынке почти каждый день появляются все новые и новые виды утеплителей. Каждый из них обладает своими преимуществами и недостатками.  Но, из самых популярных очень сложно выбрать нужный, потому что при сравнении выясняется, что один лучше другого. На самом деле универсального утеплителя не существует, и для каждой утепляемой части дома – стены, крыша, пол и так далее – нужно подбирать свой тип.

 

Выбор теплоизоляционных материалов (ТИМ), хороших для каждой конструкции дома, задачка не из легких: за последнее десятилетие на рынке их появилось неописуемое огромное количество.

 

Хорошо утеплить собственный дом можно только при всеохватывающем подходе к термоизоляции.Всеохватывающее утепление дома позволяет: уменьшить толщину ограждающих конструкций, повысить их теплоизоляционные свойства, понизить массу сооружений и расход стройматериалов, а в эксплуатационный период существенно уменьшить издержки на энергию при отоплении построек.

 

Строители подсчитали, что больше половины всего тепла из дома уходит через стенки и окна, при этом, чем больше площадь наружных поверхностей, тем выше будут теплоотдачи. Один из методов минимизировать их знаком всем дачникам: пристройка к дому веранды и других подсобных помещений. В прохладное время года они делают функцию буфера, защищающего внутренние комнаты от внешнего воздуха. Самое проблемное место в доме, исходя из убеждений теплопотерь это окна. Потому нужно верно избрать тип оконного блока и детали его установки, также направить внимание на сопряжение окон со стенками, толщину оконной коробки, размещение окна в плоскости стенки. Чтоб минимизировать утраты, можно установить окна с трехслойным остеклением в спаренных древесных рамах.

 

Фасад строения можно утеплить 3-мя методами: изнутри, снаружи и утеплением внутри стенки. Предпочтение, обычно, отдается системам внешнего утепления. Это, во-1-х, позволяет сохранить полезную площадь помещений, а, во-2-х, не заниматься устройством пароизоляции и воздушных зазоров, препятствующих конденсации пара. В качестве ТИМ для фасадного утепления можно с фурором использовать минеральную вату, стекловолокно, изделия из полистирола и др.

 

Такой метод утепления не только защитит дом от воздействий наружной среды и уменьшит эксплуатационные издержки на отопление, но и сделает лучше звукоизоляционные характеристики дома, также облагородит его внешний облик.

 

Не забывайте, что показатели теплопроводности очень важны при строительстве зданий. Ведь от грамотного изучения технических характеристик материалов зависят будущие расходы на отопление дома.

 

Библиографический список

  1. Физика: Учебник для студ. образоват. учреждений сред. проф. образования / В.Ф. Дмитриева.- 6-е изд., стер. – М.: Издательский центр «Академия», 2005.
  2. Строительные материалы и изделия: учебник для студ. учреждений сред. проф. образования /Ю.Г. Барабанщиков. – 2-е изд., стер. — М.: Издательский центр «Академия», 2010.
  3. Технология и организация строительства: Г. К. Соколов. – 7-е изд., стер. — М.: Издательский центр «Академия», 2010.

Таблица Теплопроводности строительных материалов

Вид строительного материалаКоэффициент теплопроводности материалов,
Вт/(м·°C)
Строительный материал в сухом состоянии

Условия А
для материала
(«обычные»)

Условия Б
для материала («влажные»)
Теплопроводность Шерстяного войлока0,045
Теплопроводность Цементно-песчаного раствора 0,580,760,93
Теплопроводность Известково-песчаного раствора0,470,70,81
Теплопроводность обычной Гипсовой штукатурки0,25
Теплопроводность Ваты Минеральной, каменной.
При плотности — 180 кг/куб.м.
0,0380,0450,048
Теплопроводность Ваты Минеральной, каменной.
При плотности — 140-175 куб.м.
0,0370,0430,046
Теплопроводность Ваты Минеральной, каменной. 
При плотности 80-125 куб.м.
0,0360,0420,045
Теплопроводность Ваты Минеральной, каменной.
При плотности — 40-60 куб.м.
0,0350,0410,044
Теплопроводность Ваты Минеральной, каменной.
При плотности — 25-50 куб.м.
0,0360,0420,045
Теплопроводность Ваты Минеральной, каменной.
При плотности — 85 куб. м.
0,0440,0460,05
Теплопроводность Ваты Минеральной, каменной.
При плотности — 75 куб.м.
0,040,0420,047
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 60 куб.м.
0,0380,040,045
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 45 куб.м.
0,0390,0410,045
Теплопроводность Ваты Минеральной, стеклянной. 
При плотности — 35 куб.м.
0,0390,0410,046
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 30 куб.м.
0,040,0420,046
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 20 куб.м.
0,040,0430,048
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 17 куб.м.
0,0440,0470,053
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 15 куб.м.
0,0460,0490,055
Газобетон и пенобетон на цементном вяжущем портландцементе. При плотности — 1000 куб.м.0,290,380,43
Газобетон и пенобетон на цементном вяжущем портландцементе.
При плотности — 800 куб.м.
0,210,330,37
Газобетон и пенобетон на цементном вяжущем портландцементе.
При плотности — 600 куб. м.
0,140,220,26
Газобетон и пенобетон на цементном вяжущем портландцементе.
При плотности — 400 куб.м.
0,110,140,15
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности — 1000 куб.м.
0,310,480,55
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности — 800 куб.м.
0,230,390,45
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности — 600 куб.м.
0,150,280,34
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности — 400 куб.м.
0,130,220,28
Теплопроводность Сосны и ели (волокна поперек).0,090,140,18
Теплопроводность Сосны и ели (волокна вдоль).0,180,290,35
Теплопроводность Дуба (волокна поперек).0,100,180,23
Теплопроводность Дуба (волокна вдоль).0,230,350,41
Теплопроводность Меди382 — 390
Теплопроводность Алюминия202 — 236
Теплопроводность Латуни97 — 111
Теплопроводность Железа92
Теплопроводность Олова67
Теплопроводность Стали47
Теплопроводность Стекла оконного0,76
Теплопроводность Аргона0,0177
 Теплопроводность Ксенона0,0057
Теплопроводность Арболита0,07 — 0,17
Теплопроводность Пробкового дерева0,035
Теплопроводность Железобетона.
При плотности — 2500 куб.м.
1,691,922,04
Теплопроводность Бетона на щебне илигравии.
При плотности — 2400 куб.м.
1,511,741,86
Теплопроводность Керамзитобетона.
При плотности — 1800 куб.м.
0,660,800,92
Теплопроводность Керамзитобетона. 
При плотности — 1600 куб.м.
0,580,670,79
Теплопроводность Керамзитобетона. 
При плотности — 1400 куб.м.
0,470,560,65
Теплопроводность Керамзитобетона. 
При плотности — 1200 куб.м.
0,360,440,52
Теплопроводность Керамзитобетона.  
При плотности — 1000 куб.м.
0,270,330,41
Теплопроводность Керамзитобетона. 
При плотности — 800 куб.м.
0,210,240,31
Теплопроводность Керамзитобетона. 
При плотности — 600 куб.м.
0,160,20,26
Теплопроводность Керамзитобетона. 
При плотности — 500 куб.м.
0,140,170,23
Теплопроводность Кирпича керамический полнотелого. При кладке на цементно-песчанный раствор.0,560,70,81

Теплопроводность Кирпича силикатного. При кладке на цементно-песчанный раствор.

0,700,760,87
Теплопроводность Кирпича керамического пустотелого (плотность 1400 куб. м. с учетом пустот). При кладке на цементно-песчанный раствор.0,470,580,64
Теплопроводность Кирпича керамического пустотелого. При плотности- 1300 куб.м. с учетом пустот. При кладке на цементно-песчанный раствор.0,410,520,58
Теплопроводность Кирпича керамического пустотелого. При плотности- 1000 куб.м. с учетом пустот. При кладке на цементно-песчанный раствор.0,350,470,52
Теплопроводность Кирпича силикатного, 11 пустот (плотность 1500 куб.м.). При кладке на цементно-песчанный раствор.0,640,70,81
Теплопроводность Кирпича силикатного, 14 пустот. Плотность 1400 куб.м.. При кладке на цементно-песчанный раствор.0,520,640,76
Теплопроводность Гранита3,493,493,49
 Теплопроводность Мрамора2,912,912,91
Теплопроводность Известняка.
При плотности — 2000 куб.м.
0,931,161,28
Теплопроводность Известняка.
При плотности — 1800 куб.м.
0,70,931,05

Теплопроводность Известняка.
При плотности — 1600 куб.м.

0,580,730,81
Теплопроводность Известняка. При плотности — 1400 куб.м.0,490,560,58
Теплопроводность Туфа.
При плотности — 2000 куб.м.
0,760,931,05
Теплопроводность Туфа.
При плотности — 1800 куб.м.
0,560,70,81
Теплопроводность Туфа.
При плотности — 1600 куб.м.
0,410,520,64
Теплопроводность Туфа.
При плотности — 1400 куб.м.
0,330,430,52
Теплопроводность Туфа.
При плотности — 1200 куб.м.
0,270,350,41
Теплопроводность Туфа.
При плотности — 1000 куб.м.
0,210,240,29
Теплопроводность Песок строительного (сухого, в соответствии с ГОСТ 8736-77). При плотности — 1600 куб.м.0,35
Теплопроводность — Фанера клееная0,120,150,18
Теплопроводность ДСП, ДВП.
При плотности — 1000 куб.м.
0,150,230,29
Теплопроводность ДСП, ДВП.
При плотности — 800 куб.м.
0,130,190,23
Теплопроводность ДСП, ДВП.
При плотности — 600 куб.м.
0,110,130,16
Теплопроводность ДСП, ДВП.
При плотности — 400 куб.м.
0,080,110,13
Теплопроводность ДСП, ДВП.
При плотности — 200 куб. м.
0,060,070,08
Теплопроводность Пакли0,050,060,07
Теплопроводность Гипсокартона. Листы гипсовые обшивочные. При плотности — 1050 куб.м.0,150,340,36
Теплопроводность Гипсокартона. Листы гипсовые обшивочные. При плотности — 800 куб.м.0,150,190,21

Теплопроводность Линолеума из ПВХ на теплоизолирующей основе. 
При плотности — 1800 куб.м.

0,380,380,38
Теплопроводность Линолеума из ПВХ на теплоизолирующей основе.
При плотности — 1600 куб.м.
0,330,330,33

Теплопроводность Линолеума из ПВХ на тканевой основе.  При плотности — 1800 куб.м.

0,350,350,35
Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности — 1600 куб.м.0,290,290,29
Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности — 1400 куб.м.0,20,230,23
Теплопроводность, Эковата0,037 — 0,042
Телопропводность Гравия и Керамзита.
При плотности — 250 куб.м.
0,099 — 0,10,110,12
Телопроводность Гравия и Керамзита.
При плотности — 300 куб.м.
0,1080,120,13
Телопроводность Гравия и Керамзита.
При плотности — 350 куб.м.
0,115 — 0,120,1250,14
Телопроводность Гравия и Керамзита.
При плотности — 400 куб.м.
0,120,130,145
Телопроводность Гравия и Керамзита.
При плотности — 450 куб.м.
0,130,140,155
Телопроводность Гравия и Керамзита.
При плотности — 500 куб.м.
0,140,150,165
Телопроводность Гравия и Керамзита.
При плотности — 600 куб.м.
0,140,170,19
Телопроводность Гравия и Керамзита.
При плотности — 800 куб.м.
0,18
Теплопроводность Гипсоплита.
При плотности — 1350 куб.м..
0,350,500,56
Теплопроводность Гипсоплита.
При плотности — 1100 куб.м.
0,230,350,41

Теплопроводность строительных материалов — таблица утеплителей, сравнение

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Основные характеристики утеплителей

Соотношение качества утеплителя, в зависимости от его толщины
При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:

  • Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
  • Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
  • Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
  • Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
  • Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
  • Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
  • Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.

Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).
Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

  • Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
  • Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
  • Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
  • Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Монтаж и эффективность в эксплуатации

Монтаж ППУ – быстро и легко.

Сравнение характеристик утеплителей должно осуществляться с учетом монтажа, ведь это тоже важно. Легче всего работать с жидкой теплоизоляцией, такой как ППУ и пеноизол, но для этого требуется специальное оборудование. Также не составляет труда укладка эковаты (целлюлозы) на горизонтальные поверхности, например, при или чердачного перекрытия. Для напыления эковаты на стены мокрым методом также нужны специальные приспособления.

Пенопласт укладывается как по обрешетке, так и сразу на рабочую поверхность. В принципе, это касается и плит из каменной ваты. Причем укладывать плитные утеплители можно и на вертикальные, и на горизонтальные поверхности (под стяжку в том числе). Мягкую стекловату в рулонах укладывают только по обрешетке.

В процессе эксплуатации теплоизоляционный слой может претерпевать некоторых нежелательных изменений:

  • напитать влагу;
  • дать усадку;
  • стать домом для мышей;
  • разрушиться от воздействия ИК лучей, воды, растворителей и прочее.

Кроме всего вышеуказанного, важное значение имеет пожаробезопасность теплоизоляции. Сравнение утеплителей, таблица группы горючести:

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Сравнение с помощью таблицы

NНаименованиеПлотностьТеппопроводностьЦена , евро за куб.м.Затраты энергии на
кг/куб.мминмаксЕвросоюзРоссияквт*ч/куб. м.
1целлюлозная вата30-700,0380,04548-9615-306
2древесноволокнистая плита150-2300,0390,052150800-1400
3древесное волокно30-500,0370,05200-25013-50
4киты из льняного волокна300,0370,04150-20021030
5пеностекло100-1500.050,07135-1681600
6перлит100-1500,050.062200-40025-30230
7пробка100-2500,0390,0530080
8конопля, пенька35-400,040.04115055
9хлопковая вата25-300,040,04120050
10овечья шерсть15-350,0350,04515055
11утиный пух25-350,0350,045150-200
12солома300-4000,080,12165
13минеральная (каменная) вата20-800. 0380,04750-10030-50150-180
14стекповопокнистая вата15-650,0350,0550-10028-45180-250
15пенополистирол (безпрессовый)15-300.0350.0475028-75450
16пенополистирол экструзионный25-400,0350,04218875-90850
17пенополиуретан27-350,030,035250220-3501100

Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.

Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.
  • Теплопотери неутепленного частного дома

    При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

    Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

    Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  • Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  • Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
  • Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

    Сравнение паропроницаемости утеплителей

    Высокая паропроницаемость=отсутствие конденсата.

    Паропроницаемость – это способность материала пропускать воздух, а вместе с ним и пар. То есть теплоизоляция может дышать. На этой характеристике утеплителей для дома последнее время производители акцентируют много внимания. На самом деле высокая паропроницаемость нужна только при . Во всех остальных случаях данный критерий не является категорически важным.

    Характеристики утеплителей по паропроницаемости, таблица:

    Сравнение утеплителей для стен показало, что самой высокой степенью паропроницаемости обладают натуральные материалы, в то время как у полимерных утеплителей коэффициент крайне низок. Это свидетельствует о том, что такие материалы как ППУ и пенопласт обладают способностью задерживать пар, то есть выполняют . Пеноизол – это тоже своего рода полимер, который изготавливается из смол. Его отличие от ППУ и пенопласта заключается в структуре ячеек, которые открытие. Иными словами, это материал с открытоячеистой структурой. Способность теплоизоляции пропускать пар тесно связан со следующей характеристикой – поглощение влаги.

    Таблица теплопроводности строительных материалов: коэффициенты

    В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

    Таблица коэффициента теплопроводности строительных материалов:

    Таблица теплопроводности строительных материалов: коэффициенты

    Обзор гигроскопичности теплоизоляции

    Высокая гигроскопичность – это недостаток, который нужно устранять.

    Гигроскопичность – способность материала впитывать влагу, измеряется в процентах от собственного веса утеплителя. Гигроскопичность можно назвать слабой стороной теплоизоляции и чем выше это значение, тем серьезнее потребуются меры для ее нейтрализации. Дело в том, что вода, попадая в структуру материала, снижает эффективность утеплителя. Сравнение гигроскопичности самых распространенных теплоизоляционных материалов в гражданской строительстве:

    Сравнение гигроскопичности утеплителей для дома показало высокое влагопоглощение пеноизола, при этом данная теплоизоляция обладает способностью распределять и выводить влагу. Благодаря этому, даже намокнув на 30%, коэффициент теплопроводности не уменьшается. Несмотря на то, что у минеральной ваты процент поглощения влаги низкий, она особенно нуждается в защите. Напитав воды, она удерживает ее, не давая выходить наружу. При этом способность предотвращать теплопотери катастрофически снижается.

    Чтобы исключить попадание влаги в минвату используют пароизоляционные пленки и диффузионные мембраны. В основном полимеры устойчивы к длительному воздействию влаги, за исключением обычного пенополистирола, он быстро разрушается. В любом случае вода ни одному теплоизоляционному материалу на пользу не пошла, поэтому крайне важно исключить или минимизировать их контакт.

    Разновидности и описание

    На выбор потребителей предлагаются материалы с различными механическими свойствами.

    От этого во многом зависит удобство монтажа и свойства. По данному показателю различают:

    1. Пеноблоки
      . Изготавливаются из бетона со специальными добавками. В результате химической реакции структура получается пористой.
    2. Плиты.
      Строительный материал различной толщины и плотности изготавливается при помощи прессования или склеивания.
    3. Вата.
      Продается в рулонах и характеризуется волокнистой структурой.
    4. Гранулы (крошка).
      с пеновеществами различной фракции.

    Важно знать:

    подбор материала осуществляется с учетом свойств, стоимости и предназначения. Применение одинакового утеплителя для стен и чердачного перекрытия не позволит получить желаемый эффект, если не указано, что он предназначен для конкретной поверхности.

    Сырьем для утеплителей могут выступать различные вещества. Они все делятся на две категории:

    • органические на основе торфа, камыша, древесины;
    • неорганические — изготавливаются из вспененного бетона, минералов, асбестосодержащих веществ и др.

    Особенности применения

    Прежде чем определиться с материалами для отделки частного дома или квартиры, необходимо правильно рассчитать толщину слоя конкретного утеплителя.

    1. Для горизонтальных поверхностей (пол, потолок) можно использовать практически любой материал. Применение дополнительного слоя с высокой механической прочностью обязательно.
    2. Цокольные перекрытия рекомендуется утеплять стройматериалами с низкой гигроскопичностью. Повышенная влажность должна быть учтена.
      В противном случае утеплитель под воздействием влаги частично или полностью потеряет свойства.
    3. Для вертикальных поверхностей (стены) необходимо использовать материалы плитно-листового типа. Насыпные или рулонные со временем будут проседать, поэтому необходимо тщательно продумать способ крепежа.

    Если задумано индивидуальное строительство

    При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки).

    Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

    Номер п/пМатериал для стен, строительный растворКоэффициент теплопроводности по СНиП
    1.Кирпич0,35 – 0,87
    2.Саманные блоки0,1 – 0,44
    3.Бетон1,51 – 1,86
    4.Пенобетон и газобетон на основе цемента0,11 – 0,43
    5.Пенобетон и газобетон на основе извести0,13 – 0,55
    6.Ячеистый бетон0,08 – 0,26
    7.Керамические блоки0,14 – 0,18
    8.Строительный раствор цементно-песчаный0,58 – 0,93
    9.Строительный раствор с добавлением извести0,47 – 0,81

    Важно
    . Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.
    Это связано с несколькими причинами:

    • Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
    • Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
    • Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.

    Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.

    Сравнение основных показателей

    Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.

    МатериалПлотность кг/м3ТеплопроводностьГигроскопичностьМинимальный слой, см
    Пенополистирол30-40Очень низкаяСредняя10
    Пластиформ50-60НизкаяОчень низкая2
    60-70НизкаяСредняя5
    Пенопласт35-50Очень низкаяСредняя10
    25-32низкаянизкая20
    35-125НизкаяВысокая10-15
    130Низкаявысокая15
    500ВысокаяНизкая20
    Ячеистый бетон400-800ВысокаяВысокая20-40
    Пеностекло100-600Низкаянизкая10-15

    Таблица 1 Сравнение теплоизоляционных свойств материалов

    При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.

    Статьи на Строительном портале Украины

    Алюминий 2600-2700 203,5-221 растет с ростом плотности
    Асбест 600 0,151
    Асфальтобетон 2100 1,05
    АЦП асбесто-цементные плиты 1800 0,35
    Бетон 2300-2400 1,28-1,51 растет с ростом плотности
    Битум 1400 0,27
    Бронза 8000 64
    Винипласт 1380 0,163
    Вода при температурах выше 0 градусов С 1000 0,6
    Войлок шерстяной 300 0,047
    Гипсокартон 800 0,15
    Гранит 2800 3,49
    Дерево, дуб — вдоль волокон 700 0,23
    Дерево, дуб — поперек волокон 700 0,1
    Дерево, сосна или ель — вдоль волокон 500 0,18
    Дерево, сосна или ель — поперек волокон 500 0,10—0,15 растет с ростом плотности и влажности
    ДСП, ОСП; древесно- или ориентированно-стружечная плита 1000 0,15
    Железобетон 2500 1,69
    Картон облицовочный 1000 0,18
    Керамзит 200 0,1
    Керамзит 800 0,18
    Керамзитобетон 1800 0,66
    Керамзитобетон 500 0,14
    Кирпич керамический пустотелый (брутто1000) 1200 0,35
    Кирпич керамический пустотелый (брутто1400) 1600 0,41
    Кирпич красный глиняный 1800 0,56
    Кирпич, силикатный 1800 0,7
    Кладка из изоляционного кирпича 600 0,116—0,209 растет с ростом плотности
    Кладка из обыкновенного кирпича 600-1700 0,384—0,698—0,814 растет с ростом плотности
    Кладка из огнеупорного кирпича 1840 1,05 (при 800—1100°С)
    Краска масляная 0,233
    Латунь 8500 93
    Лед при температурах ниже 0 градусов С 920 2,33
    Линолеум 1600 0,33
    Литье каменное 3000 0,698
    Магнезия 85% в порошке 216 0,07
    Медь 8500-8800 384-407 растет с ростом плотности
    Минвата 100 0,056
    Минвата 50 0,048
    Минвата 200 0,07
    Мрамор 2800 2,91
    Опилки древесные 230 0,070—0,093 растет с ростом плотности и влажности
    Пакля сухая 150 0,05
    Пенобетон 1000 0,29
    Пенобетон 300 0,08
    Пенопласт 30 0,047
    Пенопласт ПВХ 125 0,052
    Пенополистирол 100 0,041
    Пенополистирол 150 0,05
    Пенополистирол 40 0,038
    Пенополистирол экструдированый 33 0,031
    Пенополиуретан 32 0,023
    Пенополиуретан 40 0,029
    Пенополиуретан 60 0,035
    Пенополиуретан 80 0,041
    Пеностекло 400 0,11
    Пеностекло 2000 0,07
    Песок сухой 1600 0,35
    Песок влажный 1900 0,814
    Полимочевина 1100 0,21
    Полиуретановая мастика 1400 0,25
    Полиэтилен 1500 0,3
    Пробковая мелочь 160 0,047
    Рубероид, пергамин 600 0,17
    Свинец 11400 34,9
    Совелит 450 0,098
    Сталь 7850 58
    Сталь нержавеющая 7900 17,5
    Стекло оконное 2500 0,698—0,814
    Стеклянная вата (стекловата) 200 0,035—0,070 растет с ростом плотности
    Текстолит 1380 0,244
    Торфоплиты 220 0,064
    Фанера клееная 600 0,12
    Фаолит 1730 0,419
    Чугун 7500 46,5—93,0
    Шлаковая вата 250 0,076
    Эмаль 2350 0,872—1,163

    Теплопроводность строительных материалов.

       
       Возведение любого объекта начинается с создания проекта, включающего в себя расчёт теплотехнических параметров сооружения. Важные показатели строительных материалов содержатся в таблицах теплопроводности.

    ● Теплопроводность показывает степень передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Причём процесс теплообмена идёт на протяжении всего времени, пока показатели температуры не сравняются. При строительстве используются материалы с малыми значениями теплопроводности.

    Специальный коэффициент теплопроводности означает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше коэффициент, тем более интенсивный будет теплообмен. равен количеству теплоты, проходящей через 1 метр толщины материала за 1 час.
    ● При подборе дополнительных утепляющих конструкций также необходимо учитывать теплопроводность материалов. Сравнительная характеристика некоторых строительных материалов.

    ● На показатель теплопроводности влияют следующие факторы:
    — пористость материала обусловлена неоднородностью его структуры и это напрямую влияет на уменьшение теплопроводности;
    — увеличенное значение плотности материала означает плотное соприкосновение частиц, что повышает теплообмен;
    — повышенная влажность способствует увеличению теплопроводности.

    Теплоизоляционные стеновые материалы обладают меньшим коэффициентом теплопроводности, чем конструкционные, которые в основном используются для возведения ограждений, внутренних стен и перекрытий. Увеличение теплостойкости помещений достигается путём применения дополнительной теплоизоляции, которая изначально необходима в строениях из бетона, кирпича, блоков или камня. В каркасных конструкциях утепляющий материал укладывается в пространство между стойками каркаса.

    • Основные виды утеплителей и их характеристики

    При выборе утеплителя надо учитывать следующие параметры материалов:

    — показатель теплопроводности;
    — степень влагопоглощения утеплителя;
    — пожаробезопасность, качественный материал способен самозатухаться;
    — толщина материала влияет на надёжность утепления;
    — термоустойчивость определяет способность выдерживать температурные перепады;
    — звукоизолирующие свойства материала;
    — экологичность и общая безопасность.

    • В качестве теплоизоляции могут использоваться стойкие к огню и влаге сыпучие типы сырья в гранулах или перлит. Из органических видов можно отметить продукцию из льна, пробковое покрытие и волокно из древесины.

    • Для избегания высокой влажности и для повышения сопротивляемости теплообмену необходимо сделать гидроизолирующую прослойку.

    • При выборе определённого вида теплоизоляции также необходимо учесть долговечность, степень сложности монтажных работ и цену. К примеру, легче всего выполнить монтаж при помощи пенополиуретана и пеноизола — они быстро заполняют полости конструкций без образования стыков, но это не означает, что данные материалы являются наилучшим выбором.

    Материал Расчётный коэффициент теплопроводности, l, Вт/(м ºС) 
    Железобетон  2,04 
    Бетон на гравии или щебне из природного камня  1,86 
    Керамзитобетон  0,92 
    Кирпичная кладка из сплошного кирпича глиняного обыкновенного (ГОСТ 53080) на цементно-песчаном растворе  0,81 
    Кирпичная кладка из кирпича керамического пустотного плотностью 1400 кг/м³ (брутто) на цементно-песчаном растворе  0,64 
    Кирпичная кладка из кирпича керамического пустотного плотностью 1300 кг/м³ (брутто) на цементно-песчаном растворе 0,58 
    Кирпичная кладка из кирпича силикатного на цементно-песчаном растворе  0,87 
    Пенополистирол  0,05 
    Плиты минераловатные  0,055 

    ● При самостоятельных расчётах толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение указывается на упаковке изолирующего материала.
    Конструкция Фракция, мм Содержание воды, % массы Теплопроводность, Вт/м·К
    Крыша 10…20 0,5 0,09
    Межэтажные перекрытия 4…10 0,5 0,11
    Полы, контактирующие с грунтом 10…20 6 0,12
    Геотехнические 10…20 30 0,19

    Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину его слоя. Сведения о паропроницаемости и плотности можно посмотреть в таблице.
     

    Повышение термостойкости строительных материалов

    Добавление в бетон дополнительных материалов, улучшающих его термические свойства.

    Теплопроводность

    Теплопроводность — чрезвычайно важное свойство многих распространенных металлов и материалов, которое позволяет эффективно и рационально использовать их способность к нагреванию. Материалы с высокой теплопроводностью позволяют теплу и электричеству легко проходить через них и обеспечивают эффективную теплопередачу.

    Прекрасным примером теплопроводящего материала, используемого в повседневной жизни, являются чугунные сковороды. Металл, из которого сделаны эти сковороды, позволяет легко передавать тепло от горячей поверхности плиты к сковороде, где это тепло может сохраняться и использоваться для приготовления яиц по утрам. Еще одна важная составляющая чугунной сковороды — это ручка. Большинство ручек для кастрюль и сковородок из-за их изоляционных свойств изготавливаются из дерева или пластика. Эти материалы классифицируются как термостойкие из-за медленной скорости прохождения тепла через них.

    Термическое сопротивление

    Термическое сопротивление считается обратной величиной теплопроводности. Тепловое сопротивление материалов можно измерить по их способности сопротивляться проходящему через них потоку тепла. Многие материалы с высоким термическим сопротивлением известны как изоляторы и обычно используются для удержания или улавливания горячих или холодных участков. Например, охладитель из пенополистирола используется для охлаждения напитков, которые хранятся внутри него, потому что он медленно передает тепло из окружающей среды в замкнутое охлаждаемое пространство внутри охладителя.Термостойкость — ключевой компонент в разработке тысяч продуктов, которые ежедневно используются по всему миру.

    Одним из наиболее полезных и широко распространенных термостойких материалов является бетон, который используется при строительстве зданий и жилых домов. Здание можно легко сравнить с охладителем из пенополистирола. Фундамент и стены здания задерживают поток горячего или холодного воздуха снаружи и поддерживают равномерную температуру внутри. Строители при строительстве дома или здания принимают во внимание свойства термического сопротивления материалов, которые они используют для создания фундамента.Строительство из материалов с высоким термическим сопротивлением может значительно увеличить экономию энергии и, в свою очередь, экономию для будущего владельца этого дома или здания. Это главный фактор, который способствует резкому увеличению количества исследований, направленных на поиск наилучшего сочетания изоляционных материалов, которые можно использовать при строительстве домов и зданий.

    Рисунок 1: Схема теплопотерь в стандартном проекте дома

    Включение порошка магнетита в цементную смесь для улучшения термического сопротивления

    В последнее время значительное количество исследований посвящено поиску материала, который может быть включен в цементную смесь, которая повысит свойства термического сопротивления цемента. Цемент состоит из смеси песка, гравия, щебня и воды. Цемент редко имеет однородный состав, а размер частиц варьируется по всей смеси. Из-за отсутствия у цемента «идеального рецепта» другие вещества могут быть легко включены в смесь. В недавнем исследовании, проведенном Sikora P. и соавторами, изучаются плюсы и минусы включения порошка магнетита в цементную смесь для улучшения ее термического сопротивления и прочности.

    Порошок магнетита (МП) и другие железные композиты часто образуются как отходы при производстве стали.Промышленный бум 20-го века, последовавший за промышленной революцией 19-го века, привел к переизбытку отходов от эксплуатации различных типов ресурсов. Последние достижения в области рециркуляции и управления отходами позволяют исследовать новые способы использования дополнительных продуктов и энергии из отходов, образующихся во время первоначального производства материала. Объединение MP в цементную смесь является одним из примеров объединения производственных отходов в общий материал для улучшения некоторых его физических и химических свойств.

    Рисунок 2: линейный график, отображающий мировое производство стали
    с 01.01.2000 — 01.01.2012 в миллионах метрических тонн

    Когда порошок магнетита (MP) вводится в цементную смесь, требуется меньше воды для связывания и твердения частиц. Одно только это улучшение могло бы сэкономить энергию строительным компаниям и свести к минимуму использование пресной воды. Результаты исследования также показали, что замена 20% песка в смеси на МП повысила гибкость и прочность цемента.

    Рисунок 3: Изображение порошка магнетита

    Чтобы проверить изменение термического сопротивления цемента при добавлении порошка магнетита, исследователи проанализировали внешний вид и теплопроводность цемента после воздействия различных температур. Было использовано десять различных цементных плиток с объемным% MP от 5 до 50%. Каждый образец подвергался отверждению в течение 28 дней перед тем, как подвергнуться воздействию высоких температур. Тепловые и физические свойства каждой цементной плитки измерялись при повышенных температурах 200 ° C, 300 ° C, 450 ° C и 600 ° C. Образцы нагревали с постоянной скоростью 1 ° C в минуту до достижения желаемой температуры. Затем каждую плитку непрерывно нагревали при максимальной температуре в течение 1 часа, затем медленно охлаждали со скоростью 1 ° C в минуту.

    Результаты эксперимента показали более высокую теплопроводность в плитах из цемента, у которых было более высокое значение MP об.%. Более высокая проводимость, вероятно, была связана с повышенным количеством металла, включенного в цемент. Металл является одним из лучших проводников тепла, поэтому даже небольшое количество, вероятно, снизит термическое сопротивление цемента.

    Добавление MP действительно увеличило прочность цемента при воздействии более высоких температур. Эти выводы привели исследователей к неопределенному выводу о целесообразности включения МП в цементные смеси. Дальнейшие исследования могут привести к поиску желаемого об.% MP, который может быть добавлен в цемент, что повысит прочность и энергоэффективность, но также сохранит на высоком уровне термическое сопротивление цемента.

    Рис. 4: Цементные плиты после воздействия высоких температур.

    Концепция добавления дополнительных веществ в цемент открыла двери для других исследовательских проектов по проверке преимуществ включения различных материалов в цементную смесь. Если изоляционные материалы, такие как пластмассы и пена, будут включены в цемент, они в идеале могут увеличить термическое сопротивление цемента и минимизировать потери тепла через фундамент и стены домов и зданий. Использование переработанного пластика в производстве широко производимого материала, такого как цемент, решило бы многие проблемы утилизации муниципальных отходов.Единственный недостаток использования пластика в том, что он может не выдерживать экстремальных температур, не плавясь и не ломаясь. Другой проблемой может быть большое количество энергии, которое потребуется для разрушения пластмассовых изделий до размеров, достаточно малых для включения в однородную цементную смесь.

    Продолжается прогресс в создании более экологически чистых и энергосберегающих продуктов и материалов, которые могут заменить и быть включены в нынешние расточительные производственные системы. Тепловой потенциал веществ будет одним из наиболее важных свойств, которые исследователь будет использовать для достижения наиболее энергоэффективного и экономичного решения для создания более устойчивых материалов и экологически более безопасных производственных систем.

    Полезные инструменты

    Последовательный калькулятор термического сопротивления
    Калькулятор теплопроводности

    Список литературы

    Sikora, P., Abd Elrahman, M., Horszczaruk, E., Brzozowski, P., & Stephan, D. (2019).Включение порошка магнетита в качестве добавки к цементу для улучшения термического сопротивления и свойств защиты от гамма-излучения композитов на основе цемента. Строительные и строительные материалы , 204, 113-121. DOI: 10.1016 / j.conbuildmat.2019.01.161

    Источники изображений:
    https://www-sciencedirect-com.proxy.hil.unb.ca/science/article/pii/S095006181930193X
    https://www.greenhomegnome.com/energy-loss-homes-insulation/
    https://commons.wikimedia.org/wiki/File:World_steel_production.png
    https://commons.wikimedia.org/wiki/File:Iron_powder_on_mintage_stirrer_04_ies.webm

    Основное изображение: https://commons.wikimedia.org/wiki/File:Heat_Radiation_Transparent_2_(26046216082).jpg

    Автор: Каллиста Уилсон, младший технический писатель Thermtest

    Обзор факторов, влияющих на теплопроводность строительных изоляционных материалов

    https://doi.org/10.1016/j.jobe.2021.102604Получить права и контент

    Основные моменты

    Рассмотрены факторы, влияющие на теплопроводность строительных изоляционных материалов.

    Температура, влажность и плотность являются наиболее важными факторами.

    Другие факторы включают толщину, скорость воздуха, прессование и время старения.

    Представлена ​​взаимосвязь основных факторов с теплопроводностью.

    Неопределенность относительно теплопроводности обычно используемых изоляционных материалов.

    Реферат

    Решение вопроса о традиционном потреблении энергии и поиск подходящих альтернативных ресурсов являются жизненно важными ключами к политике устойчивого развития.В последние годы было разработано множество различных теплоизоляционных материалов для повышения энергоэффективности и уменьшения ущерба окружающей среде. Эти продукты подтвердили свою полезность в зданиях благодаря своим преимуществам, таким как низкая плотность, высокое тепловое сопротивление и экономическая эффективность. Эффективность теплоизоляции зависит от их теплопроводности и способности сохранять свои тепловые характеристики в течение определенного периода времени. В этом исследовании представлены факторы, влияющие на коэффициент теплопроводности трех основных групп, включая традиционные, альтернативные и новые современные материалы.Наиболее распространенными факторами являются влажность, разница температур и насыпная плотность. Другие факторы объясняются в некоторых зависимых исследованиях, таких как скорость воздушного потока, толщина, давление и старение материала. Также была обобщена взаимосвязь между значениями теплопроводности со средней температурой, влажностью и плотностью, которые были получены в результате экспериментальных исследований. Наконец, неопределенность в отношении значения теплопроводности некоторых распространенных изоляционных материалов также рассматривается как основа выбора или проектирования продуктов, используемых в ограждающих конструкциях зданий.

    Ключевые слова

    Строительные изоляционные материалы

    Теплопроводность

    Факторы воздействия

    Разница температур

    Влажность

    Плотность

    Рекомендуемые статьи Цитирующие статьи (0)

    © 2021 Авторы. Опубликовано Elsevier Ltd.

    Рекомендуемые статьи

    Цитирующие статьи

    ОБЗОР ЕГО ОПРЕДЕЛЕНИЯ

    Достижения в области вычислительной техники и технологий

    Школа вычислительной техники, информационных технологий и инженерии, 6-я ежегодная конференция 2011

    Однако эти методы надежны в

    для измерения теплопроводности в сухом состоянии.Там

    не так много данных о надежности

    методов устойчивого состояния, которые относительно на

    быстрее. Переходные методы удобны

    для регулярного измерения проводимости;

    влагозависимая проводимость может быть измерена

    без серьезного влияния на градиент влажности

    , однако этот метод

    не подходит для неоднородных материалов.

    Эксперимент авторов показывает, что существуют

    значительных различий между определенным методом переходных процессов

    и методом установившегося режима в

    терминах данных, полученных для термической проводимости

    волокнистых изоляционных материалов на основе целлюлозы

    .

    9. Ссылки:

    BS EN 12429, «Теплоизоляционные изделия

    для строительства: кондиционирование до равновесия влажности

    при заданных условиях температуры и влажности

    »,

    Британский институт стандартов, 1996.

    BS

    EN 12667: 2001, «Тепловые характеристики

    строительных материалов и изделий —

    Определение термического сопротивления с помощью

    средств охраняемой горячей плиты и теплового потока

    Методы измерения — Сухие и влажные продукты из

    высоких и средних тепловых сопротивление »,

    Британский институт стандартов, 2002.

    BS EN ISO 8990: 1996, «Тепловая изоляция

    — Определение свойств теплопередачи в установившемся режиме

    — Откалиброванная

    и охраняемая горячая камера», Британский институт стандартов

    , 1998.

    Carslaw, HS, Jaeger , JC, Проведение

    тепла в твердых телах, второе издание, Clarendon Press,

    1959.

    Кларк, Дж. А., Янеске, П.П. «Рациональный подход

    к гармонизации термических свойств строительных материалов

    » , Building

    and Environment, 44, 2009, стр.2046-2055.

    Франко, А., «Аппарат для рутинных измерений

    теплопроводности материалов

    для применения в строительстве на основе переходного метода горячей проволоки

    », Applied

    Thermal Engineering, 27, 2007, стр. 2495-

    2504.

    Лей, З., Чжу, С., Пан, Н., «Переходные методы

    измерения тепловых свойств

    волокнистых материалов», Журнал теплопередачи,

    132, 2010, стр.1-7.

    Поуп, А.Л., Завильски, Б., Тритт, Т.М.,

    Описание съемного держателя образца

    Аппарат для быстрой теплопроводности

    измерений, Криогеника 41 (2001), 725-

    731, Elsevier Ltd., 2002

    Прутяну М., «Исследования теплопроводности соломы

    », Бюллетень

    Политехнического института Ясс,

    Строительство. Секция архитектуры, Том

    LVI (LX), Fasc.3, 2010, стр. 9-16.

    Тритт, Т.М., Уэстон, Д., «Методы измерения

    и соображения для

    определения теплопроводности объемных

    материалов», в Тритте, Т.М. (ред.) Тепловой

    Проводимость: теория, свойства и

    Applications, New York, Spinger, 2005.

    Xamán, J., Lira, L., Arce, J., «Анализ

    распределения температуры в защищенном горячем пластинчатом аппарате

    для измерения теплопроводности

    », Applied Thermal

    Engineering, 29, 2009, стр.617-623.

    Тепловые свойства материалов Часть-1 | Revit 2018

    Каждый материал, используемый в сборке оболочки, имеет фундаментальные физические свойства, которые определяют их энергетические характеристики, такие как проводимость, сопротивление и тепловая масса. Понимание этих внутренних свойств поможет вам выбрать правильные материалы для управления тепловыми потоками.

    Теплопроводность (k)

    Способность материала проводить тепло.

    Каждый материал имеет определенную скорость прохождения тепла через него.Чем быстрее тепло проходит через материал, тем он более проводящий. Электропроводность (k) — это свойство материала, данное для однородных твердых тел в условиях устойчивого состояния.
    Используется в следующем уравнении:

    , где
    q = результирующий тепловой поток (Вт),
    k = теплопроводность материала (Вт / м · К).
    A = площадь поверхности, через которую проходит тепло (м²)
    ∆T = разница температур между теплой и холодной сторонами материала (K), и
    L = толщина / длина материала (м)

    Единицы измерения проводимости

    Британские единицы — BTU * дюйм / час фут ºF : В британской системе проводимость — это количество британских тепловых единиц в час (БТЕ / час), протекающих через 1 квадратный фут (фут2 ) материала толщиной 1 дюйм.толстый, когда разница температур в этом материале составляет 1 ° F (в условиях постоянного теплового потока).

    SI — Вт / м ºC или Вт / м K: Эквивалент в Международной системе единиц (SI) — это количество ватт, протекающих через 1 квадратный метр (м2) материала толщиной 1 м при разнице температур между ними. температура материала 1 К (равна 1ºC) в условиях постоянного теплового потока.

    Теплопроводность (C)

    Электропроводность на единицу площади для указанной толщины.Используется для стандартных строительных материалов.

    В основных строительных материалах тепловой поток обычно измеряется проводимостью (C) , а не проводимостью. Электропроводность — это удельная проводимость материала на единицу площади для толщины объекта (в единицах Вт / м²K для метрических единиц и BTU / час • ft2 • ° F для британских мер).

    Электропроводность — это свойство объекта, которое зависит как от материала, так и от его толщины. Многие твердые строительные материалы, такие как обычный кирпич, деревянный сайдинг, изоляция из войлока или плиты и гипсокартон, широко доступны в стандартных толщинах и составах.Для таких обычных материалов полезно знать скорость теплового потока для этой стандартной толщины, а не скорость на дюйм.

    Коэффициент U (U)

    Общая проводимость строительного элемента. Используется для многоуровневых сборок зданий.

    В многослойных сборках проводимость объединяется в одно число, называемое «U-фактором» (или иногда «U-значением»).

    Коэффициент U и проводимость переводят проводимость из свойства материала в свойство объекта

    U — общий коэффициент теплопередачи, выраженный в британских тепловых единицах / час фут2 ºF (в единицах СИ, Вт / м2 · K).Это та же единица, что и проводимость, потому что это мера того же самого: проводимость используется для определенного материала, U-фактор используется для конкретной сборки. Более низкие U-факторы означают меньшую проводимость, что означает лучшую изоляцию.

    Например, общий коэффициент U окна включает в себя проводимость стеклянных панелей, воздуха внутри, материала рамы и любых других материалов с разной толщиной и расположением. За исключением особых случаев, электропроводность материалов не может быть добавлена ​​для определения U-фактора сборки.

    U-фактор — это общий коэффициент теплопередачи, который включает влияние всех элементов в сборке и все явные режимы теплопередачи (теплопроводность, конвекция и излучение), но не скрытую теплопередачу (связанную с влажностью).

    Термин U-фактор следует использовать только в том случае, если тепловой поток исходит от воздуха на внешней стороне оболочки, через узел оболочки к воздуху внутри. Например, его нельзя использовать на стенах подвала.

    Тепловое сопротивление (значение R = 1 / U)

    Способность материала противостоять тепловому потоку.

    Термическое сопротивление , обозначенное как R (значение R), показывает, насколько эффективен любой материал в качестве изолятора.

    Величина, обратная теплопроводности, R измеряется в часах, необходимых для того, чтобы 1 британская тепловая единица протекала через 1 фут2 материала заданной толщины, когда разница температур составляет 1 ° F. В британской системе мер это фут2 • ° F • час / БТЕ. Единицы СИ: м²K / Вт .

    Значения термического сопротивления иногда сводятся в таблицу как для единичной толщины, так и для образца материала с известной толщиной.Например, сопротивление сосны может быть выражено как 1,0 фут2 • ° F • час / БТЕ на дюйм, или значения могут быть сведены в таблицу для сосновой стойки 2×6 как 5,5 фут2 • ° F • час / БТЕ. Для однородного материала, такого как дерево, удвоение толщины удвоит значение R. R-значения обычно не указываются для сборок материалов. U-факторы используются для сборок.

    Изоляция, препятствующая прохождению теплового потока через ограждающую конструкцию здания, часто измеряется ее значением R. Более высокое значение R указывает на лучшие изоляционные свойства.При просмотре спецификаций убедитесь, что вы читаете R-значение в правильных единицах, поскольку единицы не всегда записываются явно.

    Для получения дополнительной информации о проектировании с изоляцией, включая таблицу общих значений R, тепловых мостов и того, как рассчитать общие значения R для сборок, см. Страницу «Изоляция».

    Практическое использование U-факторов и R-значений

    Разнообразие терминов, используемых до сих пор для обозначения тепловых свойств, может вызвать недоумение.При работе со сложными многоуровневыми конструкциями зданий полезно объединить тепловые свойства в единое общее число для определения критериев проектирования оболочки.

    Для всей оболочки здания это часто выражается как U-фактор. Тем не менее, окна часто выражаются с помощью U-фактора, а стены часто выражаются с помощью R. Нет строгого правила.

    Расчет общего коэффициента U начинается с добавления сопротивлений . U-факторы рассчитываются для конкретного элемента (крыша, стена и т. Д.).) путем нахождения сопротивления каждой составной части, включая воздушные пленки и воздушные пространства, а затем сложения этих сопротивлений для получения общего сопротивления. U-фактор является обратной величиной этой суммы (Σ) сопротивлений: U = 1 / Σ R.

    Для получения дополнительной информации о том, как использовать R-значения и U-факторы для расчета огибающей, см. Страницу Total R- значение и тепловые мосты.

    СЛЕДУЮЩАЯ СТРАНИЦА

    Энергии | Бесплатный полнотекстовый | О влиянии изменения теплопроводности в зданиях в строительном секторе Италии

    В 2010 году на здания приходилось 32% общего глобального конечного энергопотребления, 19% выбросов парниковых газов (ПГ), связанных с энергетикой, 51% мирового потребления электроэнергии , 33% выбросов углерода и от восьмой до трети выбросов фторсодержащих газов [1].В жилых домах на отопление помещений приходится самая высокая доля от общего потребления первичной энергии, равная 32%. В коммерческих зданиях отопление помещений также преобладает в потреблении, составляя 33% от общего потребления первичной энергии [1]. В Европейском союзе (ЕС) в последние годы были предприняты важные усилия в области энергетической политики, и в результате были приняты различные директивы. Среди них наиболее важными являются Директива об энергоэффективности зданий [2,3] и Директива об энергоэффективности [4].Кроме того, есть много свидетельств того, что улучшение практики энергоэффективности в существующем жилом фонде будет иметь решающее значение для обеспечения энергетической устойчивости на уровне ЕС [5]. Эта стратегия даже определяется как «новый старт» для новой экономики ЕС [6], поскольку финансирование энергоэффективности может быть разблокировано государственным и частным партнерством, а не полагаться только на средства ЕС [7]. Принимая во внимание проблему снижения потребности в отоплении помещений, потери тепла могут быть уменьшены за счет улучшения характеристик оболочки с повышенным уровнем изоляции.Эта мера — наиболее эффективный способ резко снизить потребность в отоплении, учитывая, конечно, зависимость от климатических условий [8]. Однако в существующем жилом фонде эта мера намного дороже, чем замена котлов в системах отопления [9,10]. Тем не менее, существует очевидная синергия между улучшением характеристик оболочки здания и определением размеров и эксплуатацией технических систем [11], даже в случае передовых систем преобразования энергии [12]. Следуя этим свидетельствам, многие исследовательские усилия были сосредоточены на определении методологий [13] для определения экономически оптимальных уровней энергетических характеристик [13] в новых и модернизированных зданиях [14,15], и влияние изоляции может быть уменьшено. чрезвычайно актуален при моделировании [16].Очевидно, что для оценки осуществимости проекта необходима достаточно надежная оценка производительности [17]. В этом смысле неопределенность энергетических характеристик представляет собой проблему в методологиях технико-экономической оценки, и необходимо учитывать соответствующие источники неопределенности, чтобы максимально ограничить «разрыв в производительности» [18] или побочные эффекты, такие как «повторная привязка» »[19],« предварительно привязанные »[20] и риск перегрева [21]. Эти эффекты могут потенциально подорвать доверие к методам повышения энергоэффективности, и по этим причинам необходимы соответствующие методологические инструменты для учета неопределенности в применении в зданиях — например, на уровне заключения контрактов на энергоэффективность [22].

    В этой статье рассматривается один конкретный аспект, который может повлиять на характеристики строительных изоляционных материалов (и, следовательно, общие характеристики здания) — температурная зависимость теплопроводности — и то, как приближения, используемые в инструментах расчета, могут повлиять на оценки производительности. До сих пор этот аспект обычно игнорируется и не рассматривается в ряде научных публикаций об энергетическом поведении зданий. В частности, потенциальная неопределенность, вносимая приближениями постоянной и линейной температурной зависимости, решается путем объединения экспериментального анализа и термогигрометрического моделирования для отдельных тематических исследований в трех климатических условиях Италии.

    Роль теплоизоляции и аккумулирования тепла в энергетических характеристиках стеновых материалов: исследование с помощью моделирования

    Материалы для внешних стен

    Были вычислены все потенциальные материалы k и C V в вышеуказанных диапазонах в BuildingEnergy как внешние или внутренние стены. Предполагалось, что помещение будет располагаться в Хэфэе, Китай, где сезон охлаждения / лета длится с 15 июня по 5 сентября, а сезон отопления / зимы — с 5 декабря по 5 марта следующего года.Климатические данные, используемые в BuildingEnergy, были типичными ежегодными метеорологическими данными, предоставленными Китайскими наборами метеорологических данных для анализа температурной среды. Толщина внешней и внутренней стенок была установлена ​​равной 240 и 100 мм, соответственно, и другие толщины стенки могут быть эквивалентно преобразованы в эти значения с помощью обработки, описанной в дополнительной информации. Благодаря такой обработке выводы из фиксированных толщин будут универсальными для всех значений толщин.

    На рисунке 1 показаны контуры энергопотребления для внешних стен из различных материалов, в которых материалы внутренних стен закреплены как обычные кирпичи. Теплофизические свойства кирпича представлены в таблице 1. Как показано на рис. 1, теплопроводность и объемная теплоемкость материалов наружных стен оказывают значительное влияние на энергетические характеристики, а потребление энергии сильно варьируется вместе с k и C V .Нулевое значение может быть достигнуто при крайне низком значении k из-за отсутствия окна и внутреннего источника тепла.

    Рис. 1: Контуры энергопотребления по отношению к внешним стенам.

    Когда материалы наружных стен различаются по теплопроводности и объемной теплоемкости, материалы внутренних стен остаются неизменными. ( a ) Летние результаты в Хэфэе и ( b ) зимние в Хэфэе. Несколько распространенных строительных материалов также расположены на рисунках в соответствии с их свойствами.

    Таблица 1 Теплофизические свойства типовых строительных материалов.

    Для летнего применения (рис. 1 (a)), как правило, либо уменьшение проводимости, либо увеличение объемной теплоемкости материалов приводит к снижению потребления энергии охлаждения в помещении. Низкий k и высокий C V подразумевают небольшой коэффициент температуропроводности α , который определяется как k / C V или k / ( ρc p ). α влияет на переходный процесс теплопроводности через стену: в материалах с малым α тепло передается медленно, и, таким образом, внешняя среда оказывает меньшее влияние на внутреннюю среду, чем ситуация с материалами с большим α. В дополнение к замедлению теплопроводности внутри стены через небольшой угол α , низкий k также способствует блокированию теплопередачи через границу внешней стены. Если значение k достаточно низкое, тепло может редко достигать внутренней поверхности из внешней среды, поэтому C V не может оказывать свое влияние на процесс теплопередачи внутри помещения.Как следствие, когда k ниже 0,25 Вт / (м · K) на рис. 1 (a), контурные линии почти горизонтальны, что означает, что C V оказывает незначительное влияние на энергетические характеристики. и что низкий k имеет приоритет перед большим C V .

    По мере увеличения k наклоны контурных линий также увеличиваются, а именно, значение C V увеличивается. Когда k больше 3.0 Вт / (м · К) линии почти вертикальные, что означает, что на энергетические характеристики почти исключительно влияет C V . Такое явление можно объяснить с помощью приближения сосредоточенной емкости. Когда это приближение выполняется, т.е. допущение о равномерном распределении температуры внутри твердого тела является разумным, градиентами температуры внутри твердого тела можно пренебречь, поэтому изменение теплопроводности оказывает незначительное влияние на теплопроводность.В основном приближение сосредоточенной емкости удовлетворяется для ситуации, когда сопротивление проводимости внутри твердого тела намного меньше, чем сопротивление конвекции между поверхностью и жидкостью 24 . В нашем случае, если k достаточно велико, стена может вести себя как твердое тело с сосредоточенной емкостью, в результате чего на энергетические характеристики индивидуально влияет C V .

    Для зимнего применения (рис. 1 (b)) общая тенденция того, как свойства материала влияют на энергетические характеристики, согласуется с таковой летом, но наклон контурных линий почти равен нулю, когда C V ≳ 2000 кДж / (м 3 · К), что указывает на то, что C V имеет ограниченное влияние зимой.

    Некоторые типичные строительные материалы, свойства которых представлены в таблице 1, также показаны на рис. 1. Когда они сделаны из одного из этих материалов, соответствующая внешняя стена отличается по энергетическим характеристикам. Обычно наблюдается тенденция к снижению потребления энергии с уменьшением проводимости. Для близких значений k (например, гранит и мрамор) потребление энергии определяется по формуле C V : материал с более высоким значением C V приводит к более низкому потреблению энергии.

    Как упоминалось выше, энергетические характеристики на рис. 1 обсуждались при фиксированной толщине стенок. В практических ситуациях толщина с такими же энергетическими характеристиками также может быть эталонным параметром. На рис. 2 показано сравнение толщины и массы некоторых типичных материалов, чьи характеристики охлаждающей энергии приближаются к показателям кирпичной стены 240 мм. Толщина пенополистирола составляет всего 2% от мрамора и 7,5% от кирпича. Кроме того, масса на единицу площади стенки полистирола намного меньше, чем у других материалов из-за низкой плотности полистирола.Малая масса на единицу площади означает меньшую стоимость строительства, а меньшая толщина приводит к большей полезной площади. Поэтому внешняя стена из легких изоляционных материалов, таких как полистирол, будет рекомендована в зданиях после улучшения механической прочности.

    Рис. 2: Сравнение толщины и массы на единицу площади стенок типичных материалов.

    По энергетическим характеристикам внешняя стена из различных материалов близка к кирпичу толщиной 240 мм.Например, потребление энергии на охлаждение помещения с внешней стеной из мрамора толщиной 850 мм примерно равно таковому с внешней стеной из кирпича толщиной 240 мм.

    Материалы для внутренних стен

    Теперь рассмотрим энергоэффективность материалов для внутренних стен. Аналогичная контурная карта представлена ​​на рис. 3, на котором материалами наружных стен являются обычные кирпичи. Можно заметить, что потребление энергии уменьшается по мере увеличения к , когда к ≲ 0.5 Вт / (м · К). Высокий k способствует теплопроводности. Летом, например, температура поверхности на внутренней стороне может быть снижена за счет отвода некоторого количества тепла внутрь стены, что приведет к снижению потребления энергии на охлаждение (как уравнение (8) в дополнительной информации объясняет). Для материалов k выше 0,5 Вт / (м · К) контурные линии вертикальные, поэтому на энергетические характеристики влияет исключительно объемная теплоемкость.Увеличение C V приводит к снижению потребления энергии как на охлаждение, так и на нагрев. Что касается материалов в Таблице 1, то железобетон, объемная теплоемкость которого самая высокая, является лучшим кандидатом в качестве материала внутренних стен.

    Рисунок 3: Контуры энергопотребления по отношению к внутренним стенам.

    Когда материалы внутренних стен меняются, материалы наружных стен остаются неизменными. ( a ) Летние результаты в Хэфэе и ( b ) зимние в Хэфэе.На рисунках также показаны несколько распространенных строительных материалов.

    Обратите внимание, что при изменении значений k и C V потребление энергии варьируется от 7,2 до 8,3 кВтч / м 2 летом, а диапазон составляет 35,88 ~ 36,28 кВтч / м 2 зимой. Тем не менее, соответствующие диапазоны на рис. 1 составляют 0 ~ 22,5 и 0 ~ 87,2 кВтч / м 2 . Более широкий диапазон подразумевает более важную роль внешней стены в энергетических характеристиках, в то же время больший потенциал для улучшения.

    Теплопроводность и объемная теплоемкость — неотъемлемые теплофизические свойства материала. Тем не менее, материалы воплощены в некоторых компонентах здания, таких как стена, окно, пол и т. Д. По этой причине инженеры предпочитают использовать параметры, которые могут описывать весь компонент для конкретных материалов. Общий коэффициент теплопередачи, также называемый значением U, , и общая теплоемкость обычно используются для характеристики теплоизоляции и способности аккумулировать тепло стены соответственно.С учетом анализа, приведенного в дополнительной информации, требования к материалам стен можно также сформулировать как потребность в стене в целом, что можно резюмировать следующим образом: общая теплоемкость как внешних, так и внутренних стен должна быть высокой. , а значение U внешней стены должно быть низким.

    Воздействие окон и внутреннее тепловыделение

    Как было заявлено ранее, до сих пор мы игнорировали потенциальное влияние окна.На рис. 4 (а, б) изображены характеристики комнаты с окном. Стеклопакет, расположенный в центре внешней стены, имеет размер 1,5 × 1,5 м 2 и коэффициент пропускания солнечного света 77%. Сравнивая ситуации с окном и без него, обнаруживается, что наличие окна увеличивает потребление энергии на охлаждение, но не меняет тенденцию того, как материалы стен влияют на энергоэффективность. Из-за отсутствия окна минимальное потребление энергии, которое можно получить за счет улучшения внешней стены, равно нулю на рис.1 (а), в то время как соответствующее значение с окном составляет 11,4 кВтч / м 2 на рис. 4 (а). Промежуток между нижними пределами создается прозрачной частью оболочки, то есть окном, и может быть заполнен путем непрерывного развития окон, показывая, что оболочка здания с высокими эксплуатационными характеристиками должна быть достигнута путем одновременного улучшения конструкции. прозрачные и непрозрачные детали.

    Рис. 4: Потребление энергии на охлаждение из различных материалов для комнаты с окном и внутреннее тепловыделение в Хэфэе.

    ( а, б) В помещении цельностеклянное окно размером 1,5 м × 1,5 м. ( c, d ) Помимо окна учитывается также внутренний приток тепла. Эти цифры могут обобщить открытия для более практических ситуаций.

    Для дальнейшего обобщения результатов в комнате с окном также учитывались внутренние тепловыделения, чтобы смоделировать более реалистичную ситуацию. Тепловыделение от людей и оборудования принято равным 4,3 Вт на единицу площади пола, а от освещения — 3.5 Вт на единицу площади пола при включенном свете с 18:00 до 22:00 ежедневно. Результаты представлены на рис. 4 (c, d), который иллюстрирует, что учет внутреннего притока тепла не меняет общих правил влияния материалов стен на энергетические характеристики. Влияние других конфигураций комнаты на общие правила, например, ориентация, размер комнаты, также оказалось незначительным, и детали можно увидеть в дополнительной информации.

    Влияние климатических условий

    Вышеупомянутые обсуждения были начаты для города Хэфэй, который имеет климат жаркого лета и холодной зимы.Чтобы изучить влияние климата, на рис. 5 показаны ситуации для Пекина с холодным климатом и Гуанчжоу с климатом жаркого лета и теплой зимы. В Гуанчжоу отсутствует отопительный период из-за того, что средняя температура самого холодного месяца все еще составляет 14 ° C. Тенденции влияния свойств материала на потребление энергии полностью такие же, как и в Хэфэе, что означает, что эти тенденции не зависят от климата. Единственная разница заключается в диапазонах энергопотребления: комнаты в Гуанчжоу демонстрируют более высокое потребление охлаждения, чем в Хэфэе, а комнаты в Пекине имеют более высокое потребление тепла.Результаты для более экстремальных климатических условий представлены в дополнительной информации, и общие тенденции остаются неизменными.

    Рис. 5: Влияние материалов наружных и внутренних стен на энергопотребление в различных климатических регионах.

    ( a, d ) Результаты для Пекина с холодным климатом и ( e, f ) для Гуанчжоу с климатом жаркого лета и теплой зимы. Неизменные правила владения недвижимостью в различных климатических условиях позволяют экстраполировать результаты.

    [PDF] Теплопроводность строительных материалов

    Экологическая и социальная динамика городского крышного сельского хозяйства (URTA) и их влияние на изменение микроклимата

    • Musammat Shahinara Begum, S. Bala, A.K.M. Сайфул Ислам, Дебджит Рой
    • Наука об окружающей среде
    • Устойчивое развитие
    • 2021

    Городские города сталкиваются с проблемами микроклиматических изменений с существенно более теплой окружающей средой и гораздо меньшим доступом к свежим овощам для более здорового питания, чем в прилегающих сельских районах… Развернуть

    • PDF

    Save

    Alert

    Повышение энергоэффективности в палестинских муниципалитетах: пример муниципалитета Аль-Дахрия

    • H.Alsamamra, Iyad Isaila, J. Shoqeir
    • Наука об окружающей среде
    • 2021

    Спрос на энергию в целом в мире быстро растет в различных секторах одним из секторов с самым высоким потреблением энергии является строительный сектор. Установка фотоэлектрических систем является одним из решений… Развернуть

    • PDF

    • Просмотреть 1 выдержку

    Сохранить

    Предупреждение

    Термическое сопротивление стен из кирпича: обзор литературы по факторам влияния, оценке и улучшение

    • м.Исмаил, Юйсян Чен, К. Круз-Ногез, М. Хагель
    • Наука об окружающей среде
    • 2021

    Повышение термического сопротивления систем каменных стен — один из эффективных способов снижения энергопотребления при эксплуатации каменных зданий. Этого увеличения также требуют новые …

    • PDF

    Сохранить

    Alert

    Термоакустические и механические характеристики новых пластырей на биологической основе: оценка лигнина как побочного продукта из биомассы экстракция для зеленых зданий

    • Лаура Бокера, Елена Оласия, +4 авторов Л.F. Cabeza
    • Наука об окружающей среде
    • 2021

    Резюме Каждый день образуется большое количество отходов, которые вывозятся на свалки, не давая им нового использования. Среди этих отходов встречается биомасса, собранная в природе в виде сельскохозяйственных или лесных отходов.… Развернуть

    Сохранить

    Предупреждение

    Сведение к минимуму нагрузок на передачу тепла и повышение энергоэффективности ограждающих конструкций зданий в странах Африки к югу от Сахары с использованием композитных материалов на основе биологических материалов

    • Ричард Опоку, Г.Обенг, Дж. Дарква, С. Квофи
    • Материаловедение
    • 2020

    Резюме Усиление воздействия изменения климата в сочетании с глобальным потеплением вызвало необходимость в механическом охлаждении в зданиях для обеспечения теплового комфорта в помещении. Многие страны с тропическим климатом… Расширить

    • 3

    Сохранить

    Alert

    Цифровой двойник оценки здания с нулевым потреблением энергии для существующих зданий

    • S. Kaewunruen, Panrawee Rungskunroch, J.Валлийский
    • Экономика
    • 2018

    Поскольку на здания по всему миру приходится почти треть мирового спроса на энергию, а доступность ископаемого топлива постоянно снижается, необходимо обеспечить, чтобы эта энергия… Развернуть

    • 38

    • PDF

    Сохранить

    Предупреждение

    Топливо для обсуждения древних экономик. Расчет потребления древесины в городском масштабе по временам Римской Империи

    • Эллен Янссен, Дж.Poblome, +4 авторов Б. Муйс
    • География
    • 2017

    Резюме Оценка темпов добычи древесины из лесов на основе археологических и исторических данных является важным шагом в оценке устойчивости прошлых социально-экологических систем. В этом… Разверните

    • 9

    • PDF

    Сохранить

    Alert

    Измерение высокой проводимости с помощью прибора для измерения теплового потока

    • R.Clarke
    • Engineering
    • 2017

    Измерительные лаборатории должны помнить об ограничениях оборудования и возрастающей неопределенности по мере приближения к предельным значениям рабочего диапазона. Для измерения теплоизоляции … Развернуть

    • PDF

    • Просмотреть 1 отрывок, цитирует предысторию

    Сохранить

    Предупреждение

    Проектирование домов для австралийского климата: первые исследования

    • T.Williamson
    • Engineering
    • 2013

    Дизайн домов, соответствующих условиям Австралии, был предметом озабоченности с первого дня, когда европейцы ступили на берег Порт-Джексона. После Второй мировой войны научный подход к… Расширить

    • 6

    Сохранить

    Предупреждение

    Повышение тепловых характеристик внутренней кровельной системы для тропических районов

    • G.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *