Пенополистирол свойства – Пенополистирол — основные характеристики, область применения, достоинства и недостатки

Состав, свойства и применение пенополистирола

Пенополистирол широко применяется в строительстве в качестве универсального утеплителя. Представляет собой газонаполненный материал, получаемый из полистирола и его производных, а также из сополимеров стирола. Благодаря своей структуре пенополистирол чрезвычайно лёгкий и недорогой материал, обладающий уникальными теплоизоляционными свойствами.

Состав пенополистирола

Содержание статьи

При вакуумном способе получения, газа в продукте вообще не будет. Вместо первого компонента, в зависимости от необходимости, могут использоваться другие полимеры. Например:

  • Полимонохлорстирол;
  • Полидихлорстирол;
  • Сополимеры стирола с прочими одномерными (например, акрилонитритом).

Технология получения материала

Технология получения пенополистирола

Требует наличия на стадии изготовления разнообразных вспенивающих веществ для заполнения массы полимерного вещества газами. Это могут быть лёгкие для кипения углеводороды (такие, как петролейный эфир, изопентан, пентан или обычный дихлометан) или специальные вещества, которые образуют газ (аммоний нитрат, диаминобензол, азобисизобутиронитрил).

Помимо всего перечисленного, дополнительными компонентами получаемого изделия могут становиться разнообразные вещества, которые так или иначе улучшают его характеристики:

  • Антипирены — объект статьи сам по себе не обладает высокой жароустойчивостью, а это значит, что в отдельных случаях эту жароустойчивость необходимо повышать при помощи добавления в полистирол веществ, которые обеспечивают достаточную огнезащиту;
  • Пластификаторы — для уменьшения ползучести смеси в процессе застывания и высыхания;
  • Наполнители — для изменения характеристик материала в целом и заполнения гранул чем-то ещё;
  • Красящие вещества — для придания готовому пенополистиролу определённых эстетических качеств.

Исходя из названия этого материала, можно сделать вывод о том, что этот объект получают из исходного сырья — полистирола. В обычном случае, расплавленную массу полимера наполняют газом при помощи вспенивания.

В дальнейшем, готовая смесь полимерного материала и газа нагревается паром. Благодаря этому, гранулы увеличиваются в объёме и распределяются равномерно по всему объёму смеси и спекаются друг с другом в одно целое. В результате полистирол резко набирает в объёме.

Схема цеха по производству пенополистирола

Для получения огромных объёмов необходимого материала, количество полимера относительно небольшое. Сам материал очень лёгкий и после формования готов к дальнейшей физической обработке и использованию.

Помимо описанного способа, существуют методы получения этого материала при помощи углекислого газа (в том случае, если необходим жаростойкий пенополистирол), или без какого либо газа вообще (гранулы в нём заполнены вакуумом).

Свойства

Изделие обладает рядом физических химических и биологических свойств.

Если говорить о механических особенностях, то можно судить о значительной прочности на воздействие краткосрочных нагрузок и нагрузок средней длительности. Такой объект в международных классификациях характеризуется как жесткий пенопласт (ДИН 7726). В соответствии с таблицами, этот материал может выдержать десятипроцентное сжатие в объёме. Но, в нормативных документах отмечается, что после такого сжатия, изделие уже не восстановит свою первоначальную форму.

Отдельными физическими свойствами, являются теплоизолирующие свойства пенополистирола, его водонепроницаемость (однако, не стоит забывать про диффузию водяного пара) и регулируемую (в зависимости от условий и качества изготовления) пластичность.

Утепление пола пенополистиролом

В сравнении с другими материалами в определённых документах приводятся значения необходимой толщины покрытия из других материалов, что бы соответствовать толщине изоляции из пенополистирола всего в 12 сантиметров. При одном взгляде на эти цифры, всё становится понятно.

Шкала толщины материалов при одинаковой теплопроводности

По действующим российским строительным нормам толщина стен, одинаково препятствующих теплопотерям в здании, должна быть примерно:

  • Железобетон — 4 м 20 см;
  • Кирпич — 2 м 10 см;
  • Керамзитобетон — 90 см;
  • Дерево — 45 см;
  • Минеральная вата — 18 см;
  • Пенополистирол — 12 см.

Эти показатели весьма впечатляют. На сегодняшний день, есть совсем немного причин для того, чтобы отказываться от теплоизоляции из субъекта статьи.

Характеристики

Стоит остановиться подробнее на каждой из характеристик пенополистирола.

Схема утепления фундамента

Крайне низкая теплопроводность

Благодаря тому, что воздух составляет подавляющий объём во всём готовом изделии, можно судить о хороших теплоизолирующих качествах пенополистирола(а значит такой материал будет замечательно сохранять тепло в помещениях, повысит эксплуатационные сроки трубопроводов, обеспечит высокую надёжность и понизит потери тепла на тепломагистралях, послужит хорошей изоляцией на стационарных холодильных установках, защитит товары на складских помещениях, служит хорошим упаковочным материалом).

В наше время, когда цены на энергоносители скачут вверх ежемесячно, стоит подумать именно про максимальную изоляцию помещений от разного рода потерь тепла.

Если посмотреть на подавляющее большинство зданий в городах СНГ в тепловизор зимой, то можно увидеть, как потоки тепла покидают квартиры через стены наружу.

С теплоизоляцией из субъекта статьи картина резко меняется. На смену ярко-красным и жёлтым пятнам(горячий, высокий уровень потерь тепла) приходят оттенки синего (потерь тепла почти не наблюдается) и фиолетового.

Стоит ли объяснять, что на обогрев такого помещения понадобиться куда как меньше энергии и тепла? И всё это, благодаря покрытию толщиной в 12 сантиметров. Вот насколько низка теплопроводность этого материала!

Практически, абсолютная водонепроницаемость

Готовое изделие почти не впитывает воду, совсем не разбухает, слабо подвержено процессу капиллярной диффузии (объект статьи не гигроскопичен и будет хорошей изоляцией от осадков, выпадения росы, высокой влажности).

Готовое изделие почти не впитывает воду

Так, например, известно, что объект совсем не гигроскопичен. Он не впитывает воду, даже будучи полностью погруженным в неё. Единственное явление проникновения воды в отдельные микроскопические гранулы материала. Но такое проникновение нельзя назвать значительным.

Даже при погружении в воду, объём поглощенной воды не будет превышать 3% от всего веса плиты. И даже в таком состоянии все прочие свойства материала не пострадают и останутся неизменными. Иначе говоря, изделие можно спокойно эксплуатировать в условиях с любой влажностью.

В то же время защита от проникновения водяного пара тоже радует. Скорость проникновения водяного пара в плиту составит не больше, чем 1% от самой скорости движения в воздушном пространстве вокруг пенополистирольной плиты. В то же самое время стоит отметить, что водяной пар и жидкая вода легко выходят из этого материала обратно.

Если соблюдать требования по эксплуатации, то можно использовать плиты для утепления цокольных этажей и подвальных стен. Там вещество изолятора будет находиться в постоянном контакте с грунтом, но на его свойствах это не отразится.

Прочность

Специалисты отмечают высокую прочность готового изделия и на изгиб и на сжатие. В зависимости от технологии изготовления, упругая зона деформирования пенополистирола может включать в себя 10% от всего объёма плиты. Если использовать в качестве исходного сырья не полистирол, а другие полимеры, то упругость материала можно повысить или снизить. Прочность готового изделия на сжатие, может составлять до 25 т на метр квадратный. Фактически, эта прочность недостижима для многих других материалов, которые имеют сходное с пенополистиролом применение.

Химические свойства

Говоря о химических свойствах, стоит упомянуть тот факт, что пенопласт чрезвычайно устойчив к подавляющему большинству химических веществ. Именно благодаря этому этот изолятор универсален и может эксплуатироваться в разнообразных средах.

В нормативных документах указана подробная сводка по устойчивости к распространённым веществам:

  • Раствор соли (или морская вода) — полностью устойчив;
  • Мыла и растворённые в воде смачивающие вещества — наблюдается стабильная устойчивость;
  • Отбеливатели — устойчив;
  • Разведённые в воде кислоты — устойчив;
  • Серная кислота — быстро растворяется;
  • Распространённые щелочные металлы — устойчив;
  • Органические растворители — не устойчив;
  • Насыщенные алифатические углеводороды, медицинский бензин — не устойчив;
  • Углеводородные энергоносители — не устойчив;
  • Спирты — условно устойчив.

При использовании лакокрасочных материалов, необходимо учитывать возможную вероятность нарушения структуры пенополистирола.

Звукоизоляция

Акустические свойства материала сильно зависят от одного фактора способности материала к преобразованию энергии звуковой волны в тепло. И именно здесь как нельзя кстати оказываются высокие теплоизоляционные свойства субъекта статьи. Речь идёт о ячеистой структуре пенополистирола.

Для полной звукоизоляции помещения необходима пенополистирольная плита толщиной в два или три сантиметра. В дальнейшем, чем выше толщина плиты, тем выше соответствующие свойства.

Также стоит отметить, что свойства самого пенополистирола могут быть улучшены, если создавать объект с высоким содержанием открытых пор и гранул воздуха.

Биологические свойства

Говоря о биологической устойчивости субъекта статьи, стоит вспомнить о том, что он не представляет никакого интереса ни для микроорганизмов, ни для каких либо еще насекомых или животных. Он не создаёт для них благоприятную среду, не пригоден в еду ни одному живому существу, не подходит для грибков и плесени. Пенополистирол биологически нейтрален и устойчив.

Также следует отметить, что изделие совершенно не токсично ни для человека ни для прочих живых организмов. По крайней мере, на протяжении многих лет использования этого вещества в качестве упаковочного, никаких происшествий, отравлений или ранений не было отмечено. Из этого вещества делают упаковки для пищевых продуктов.

Огнестойкость

Пенополистирол устойчив к пожарам. Его температура горения в два раза превышает аналогичную у бумаги, и в 1.8 раза превышает температуру самовоспламенения необработанной древесины.

Пенополистирол горит, как и многие другие материалы, но сам по себе горение не поддерживает. Если открытого огня не будет, то пенополистирол потухнет через несколько секунд.

Также, отмечается высокая долговечность материала (не разлагается под действием окружающей среды, срок годности в нормальных условиях почти неограничен.

Виды производимого пенополистирола

Применение пенополистирола возможно разнообразными методами. Однако, свойства объекта говорят сами за себя.

Хорошее применение

  • Теплоизоляция;
  • Гидроизоляция и влагоизоляция.
  • Звукоизоляция.

Критерии выбора

Наиболее интересным является употребление в строительстве. Однако, применение материала именно в этой области мало изучено. Существует ряд критики именно по этому вопросу. Однако, с развитием технологии каркасного строительства, изделие активно используется на малых и крупных строительных предприятиях.

Пенополистирол в строительстве

Уже исходя из вышеописанного технического процесса, можно сделать вывод о том, что этот компонент будет чрезвычайно лёгким и недорогим, и может широко применяться в строительном производстве в качестве универсального утеплителя для стен или упаковочного материала.

Как и любой другой строительный материал, пенополистирол подвергался многочисленным проверкам и исследованиям. Благодаря этим исследованиям, свойства пенополистирола уже полностью изучены. Пенополистирол — объект, которым пользуются в строительстве на протяжении длительного периода времени.

Выбор конкретной марки пенополистирола должен зависеть от условий эксплуатации изделия.

 

Видео

Посмотрите видео о технологии производства, свойствах и способах применения полистирола

fastbuildings.ru

Физические свойства пенополистирола

Содержание страницы:

Пенополистирол (пенопласт) — теплоизоляционный материал белого цвета. Микроскопические тонкостенные клетки полистирола заполнены воздух­ом (ПСБ) или углекислым газом в случае, если это самозатухающийся пенополистирол (ПСБ-С).

В строительстве интенсивно применяются качественные теплоизоляционные пенополистирольные плиты со стойкими свойствами, низкой стоимостью, простым и быстрым монтажом.

Более полувека, пенополистирол используется при утеплении фасадов с наружным штукатурным слоем.

На сегодняшний день различают пять основных видов производимого пенополистирола:

  • Прессовый пенополистирол.
  • Беспрессовый пенополистирол.
  • Экструзионный пенополистирол.
  • Автоклавный пенополистирол.
  • Автоклавно-экструзионный пенополистирол.

Энергоэффективность и теплопроводность

Коэффициент теплопроводности — основная характеристика теплоизоляционных материалов.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий»
Материал стеныКоэффициент теплопроводностиТребуемая толщина в метрах
Вспененный пенополистирол0,0390,12
Минеральная вата0,0410,13
Клееный деревянный брус0,160,5
Пенобетон0,30,94
Керамзитобетон0,471,48
Кладка из дырчатого кирпича0,51,57
Газосиликат0,50,47
Шлакобетон0,61,88
Кладка из силикатного полнотелого кирпича0,762,38
Железобетон1,75,33

Влагостойкость

Теплоизоляционные пенополистирольные плиты не гигроскопичны. Проницание воды в утеплитель составляет не более 0,25 мм за год. Влагостойкость пенополистирола основывается от его структурных характеристик, технологии производства, плотности и продолжительности времени водонасыщения.

Канадская ассоциация строителей разработала и провела ряд испытаний над вспененным пенополистиролом и они выяснили степень воздействия на утеплитель агрессивных погодных условий. В ходе эксперимента материал замораживался и размораживался 50 раз в 4% растворе хлорида натрия. Соляной раствор обеспечивал суровые условия испытания. По итогам эксперимента не выявлено никакого воздействия ни на структуру, ни на сохраность структуры утеплителя.

Пожаробезопасноть

Антипирены (специальные модифицированные добавки) добавляемые производителями пенополистирола, благодаря которым материалу присваиваются различные классы по дымообразованию, воспламенению и горючести.

Данное вещество добавляется в пенополистирол для существенного снижения пожароопасности материала.

В соответствии сертификационного класса, пенополистирол с добавлением антипиренов отличается по степени высокотемпературной деструкции. Пенополистирол сертифицированный по классу Г1 — слабогорючий, степень повреждения по длине испытываемого образца не более 65 процентов.

«Деполимеризация стирола может идти при температурах выше 320°С, но всерьёз говорить о выделении стирола в процессе эксплуатации пенополистирольных блоков в интервале температур от -40°С до +70°С нельзя. В научной литературе имеются данные о том, что окисления стирола при температуре до +110°С практически не происходит».

Экспертизой доказано отсутствие падения ударной вязкости утеплителя при температуре +65°С в периоде 5000 часов. Так же не выявлено падения ударной вязкости при +20°С в течении 10 лет.

Пенополистирол маркированный буквой «С» в конце названия (например — ПСБ-С) — называется самозатухающимся (класс горючести Г1).

Монтаж производимый в соответствии СНИП 3.04.01-87 «ИЗОЛЯЦИОННЫЕ И ОТДЕЛОЧНЫЕ ПОКРЫТИЯ» и нормам ГОСТа 15588-2014 «Плиты пенополистирольные теплоизоляционные. Технические условия», не является угрозой пожароопасности строительных сооружений.

Биологическая и химическая нейтральность

Зачастую вредность стирола входящего в состав пенопласта или пенополистирола часто преувеличивают.

Проведённые Европейским Химическим Агентством в 2010 г. крупномасштабные научные исследования в соответствии с регламентом REACH, опубликованы следующие выводы:

  1. Мутагенность — нет оснований для классификации;
  2. Канцерогенность — нет оснований для классификации;
  3. Репродуктивная токсичность — нет оснований для классификации.

Эксперимент доказал что, токсичность стирола, не выделяется при использовании утеплителя.

Срок службы пенополистирола

Во время эксплуатации материал не вызывает раздражения кожи, экземы или раздражения дыхательных путей, и глаз. Для работы с материалом не требуется специальных инструментов или снаряжения. Резка возможна с использованием простых инструментов, таких как, ручная пила или нож. Монтаж пенополистирольных плит достаточно простой процесс благодаря низкому весу утеплителя. Всё это делает пенополистирол безопасным и практичным при эксплуатации в гражданском, промышленном и транспортном строительстве.

Монтаж пенополистирола

Долговечность эксплуатации подтверждена различными испытаниями. В 1999 г. Шведский королевский технологический институт опубликовал результаты исследования, научно-исследовательской работы. Опыты обозначили минимальные сроки службы строительных материалов в конструкциях зданий. Так для пенополистирола минимальный срок службы был определён в 60 лет.

www.bus-rus.com

Пенополистирол — Свойства

Химия — Пенополистирол — Свойства

01 марта 2011

Оглавление:
1. Пенополистирол
2. Применение пенополистирола
3. Потребление пенополистирола в мире
4. Свойства
5. Пожароопасные свойства
6. Токсичность продуктов горения пенополистирола

Теплопроводность и энергоэффективность

Теплопроводность — одно из ключевых свойств теплоизоляционных материалов. Хорошие показатели теплопроводности позволяют сократить толщину утеплителя, необходимую для обеспечения нужного уровня тепла, а значит, и затраты на сам материал.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».

Материал стены Коэф. теплопроводн. Требуемая толщина в метрах
Вспененный пенополистирол 0, 039 0,12
Минеральная вата 0, 041 0,13
Железобетон 1,7 5,33
Кладка из силикатного полнотелого кирпича 0,76 2, 38
Кладка из дырчатого кирпича 0,5 1,57
Клееный деревянный брус 0,16 0,5
Керамзитобетон 0,47 1,48
Газосиликат 0,5 0,47
Пенобетон 0,3 0,94
Шлакобетон 0,6 1,88

1. Нормируемое значение сопротивления теплопередаче Rreq = 3,14. 2. Толщина однородного материала d = Rreq * l.

Влагостойкость

Панель из EPS типа I согласно стандарту CAN/CGSB 51.20 M87 может абсорбировать максимум 6 % влаги. При таком количестве воды она, тем не менее, сохраняет 92 % от своего первоначального значения R.

В рамках глобальной программы оценки методов изоляции фундаментов, закладываемых ниже уровня грунта, Канадская ассоциация строителей жилых зданий разработала методику испытания, позволяющую определить влияния на вспененный пенополистирол, обусловленные воздействием циклов замораживания и размораживания. Пенополистирол, расплавленный надлежащим образом, был подвергнут 50 циклам замораживания/размораживания в 4%-ном растворе хлорида натрия. Раствор соли обеспечивал жёсткие условия испытания. Результаты после 50 циклов замораживания/размораживания не выявили никакого влияния ни на ячеистую структуру вспененного пенополистирола, ни на целостность её структуры. Такое использование в Северной Америке и в Европе в течение многих лет подтверждает, что циклы замораживания/размораживания очень слабо влияют на структуру качественного пенополистирола.

Влагостойкость, а также морозоустойчивость позволили рекомендовать вспененный пенополистирол для изоляции фундаментов даже в регионах с суровым климатом.

Химическая и биологическая нейтральность

В США Ассоциация переработчиков пенополистирола в 2004 году спонсировала испытательную программу по исследованию возможности образования плесени на пенополистироле. Испытательная лаборатория компании SGS провела исследования в соответствии с национальным стандартом ASTM C1338 «Метод определения сопротивлению образования плесени теплоизоляционных и облицовочных материалов». Испытательные образцы из пенополистирола были подвергнуты тесту на пять различных типов плесени, для проверки их на рост плесени. Результаты показывали, что в идеальных для роста плесени лабораторных условиях, грибы не росли и плесень не образовывалась.

Долговечность пенополистирола

Долговечность службы высококачественного пенополистирола подтверждена различными испытаниями. Так, в рамках научно-исследовательской работы Шведского королевского технологического института, результаты которой были опубликованы в 1999 г.,определялись минимальные сроки службы строительных материалов в конструкциях зданий. Минимальный срок службы пенополистирола был определен в 60 лет..

В России в настоящее время не существует утвержденного стандарта, регламентирующего требования к долговечности, и испытания проводятся по методике разработанной Научно-исследовательским институтом строительной физики РААСН. В 2001 г. в испытательной лаборатории теплофизических и акустических измерений НИИСФ проведены исследования на долговечность образцов пенополистирола из сырья компании BASF. Образцы подвергались цикличным температурно-влажностным воздействиям в климатической камере КТК-800. По этой методике один цикл, включающий двукратное понижение температуры до −40оС, чередующееся с нагревом образцов до + 40оС и последующей выдержкой в воде, эквивалентен по температурно-влажностному воздействию 1 усл. году эксплуатации теплоизоляционного материала в многослойной ограждающей конструкции. Всего проведено 80 циклов испытаний образцов пенополистирольных плит. Полученные результаты позволили сделать заключение, что изделия из пенополистирола успешно выдержали циклические испытания на температурно-влажностные воздействия в количестве 80 циклов, что может быть интерпретировано как соответствующее количество условных лет эксплуатации в многослойных ограждающих конструкциях с амплитудой температурных воздействий ±40оС. Проведение испытаний было остановлено по экономическим причинам, а не по причине значительного ухудшения свойств материала. Таким образом, по результатам российских испытаний, долговечность материала составила не менее 80 лет .

Аспекты экологической безопасности использования пенополистирола

Хотя в российском обществе ведутся споры относительно экологической безопасности пенополистирола, известно, что за более чем 50 лет применения вспененного пенополистирола и стиролосодержащих материалов в мире не были выявлены подтвержденные корреляции между его использованием и нарушениями репродуктивных и иных функций у людей.

Кроме того, Международный строительный кодклассифицирует пенополистирол как один из наиболее энергоэффективных и экологически чистых утеплителей. Что также подтверждается исследованиями Американских специалистов, пришедших к выводу о безопасности SIP-технологий с использование пенополистирола.

Согласно гиду по экологичности строительных материалов «Building materials and the envirnoment» с точки зрения экологичености свойства пенополистирола соотносятся со свойствами других видов теплоизоляции следующим образом:

Материал Происхождение Энергия, потребляемая для производства Теплопроводность Зелёный рейтинг BRE* комментарии
Овечья шерсть Овцеводство 20.90 0.036-0.040 A пропитывается химическими антипиренами; возобновляемый
пеностекло переработка стекла 27.00 0.042 от A+ до C рейтинг зависит от прочности;поддается рециклингу; высокая прочность на сжатие
Стекловата на 30-60 % процентов из промышленных отходов 28.00 0.032-0.040 от A+ до A рейтинг зависит от прочности; потенциально поддается рециклингу;высокий процент вторично переработанных веществ; связующие могут быть токсичными; раздражитель
Каменная вата до 23 % промышленных отходов 16.80 0.036 от A+ до C рейтинг зависит от прочности; потенциально поддается рециклингу;связующие могут быть токсичными; раздражитель; в процессе производства выделяются токсичные вещества;
Пенополистирол Нефтепродукты 88.60 0.039 A+ продукт нефтепереработки; энергозатратен; антипирены могут быть токсичными; потенциально поддается рециклингу;высокая прочность на сжатие; водостойкий;не биоразлагаемый;
Экструдированный пенополистирол Нефтепродукты 109.20 0.032 E чрезвычайно энергозатратен;продукт нефтепереработки;антипирены могут быть токсичными;потенциально поддается рециклингу;высокая прочность на сжатие;водостойкий;не биоразлагаемый; эмиссии могут разрушать озоновый слой

Зелёный рейтинг BRE — метод анализа ряда фактов влияния на экологию и человека, который классифицирует все материалы по шкале от А до E,где А — наилучший показатель безопасности и дружественности к окружающей среде, а E — наихудший показатель.

Удобство монтажа

Пенополистирол — легкий, прочный и не хрупкий материал. Резка пенополистирола возможна без использования специальных режущих инструментов и позволяет применять простые средства, такие как нож или ручная пила. Обращение с материалом не представляет опасности для здоровья во время транспортировки, монтажа, использования и демонтажа, поскольку он не радиоактивен, не содержит опасных волокон или других веществ. Пенополистирол может обрабатываться и резаться не вызывая раздражения, экземы или раздражения кожи, дыхательных путей и глаз. Это означает, что дыхательные маски, защитные очки, защитная одежда и перчатки не требуются для того, чтобы работать с пенополистиролом. Цемент, известь, гипс, ангидрит и растворы, модифицированные полимерными дисперсиями, не оказывают негативного эффекта на пенополистирол. Все это делает пенополистирол полностью безопасным и практичным при использовании в гражданском, промышленном и транспортном строительстве. Монтаж пенополистирольных плит простой процесс и доступен практически каждому человеку

Взаимодействие с растворителями

Растворимость пенополистирола в технических жидкостях в первую очередь обуславливается химической природой исходного полимера. Пенополистирол хорошо растворяется в исходном мономере, в ароматических и хлорированных углеводородах, сложных эфирах, кетонах, сероуглероде. В низших спиртах, низкомолекулярных алифатических углеводородах, простых эфирах, фенолах и воде пенополистирол нерастворим.

Особые свойства вспененного полистирола

Пенополистирол — типичный представитель поро- и пенопластов поэтому его физико-механические и теплофизические характеристики ничем существенно не отличаются от остальных ячеистых пластмасс.

Но в силу ячеистой природы низкая теплостойкость стирола полимеров объясняет особенности окислительной, термоокислительной и термической деструкции, а также горения пенополистирола что обуславливет особенности его применения, а также накладывает ряд ограничений на его использование.

Современный пенополистирол, применяемый в строительстве, производится по технологиям, предусматривающим применение, специальных химических добавок: стабилизирующих, термостабилизирующих и антипиренов. Эти добавки значительно увеличивают стойкость полистирола к окислительной, термоокислительной и термической деструкции, при необходимости в пенополистирол может быть добавлена добавка, увеличивающая его стойкость к солнечному свету, вернее его ультрафиолетовой составляющей. Как правило, такая добавка не применяется, поскольку, пенополистирол находится в составе конструкции и защищен от воздействия негативных факторов.

Деструкция пенополистирола

Неизбежность деструкции полистирола обусловлена самой сущностью полимеризационных пластмасс. Под воздействием внешних факторов у всех полимеров, в том числе и у полистирола происходят разрушения макромолекул в результате чего изменяются химико-физические и эксплуатационные свойства. Деструкция пенополистирола существенным образом отлична от деструкции полистирола. В первую очередь это обусловлено развитой наружной поверхностью, характерной для всех вспененных пластмасс.

1831 г. из смолы styrax было получено новое органическое соединение, названное «стиролом», из которого в 1839 г. впервые был получен полимер полистирол – одно из первых синтетических высокомолекулярных соединений, синтезированных человеком. Строение полистирола было впервые установлено в 1911-1913 гг. русским ученым И.И.Остромысленским. Первые промышленные полимеры, были получены в условиях, при которых отсутствовали термодинамические ограничения со стороны участвующих реагентов, поэтому полистирол удалось синтезировать примерно за 100 лет до открытия термодинамической теории полимеризации. И только в 1948 г. с развитием физико-химии полимеров начались детальные исследования в области термодинамики полимеризационных процессов, результатом которых стало открытие равновесного состояния системы «полимер – мономер».

О равновесном состоянии системы «полистирол — стирол» впервые высказал предположение Тобольский. Он же, с учениками, в 1957-1960 гг. вывел подробную математическую интерпретацию этого процесса для разных видов полимеров. В частности для полистирола, согласно предложенной им классификации, справедливо математическое обоснование типа «III-а» которое в упрощенном схематическом виде принято записывать так:

Пi=Пi-1+С

В той или иной форме эту формулу ««полимеризационно-деполимеризационного равновесия»» приводят как каноническую все основоположники химии высокомолекулярных соединений — Савада, Берлин, Гордон, Эммануэль, Кауш, Фойгт. Согласно этой формулы совместное существование системы «мономер-полимер» возможно только до некой предельной температуры Тпред, выше которой существование полимера термодинамически запрещено Ниже Тпред термодинамическое равновесие системы «полимер – мономер» регламентируется балансом внешних физических воздействий системы «температура — парциальное давление мономера над поверхностью полимера». При отводе мономера равновесие системы нарушается и начинается процесс деполимеризации, так как термодинамические законы существования Вселенной стремятся восполнить баланс. И если отвод мономера постоянен – процесс деполимеризации остановится только по исчерпанию запаса полимера. Иными словами — из условий полимеризационно-деполимеризационного равновесия полистирола, при температуре выше равновесной, или при концентрации мономера ниже равновесной термодинамически возможны процессы деполимеризации.

Для наглядной иллюстрации полимеризационно-деполимеризационного равновесия очень часто привлекают аналогию равновесия системы «вода-водяной пар», которое от температуры абсолютного нуля и до температуры Тпред всегда существуют совместно.

Помимо теоретического обоснования, равновесность системы «полистирол – стирол», обусловленную одновременностью течения реакции полимеризации стирола и деполимеризации полистирола доказана также и экспериментально.

Низкотемпературная деструкция пенополистирола

Термодинамические условия эксплуатации полимерных материалов всегда невыгодны с точки зрения устойчивости и сопровождаются процессом хоть и медленной, но неуклонной их деструкции. Полистирол существует в равновесном состоянии со своим мономером, образуя систему «стирол-полистирол», описываемую теорией термодинамики полимеризационных процессов которая утверждает, что константа полимеризационно-деполимеризационного равновесия зависит только от равновесной концентрации мономера. Поэтому в полимеризационных пластмассах в том числе и в полистироле всегда присутствует некоторое количество мономера, равновесная концентрация которого определяется термодинамическими характеристиками системы, а поэтому не зависит от механизма процесса.

Но сама по себе термодинамическая возможность протекания какого-либо процесса еще не обуславливает определенных скоростей его протекания и, в свою очередь, регламентируется или температурой или объемом протекания реакции. Для полистирола в форме плотных изделий, регламентирующим началом деструкции выступает температурный фактор. При более низких температурах его деструкция теоретически хотя и возможна в соответствии с законами термодинамики полимеризационных процессов, но из-за чрезвычайно низкой газопроницаемостью полистирола парциальное давление мономера имеет возможность изменяться только на наружной поверхности изделия. Соответственно ниже Тпред = 310 ˚С деполимеризация полистирола происходит только с поверхности изделия, и ею можно пренебречь для целей практического применения.

Для пенопополистирола на первый план выступает тот факт, что это не плотное изделие из полистирола, а набор ячеек площадью 0,06 — 2,5 мм2 с толщиной стенок от 3 микрон. Поэтому пенополистирол следует рассматривать как особое физическое состояние полистирола в форме совокупности тонких пленок, для которых вероятность контакта с внешней средой в несколько миллионов раз больше, чем для плотного изделия из полистирола. Процессы полимеризации и деполимеризации идут одновременно, но имеют свои особенности для тонких и толстых образцов. В толстом образце деполимеризовавшаяся молекула имеет больше шансов снова полимеризоваться, чем в тонком. Кроме того, в случае достаточно большой удельной поверхности раздела между полимером и газовой фазой становится справедливо так называемое «псевдоравновесное» состояние, описываемое термодинамическими параметрами «полимеризационно-деполимеризационного» равновесия. Поэтому деструкция тонких образцов имеет свои четко обозначенные особенности.

Окисление полистирола в толстых, массивных образцах лимитируется кислородом, растворенном в самом полимере. В тонких образцах превалирует окисление, инспирированное кислородом, диффундирующим в полимер извне, в результате градиента его концентраций в атмосферном воздухе и в полимере. Поэтому в пленках полистирола толщиной 25 мкм, к примеру, реакция его окисления идет в 1.7 – 6.7 раза быстрее, чем в толстых образцах. Окислительные процессы в полистироле пространственно локализуются в очагах – «микрореакторах» потому что именно в этих местах при прочих равных условиях растворяется в 5 – 6 раз больше кислорода, чем в бездефектных областях. Физико-химические воздействия жидких или газообразных сред, химически активных по отношению к полистиролу, вызывает набухание поверхностного слоя. В случае тонких пленок полистирола, такое набухание предопределяет практически мгновенное формирование микротрещин и каверн. В свете выше сказанного современная наука о полимерах четко разделяет деструкцию полимеров в зависимости от толщины образцов, называя для так называемых «тонких» образцов главной причиной снижения эксплуатационной долговечности – окисление, так как разрушение всего 0.1% углеродных связей приводит к многократному снижению молекулярной массы полимера, что ухудшает эксплуатационных характеристик на десятки процентов.

При деструкции полистирола, в результате внутримолекулярного замещения с последующим распадом макрорадикалов, образуются низкомолекулярные вещества разнообразного состава — толуол, этилбензол, изопропилбензол, кумол. Продуктами окисления стирола на воздухе являются бензальдегид и формальдегид. Поэтому при санитарно-химических исследования пенополистирола нормативные документы в обязательном порядке предписывают осуществлять его проверку на выделения стирола, α-метилстирола, бензола, толуола, этилбензола, кумола, метанола и формальдегида. Аналогичные требования содержатся также и в украинских нормативных документах.

Низкотемпературная деструкция пенополистирола — мнение Ассоциации Производителей Пенополистирола

Вопрос о низкотемпературной деструкции современного пенополистирола до конца не исследован. Доподлинно известно, что в 1960—1970х годах в СССР проводились замеры, показавшие превышение ПДК по стиролу, однако это было связано с несовершенством химического производства. По причине использования несовершенных технологий в полученном полистироле оставалась значительная концентрация мономера, которая не извлекалась из материала при дальнейшей обработке . Современные разработки в области химической промышленности позволили решить эту проблему, и произведенный по современным технологиям пенополистирол не содержит остаточного мономера, что исключает превышение ПДК стирола при нормальных условиях эксплуатации.

Однако, стоит учитывать, что в связи с несовершенством систем контроля за производством и продажей строительной продукции, на современных строительных рынках до сих пор можно приобрести контрафактную продукцию, которая может нанести вред здоровью человека. .

При фотохимической деструкции под воздействием солнечного света разрушение пенополистирола происходит только в поверхностном слое на глубину несколько миллиметров. Однако, известно, что при правильной эксплуатации в строительстве пенополистирол не должен выступать наружу, и должен использоваться внутри инженерно-строительной конструкции.

Д.х.н., профессор кафедры переработки пластмасс РХТУ им. Менделеева Л. М. Кербер о выделении стирола из современного пенополистирола:

В условиях обычной эксплуатации стирол окисляться никогда не будет. Он окисляется при гораздо более высоких температурах. Деполимеризация стирола действительно может идти при температурах выше 320 градусов, но всерьёз говорить о выделении стирола в процессе эксплуатации пенополистирольных блоков в интервале температур от минус 40 до плюс 70 С нельзя. В научной литературе имеются данные о том, что окисления стирола при температуре до +110 С практически не происходит.

Также эксперты утверждают, что падение ударной вязкости материала при 65 градусах Цельсия не отмечено на интервале 5000 часов, а падение ударной вязкости при 20 градусах Цельсия не отмечено за 10 лет.

Токсичная природа стирола и способность пенополистирола выделять стирол считается европейскими экспертами недоказанной. Эксперты, как в строительной, так и в химической отрасли либо отрицают саму возможность окисления пенополистирола в обычных условиях, либо указывают на отсутствие прецедентов, либо ссылаются на отсутствие у них информации по данному вопросу .

Кроме того, сама опасность стирола изначально часто преувеличивается. Согласно крупномасштабным научным исследованиям, проведенным в в 2010 г в связи с прохождением обязательной процедуры перерегистрации химических веществ в Европейском Химическом Агентстве в соответствии с регламентом REACH,, были сделаны следующие выводы: мутагенность — нет оснований для классификации; канцерогенность — нет оснований для классификации; репродуктивная токсичность — нет оснований для классификации.

Более того, необходимо иметь в виду, что стирол естественным образом содержится в кофе, корице, клубнике и сырах.

Таким образом, основные опасения, связанные с особой токсичностью стирола, якобы выделяющегося при использовании пенополистирола, не подтверждаются.

Высокотемпературная деструкция пенополистирола

Высокотемпературная фаза деструкции пенополистирола хорошо и обстоятельно исследована. Она начинается при температуре +160С. С повышением температуры до +200С начинается фаза термоокислительной деструкции. Выше +260С преобладают процессы термической деструкции и деполимеризации. В связи с тем, что теплота полимеризации полистирола и поли-»’α»’-метилстирола одни из самых низких среди всех полимеров, в процессах их деструкции преобладает деполимеризация до исходного мономера — стирола.

Просмотров: 22021

4108.ru

Характеристики и свойства пенополистирола в вопросах и ответах

 

Экструдированный пенополистирол и мыши или крысы как они с ним себя ведут?

Мыши и пенополистирол — это спорный вопрос. Тема давно обсуждается, но однозначного ответа не существует. Мнения людей различаются прямо противоположно и если все обобщить, то можно встретить такие мнения:

  • Не едят. Как только обшили дом пенополистиролом, ни одного грызуна больше не поселилось в доме, хотя до этого каждый год водились. Их материал отталкивает и они уходят.
  • Не едят, а прогрызают, только в тех случаях, если он станет преградой на пути к воде и пище. Особенно страдает гранулированный пенополистирол.
  • Едят даже если куски материала валяются возле постройки.
  • Мыши зачастую вьют себе гнезда в этом материале, потому что он теплый и сухой.
  • Пенополистирол различных марок обладает разными характеристиками, поэтому некоторые изготовители дают стопроцентную гарантию, что их материал грызуны не повредят. Одной из которых является марка Стиропен. Секрет в технологии производства с обработкой гранул синтетическим парафином, а его не любят мыши.

Вернуться к списку вопросов

Плотность пенопласта, какая она бывает и на что она влияет?

Плотность — это величина, обозначающая отношение веса к его объему. При этом нужно учитывать, что теплоизоляционными свойствами обладает именно воздух, а не полистирол из которого изготовлен пенопласт. Соответственно, чем выше плотность, тем больше в материале полистирола и меньше воздуха. При увеличении коэффициента плотности падают изоляционные характеристики, но заметно возрастает цена. Пенопласт выпускают в четырех вариантах этой величины, согласно ГОСТу.

Марки пенопласта:

  • ПСБ-С 15 (до 15 кг/куб. м.). Хрупкий материал, используется только на участках, не предполагающих механических нагрузок, к примеру, изоляция и утепление вертикальной стены.
  • ПСБ-С 25 (до 25 кг/куб. м.). Более прочный материал, который удобнее в монтаже, потому что меньше крошится, применяют для утепления фасада.
  • ПСБ-С 35 (до 35 кг/куб. м.). Устойчив к нагрузкам, удобен в транспортировке, применяют для утепления цоколей и фундаментов.
  • ПСБ-С 50 (до 50 кг/куб. м.). Наиболее прочный и дорогой материал, выдерживает значительные нагрузки (автодороги, автостоянки).

Плотность пенопласта влияет на:

  • Прочность при деформации или сжатии.
  • Прочность при изгибе.
  • Теплопроводность.
  • Способность поглощать влагу, хотя он и так не сильно ее поглощает.

Нужно иметь в виду, что пенополистирол изготавливается не только в соответствии с требованиями ГОСТ, но и по ТУ, в связи с этим плотность может на деле оказаться различной у материала в пределах одной марки.

Вернуться к списку вопросов

Эквивалент пенополистирола ПСБ-35С 50мм относительно кирпичной кладки?

Соотношения теплоизолирующих свойств различных материалов можно определить по величине коэффициента теплопроводности. Чем выше теплопроводность, тем быстрее будет остывать помещение.

Для пенополистирола ПБС35С он составляет 0,038 Вт/м*К. А для обычного глиняного кирпича теплопроводность варьируется  в пределах 0,384 – 0,814 Вт/м*К. Получаем 10 кратную разницу в теплопроводности материалов. Следовательно, полистирольная плита  ПБС35С в 20мм толщиной даст ту же теплоизоляцию, что и 200мм кирпичной кладки, а ПБС35С в 50мм соответствует полуметровой толщине стены. 

Соответствующим образом можно рассчитать соотношение стен из:


Подробнее: https://srbu.ru/qa/article/143-plotnost-penoplasta-kakaya-ona-byvaet-i-na-chto-ona-vliyaet.html

Вернуться к списку вопросов

Как зависит степень утепления от толщины пенополистирола?

Степень утепления помещения находится в прямой зависимости от толщины утеплителя. И рассчитывается по формуле R=p/k, где

  • R – норматив теплосопротивления по региону;
  • р – толщина материала;
  • k – коэффициент теплопроводности, который зависит от плотности материала.

Для пенополистирола он составляет:

Плотность кг/м3Коэффициент теплопроводности Вт/ (м*К)
40 0,038
100 0,041
150 0,05
33 (экструдированный) 0,031

Норматив теплосопротивления по региону берется из СНиП 23-01-99 «Климатология».

Вернуться к списку вопросов

Какой плотности пенопласт лучше использовать для звукоизоляции?

Пенопласт сам по себе не является эффективным звукоизоляционным материалом. А лишь может входить в шумопоглощающие или отражающие конструкции. Для шумоизоляции межкомнатных и межквартирных перегородок и перекрытий, а так же в качестве наполнителя для дверей и различных облегченных панелей используется пенопласт с плотностью 20-25 кг/м3. Изоляция, выполненная из пенополистирольной панели с жесткой наружной облицовкой картоном, способна снизить уровень шума на 2-5 децибел. Кроме того пенопласт на жестком основании более эффективно справляется с ударными звуковыми колебаниями, перехватывая до 95% звука.

Кроме толщины крайне важна и форма поверхности звукоизоляционной панели. Классический и наиболее эффективный профиль – это равносторонние пирамиды направляемые вершинами к источнику звука.

Частично такие специализированные покрытия на потолке могут заменить облицовочные панели из пенополистирола с рельефным рисунком. Их эффективность значительно ниже, но при их использовании нет необходимости в дополнительном подвесном или натяжном потолке.

Вернуться к списку вопросов

Сколько лет прослужит утеплитель пенопласт для утепления погреба в земле если его закопать с бетонной плитой?

Настоятельно рекомендую использовать экструдированный пенополистирол. Срок его службы у качественных производителей составляет 40 лет. А область применения как раз является отбелка цоколя и подземной части фундамента зданий. Обычный же пенопласт в агрессивной среде без внешней защиты может утратить свои теплоизоляционные свойства уже через 12-15 лет.

Вернуться к списку вопросов

Хорошо ли приклеится пенополистирол к гидроизоляции Ceresit CR65?

В инструкции к применению, которая выставлена на сайте производителя, следует, что гидроизолирующий слой из Ceresit CR65 может использоваться в качестве основания для нанесения штукатурок и укладки плитки. Следовательно, хоть прямых указаний и нет, как основание для пенополистироловаых плит Ceresit CR65 вполне подойдет.

Вернуться к списку вопросов

При какой температуре можно клеить пенопласт?

Температура при которой производят утепления фасада пенопластом зависит не от утеплителя, а от клея который используется для его крепления. К примеру, клеем Ceresit СТ 83 производитель рекомендует выполнять работы в диапазоне температур от 0 до 30. Существуют некоторые нюансы использования клеевой смеси при высоких температурах. Необходимо замешивать небольшие количества клиент держать его в постоянно закрытой емкости. Есть из готовой смеси испарится слишком много воды и она утратит свою эластичность, не рекомендуется повторное добавление воды. Следует смешать новую порцию раствора.


Подробнее: https://srbu.ru/qa/article/3277-tolshchina-penopolistirola-stepen-utepleniya.html

srbu.ru

Свойства и характеристики пенополистирола | Строительный Портал

Пенополистирол является изоляционным материалом белого цвета, который на 98% состоит из воздуха, находящегося в миллиардах микроскопических клеток с тончайшими стенками из вспененного полистирола. Сделанные из пенополистирола изделия экологически безопасны, они применяются даже для упаковки продуктов питания. Пенополистирол довольно устойчив к воздействиям влаги, имеет долгий срок службы, не подвергается воздействию микроорганизмов. Изоляционные материалы из пенополистирола более тридцати лет используются для теплоизоляции стен, потолков, полов и кровли в жилых домах и административных зданиях и считается весьма эффективным в этом вопросе. Обрабатывать пенополистирол очень легко, для этого достаточно воспользоваться острым ножом или ручной пилой, к тому же он имеет крайне малый вес, отличается возможностью  склеивания с разнообразными строительными материалами и простотой механического крепления. Это все, безусловно, можно назвать существенными преимуществами  пенополистирола.

Для использования пенопластов из стиролора, наиболее оптимального их применения и обеспечения функциональной надежности на долговременный период необходимо как можно лучше разбираться в их свойствах. Пенополистирол отличается от обыкновенных материалов именно тем, что все качества последних уже известны в достаточной мере. Так, к примеру, известно, что дерево имеет свойство гнить, что сталь может поржаветь, картон теряет всю прочность и форму под воздействием влаги, а  стекло разбивается, и многое, многое другое. Что же известно нам о пенополистироле? Как правило, намного меньше. Именно поэтому, перед тем, как использовать его, рекомендуется  рассмотреть свойства и характеристики, обладающие существенным значением для применения данного материала.

Теплопроводность пенополистирола

Свойства пенополистирольных плит по сбережению тепла основываются на том, что их «начинка», а именно воздух, имеет одни из наиболее маленьких показателей теплопроводности (порядка 0,027Вт/мК), в результате этого, теплопроводность пенополистирольных плит состоит в пределах примерно от 0,037 до 0,043 Вт/мК. Это намного ниже, чем, к примеру, теплопроводность дерева, которая составляет 0,12 Вт/мК, керамзита (0,12 Вт/мК) , кирпича (0,7 Вт/мК), а также многих других строительных материалов.

Такая невысокая теплопроводность пенополистирольных плит становится залогом высокого уровня энергосбережения. В результате будет достаточно всего 12 сантиметров пенополистирола там, где (соответственно последним российским стандартам) требуемая толщина стен, построенных из кирпича должна составлять не менее 2м 10 см, а деревянных 45 сантиметров. Это дает возможность называть пенополистирол одним из максимально эффективных теплоизоляторов.

Применение пенополистирольных плит в процессе строительства дает возможность в дальнейшем (уже во время эксплуатации помещений) основательно уменьшить затраты на отопление. Высокие  свойства энергосбережения пенополистирольных плит обеспечивают их использование также для защиты от промерзания трубопроводов, что способствует увеличению срока их эксплуатации.

Помимо этого, теплосберегающие качества пенополистирола применяются при строительстве различных холодильных установок, складских помещений и разнообразного холодильного оборудования.

Водонепроницаемость понополистирола

По своей структуре данный материал совершенно не гигроскопичен и не впитывает воду, он не имеет свойства растворяться, деформироваться или не разбухать при соприкосновении с влагой. Однако, тем не менее, с помощью механизма капиллярной диффузии вода имеет возможность проникать в полости между отдельными гранулами пенопласта. При этом справедливо будет отметить, что количество ее весьма незначительно (примерно 1,5 – 3% по отношению к общему весовому объему всей пенополистирольной плиты). Помимо этого, в результате того же самого диффузионного механизма вода и выводится из пенополистирола. Все качества пенополистирольных плит при этом (такие как прочность,  изоляционные способности, объемы) остаются без изменений. Скорость проникновения испарений воды в пенополистирольные плиты исчисляется менее, чем 1% от скорости передвижения пара в воздухе. Пар, точно так же как и вода, выходит из пенополистирола очень легко. Полное соблюдение правил проектирования дает возможность избежать конденсации. Устойчивость к влиянию влаги позволяет пользоваться пенополистирольными плитами для утепления фундаментальных конструкций здания, когда требуется контакт утепляющего материала непосредственно с грунтом.

Устойчивость к воздействиям химических и биологических факторов

Пенополистирольные плиты отличаются высочайшей устойчивостью к воздействию разнообразных химических веществ. Например, пенополистирол полностью сберегает свои качества при длительном контакте с различными солевыми растворами (среди которых и морская вода). В сочетании с этим материалом можно пользоваться мылами и отбеливающими веществами (в том числе растворами перекиси водорода, хлорной водой, гипохлоридом). Также на пенополистирольные плиты не оказывают негативного влияния кислот (кроме уксусной и концентрированной азотной кислоты), нашатырный спирт и так далее. В процессе строительства вместе с ним можно использовать известь, битум, различные клеящие смеси и краски на водной основе, гипс, цемент и прочие строительные материалы.

Пенополистирол не подвергается воздействию микроорганизмов, не становится благоприятной средой для появления различных грибков и не имеет возможности заплесневеть.

Прочность пенополистирола

Плотность пенополистирольных плит сравнительно небольшая, всего 0,015–0,05 г/см3 (плотность воды, к примеру, составляет 1,0 г/см3). Однако пенополистирол при этом отличается довольно высокой прочностью на сжатие и на изгиб. Этому примером может стать применение пенополистирольных плит в процессе ремонта и в строительстве автострад, взлетно-посадочных полос и много другого. При этом в первую очередь зависит прочность пенополистирольных плит от их толщины и того, правильно ли была произведена укладка.

Акустические свойства пенополистирола

Эффект звукоизоляции и поглощения шума определяется способностью материалов преобразовывать звуковую энергию в энергию тепловую. В связи с этим наивысшей звукоизоляционными качествами обладают, в первую очередь, пористые материалы, которые имеют низкую теплопроводность и способны пропускать воздух. Поэтому именно ячеистая структура полистирольных плит обеспечила их максимальные звукоизоляционные и поглощающие шум характеристики.

Так,  к примеру, для обеспечения оптимальной звукоизоляции достаточно будет использовать пенополистирольную плиту, толщина которой составляет всего 2-3 сантиметра. Соответственно, чем больше будет толщина слоя пенополистирола, тем лучше и значительнее будут шумопоглащающие и звукоизолирующие свойства.

Долговечность пенополистирола

При оптимальном правильном использовании пенополистирольные плиты могут сохранять свои физические качества достаточно длительный срок.

В ходе исследования стало известно, пенополистирольные плиты  не подвергаются необратимым изменениям, так на протяжении длительного времени они сохраняют свою форму, не утрачивают механических и теплофизических свойств. Кроме того, было установлено, что минимальный температурный предел для пенополистирола составляет –1800 градусов, а максимальный +800 градусов. Однако непродолжительной период времени (примерно несколько минут) пенополистирольные плиты могет подвергаться даже температуре аж до  +950 градусов. Это дает возможность совмещать работу с пенополистирольными плитами и, к примеру, горячим битумом. Однако, когда воздействия оказывается более длительном, а температурный показатель превышает +800 градусов, пенополистирол начинает разрушаться.

Под воздействием влаги и воздуха, а точнее, кислорода, практически все природные органические материалы имеют свойство разрушаться. Относится к ним, например, резина, кожа, древесина,  текстильные материалы и так далее. Пенополистирол в отличие от них гниению не подвержен.

Пожароустойчивость пенополистирола

Пенополистирол имеет очень высокую пожароустойчивость. Температура, при которой происходит самовозгорание пенополистирольных плит, составляет +4910 градуса. Это в 2,1 раза больше, в сравнении с температурой возгорания бумаги (она исчисляется +2300 градусами), и в 1,8 раза больше, чем у древесины (которая самовоспламеняется при +2600 градусах). Вне зависимости от того, что пенополистирольные плиты, как и большинство других строительных материалов, все же подвержены горению, однако при этом, горение они сами не поддерживают и если прямое соприкосновение с пламенем отсутствует, то пенополистирол затухает в течение 4 секунд. Иными словами можно сказать, что горение пенополистирольных плит может быть только в случае наличия открытого пламени, и после извлечения пенопласта из огня процесс горения тут же прекращается.

Помимо этого, на сегодняшний день производятся пенополистирольные плиты, которые обогащены антипиренами, они также носят название «самозатухающие» плиты.

Подводя итоги можно сказать, что пенополистирол, благодаря всем вышеназванным свойствам вполне заслужено считается сегодня одним из наиболее востребованных и популярных материалов, и хотя всегда можно подобрать аналоги, однако всегда следует внимательно сравнить все преимущества и недостатки.

srpj.ru

свойства, область применения, плюсы и минусы

Пенополистирол — это материал белого цвета, используемый для теплоизоляции. Он  на 90% состоит из воздуха, который находится в микроскопических клетках-капсулах с очень тонкими стенками. Их масса и представляет собой вспененный полистиролом. В состязании с иными теплоизоляционными материалами пенополистирол показывает отличные результаты по многим параметрам безопасности — пенополистирол используется даже для упаковки продуктов питания.

Пенополистирол

Технология производства

Для всех типов изоляции из полистирола сырьем является гранулированный полистирол. Химически активный агент вспенивания применяется, чтобы образовывались своеобразные ячейки.

Весь  технологический процесс изготовления имеет такие поочередные этапы:

  1. В специальный бункер засыпается пенополистирол в виде гранул. Там пенополистирол (гранулы) раздувается и становится шарообразным штучным материалом. Если надо получить теплоизолятор меньшей плотности, но вспенивание повторяется несколько раз. С каждым повторением размер шариков становится больше, а фактическая удельная масса материала уменьшается.
  2. Вспененные гранулы помещаются в специальный бункер, где они находятся от 12 до 24 часов. За это время давление в шариках стабилизируется. Если пенополистирол производят методом суспензионной полимеризации, то на этом этапе также проводится сушка шариков.
  3. После окончания и выдержки этих технологических процессов, шарики помещают в формовочный агрегат. В нем формируется пенополистирольный блок под действием горячего воздуха. Гранулы склеиваются друг с другом, потому что зажаты в специальной форме. Только после охлаждения пенополистирол извлекается из пресс-формы.
  4. Завершающий этап — резка  готового материала  по заданному размеру. Потому что формы, как правило, имеют внушительные размеры. Но перед этой резкой пенополистирол (блок) хранится в покое в течение суток. Потому что под воздействием пара в блоке собирается влага, которая может помешать резке (будут образовываться надломы и вмятины).
Оборудование для производства пенополистирола

Это важно! Всего есть два основных метода, как производят пенополистирол: суспензионная полимеризация и поляризация в массе.

Суспензионная полимеризация

В первом случае процесс базируется на неспособности воды растворять виниловые полимеры. На этапе вспенивания гранулы засыпаются в автоклавы, заполненные деминерализованной водой. Гранулы находятся под постоянным давлением и равномерным подъемом температуры. Вспененный пенополистирол извлекается вместе с водой, и уже в центрифуге отделяется от нее, после чего проходит стадию сушки.

Постоянное промешивание гранул полимера внутри реактора является основным преимуществом данной технологии производства. За счет этого идет эффективное распределение и отвод тепла, что в будущем увеличивает время, в течении которого пенополистирол можно хранить без ущерба для его структуры.

Полимеризация в массе

Когда пенополистирол производится таким способом, вода не используется. Процесс проходит при высоких температурах. Когда расплавлено 80-90% исходного стирола, полимеризация считается завершенной. Возможность отвода тепла при таком производстве отсутствует. Полистирол имеет меньший срок хранения.

Пенополистирол: основные свойства

Теплопроводность

Пенополистирол способствует сохранению тепла, потому что начинка этого материала — воздух. Он имеет маленькие показатели теплопроводности. Конкретные цифры будут в разы ниже, чем, к примеру, у дерева, керамзита или кирпича, других строительных материалов.

Такой показатель теплопроводности является залогом хорошего уровня энергосбережения. Полистирол, используемый в процессе строительства, позволяет при эксплуатации здания значительно экономить на отопление. Пенополистирол используется также для защиты трубопроводов от промерзания, что увеличивает их срок эксплуатации.

Водонепроницаемость

По структуре пенополистирол является гигроскопичным материалом, а значит, он не впитывает в воду, не растворяется в ней и не набухает при взаимодействии с влагой. Но при капиллярной диффузии вода может проникать в полости между гранулами (хотя, ее количество будет незначительным, около 1,5% по отношению к общему весовому объему плиты). Этот же механизм позволяет выводить влагу  из описываемого материала с сохранением всех свойств, которым обладает пенополистирол.

Если соблюдать правила укладки пенополистирола при строительстве, то можно избежать возникновения конденсата в будущем. Устойчивость к влиянию влаги позволяет использовать пенополистирол для утепления фундаментальных конструкций.

Устойчивость к химическим и биологическим факторам

На воздействие большинства бытовых химических веществ пенополистирол не реагирует. К примеру, при длительном взаимодействии с солевыми растворами полистирол сохранит все свои первоначальные свойства. То же касается использования мыла и отбеливающих веществ, даже хлорной воды. Кислоты (за исключением уксусной, концентрированной азотной кислоты) негативного влияния на пенополистирол не оказывают.

Воздействию микроорганизмов пенополистирол не подвержен, он не станет средой для развития грибков и не «позволит» на себе расти плесени.

Прочность

Пенополистирол имеет относительно небольшую прочность. Но к плюсам материала относится высокая прочность на сгиб и сжатие. Данный показатель во многом зависит от толщины плиты и то того, насколько правильно пенополистирол уложен.

Звукоизоляций

Пенополистирол может поглощать шум и преобразовывать звуковую энергию в тепловую энергию. Пенополистирол обладает отличными звукоизоляционными качествами, которые обеспечивает ячеистая структура. Чтобы обеспечить хорошую звуковую изоляцию в помещение достаточно использовать плиту толщиной всего 2-3 сантиметра.

Долговечность

Если правильно использовать пенополистирол, то плиты сохранят физические качества в течение длительного времени. Они способы долго сохранять свою форму, механические и теплофизические свойства.

Это интересно! Минимальный температурный предел для материала составляет минус 180 градусов Цельсия, а максимальный — плюс 80 градусов Цельсия.

Устойчивость к горению

Пенополистирол подвержен горению. Но процесс  горения не будет поддерживаться, если отсутствует прямое соприкосновение материала с пламенем. Загоревший ся материал без очага пламени просто потухнет за несколько секунд.

Из средних температурных показателей понятно, что пенополистирол устойчив к высоким температурам. Самовозгорание плит происходит при температуре в плюс 491 градусов Цельсия. Это в два с половиной раза больше, чем температура возгорания бумаги и почти в два раза больше, чем температура возгорания древесины.

Распространенные виды пенополистирола:

  • Полистирольные пенопласты (могут быт беспрессовыми или прессовыми). Беспрессовой пенопласт представляют себе многие, потому что именно в него упаковывают телевизоры, холодильники и другую технику. Из-за большого расстояния между гранулами в материал этого вида может проникать влага.

Прессовой пенополистирол по теплоизоляционным и внешним свойствам мало отличается. Но за счет того, что гранулы крепче сцеплены, его сложнее сломать или раскрошить.

  • Экструдированный пенополистирол. Имеют мягкую и однородную ячеистую структуру. Состоит из закрытых ячеек, поэтому считается лучшим видом полистирольных пластмасс.

Области применения

Отличные теплоизоляционные и звукоизоляционные свойств, простота в обработке и переработке, а также доступная стоимость делают пенополистирол распространенным материалом для многих сфер деятельности человека. Часто пенополистирол применяется для упаковки товаров и оборудования, продуктов питания. Также из него производят одноразовую посуду, гасители энергии в автомобильной промышленности и даже объемную наружную рекламу.

Часто пенополистирол используются для термоизоляции холодильного оборудования в промышленности из-за угрозы пыления. Также пенополистирол применяют в термоизоляции дорожного полотна. Из него даже можно делать ульи!

Широкое распространение и применение описываемый материал получил в строительстве — его используют как конструкционный и теплоизоляционный материал. Чаще всего проводится именно наружное утепление частных домов, многоквартирных зданий или даже производственных помещений. Из-за некоторых особенностей материала для внутреннего утепления он не подходит (хотя при соблюдении определенных технических требований возможно и такое использование). За счет того, что данный строительный материал прост в монтаже, его могут использовать даже непрофессиональные строители при частном возведении или  утеплении зданий.

Утепление частного дома пенополистиролом

Плюсы и минусы

К плюсам материала относятся все его свойства, которые подробно описаны в этой статье выше. Он не пропускает тепло и звук, является влагостойким материалом, устойчив ко многим химическим и биологическим компонентам. Но, как и все, что используется в строительстве, у данного вида пенопласта есть также свои минусы:

  • Стирол — основной компонент материала, может выделять вредные химические вещества. Поначалу они безвредны для человека, но, накапливаясь с годами, начинают повышать температуру в помещение (особенно, в сильную жару). Это сказывается на самочувствии жителей утепленного дома.
  • Может впитывать воду, хотя и в очень маленьких количествах. Скапливаясь годами, влага может постепенно разрушать материал.
  • Механическая прочность этого вида пенопласта невысока, поэтому при использовании его для укладки фундамента, к примеру, требуется дополнительная защита в виде специальных щитов.
  • При пожаре в продуктах сгорания содержится много ядовитых веществ. Но тут надо помнить, что этот пенопласт горит только при прямом контакте с огнем, если его нет, что очаг возгорания потухает самостоятельно.

Если знать все характеристики этого вида пластмассы, правильно применять ее в тех сферах, где это действительно оправдано, она принесет пользу и на «отлично» справиться с возложенными на нее задачами.

Не стоит забывать о возможных негативных последствиях использования данного материала, поэтому при принятии конечного решения всегда надо тщательно взвесить все «за» и «против».

plusteplo.ru

характеристики, плюсы и минусы, применение

В последнее время все чаще для утепления жилых помещений используют такой материал, как пенопласт. Свой выбор потребители останавливают на нём, в первую очередь, ориентируясь на его положительные качества. На протяжении многих лет этот изолятор доказал свою состоятельность, что и объясняет высокий интерес к пенопласту. Если сравнивать пенополистирольные плиты с обычными строительными материалами, которые применяются для подобных работ, то превосходство будет на стороне первых, что выражается, в первую очередь, в его способности продлевать срок службы любого объекта вне зависимости от климатических условий.

Технические характеристики пенопласта

Широкое распространение этот материал получил по той причине, что он активно применяется при утеплении не только профессиональными строителями, но и рядовыми владельцами. Свой выбор они останавливают на нём, зная, какими прекрасными техническими характеристиками обладает этот теплоизолятор. Технология его производства предусматривает использование небольшого количества энергии, однако свойства, которые приобретает этот материал, дают возможность владельцам свести к минимуму его расход при выполнении утеплительных работ.

Размеры и плотность пенопласта

Технических характеристик у этого материала достаточно, среди которых для потребителя важны размеры. Наиболее распространенные форматы – 1 х 1м и 0,5 х 1м. Эти листы могут иметь различную плотность, значение которой может составлять 15, 25 и 40. Лучше всего выбирать пенопласт, обладающий максимальной плотностью, но такие плиты будут стоить значительно дороже. Рассматривая плиты, имеющие плотность 25, следует иметь в виду, что обычно их используют при наружном утеплении.

Если же необходим утеплитель помещений, то желательно останавливать выбор на плитах с плотностью 15. Изолятор с таким показателем можно крепить на деревянные или бетонные поверхности. Что же касается пенопласта с плотностью 40, то чаще всего его используют для приклеивания на пол. Учитывая, что этот материал имеет высокий показатель плотности, он успешно справляется с повышенными нагрузками, не подвергаясь деформации.

Шумо- и теплозащита

Одна из особенностей утеплителя связана с его структурой, которая имеет вид вспененной массы. Большая часть объема этого изолятора приходится на воздух. Именно он обуславливает то, что готовый продукт имеет низкую в несколько раз плотность, нежели сырье, используемое для изготовления пенопласта. Именно используемый метод производства изолятора и объясняет, почему плиты получаются такими легкими. Но несмотря на это, он отличается прекрасными звукоизоляционными и термоизоляционными свойствами, что обеспечивает ему наличие в большом количестве газа, которым заполнена его структура.

Для изготовления такого утеплителя , как пенополистирол могут использоваться различные виды сырья, что в итоге и влияет на показатели его плотности и прочности. С уменьшением количества газа, заключенного в его структуре, повышается плотность пенопласта и в то же время ухудшаются его теплозащитные характеристики. Но вместе с тем такие плиты гораздо лучше справляются с нагрузками механического характера.

При проведении теплоизоляционных работ выбор останавливают на плитах различной плотности, которые могут отличаться и прочностными характеристиками. Если работы проводят с использованием плит, обладающих невысокой плотностью, то в этом случае возникает необходимость в обеспечении теплоизолятору максимальной защиты от повреждений механического характера. Причем к плитам, обладающим невысоким показателем плотности, обычно прибегают в тех ситуациях, когда выполняются работы по монтажу с использованием каркасного метода. Иными словами, его укладывают в тех местах, где утеплителю предстоит испытывать максимальный уровень нагрузок.

Применение пенополистирола как утеплителя

Пенопласт получил известность в первую очередь как утеплитель, и в подобном назначении с его помощью проводят изоляцию как внутри помещений, так и снаружи. Также с его использованием обрабатывают такие конструкции, как полы, потолки, фундаменты, стены подвалов и чердаки. Рассматривая пенополистирол для проведения работ по утеплению, следует помнить, что он не совсем подходит для обработки стен, выходящих на улицу. Перед началом монтажа рекомендуется определиться с наиболее подходящим материалом для склеивания пенопласта.

Это связано с тем, что выходящей на улицу стене необходимо обеспечить прогревание, и эту задача должна решаться путем использования отопительных приборов. Когда же стены обработаны изнутри пенопластом, то помимо утепляющего эффекта он не дает выходить наружу в большом количестве теплу, производимому за счет использования внутреннего отопления. Подобное решение приводит к смещению «точки росы» в зону, образованную слоем пенопласта и стеной либо непосредственно в толщу стены.

При контакте с влагой стена начнет увлажняться, что влияет на ее термозащитные характеристики. В то же время, когда внутри стены возникает конденсат, при падении температуры ниже нулевой отметки возникает опасность ее замерзания. На фоне этого создается риск нарушения теплообмена, что впоследствии может привести к активизации разрушающих процессов стены. По этой причине необходимо в точности выполнять требования технологии укладки пенопласта и заранее определиться с клеящим составом, используемым для крепления пенопласта.

Наиболее предпочтительный вариант работы с пенополистиролом – утепление стены с внешней стороны здания. Это обусловлено отсутствием у материала высоких показателей механической прочности, что характерно и для плит высокой плотности. По этой причине плиты пенопласта, с помощью которых были обработаны наружные стены, должны быть надежно закреплены.

Иногда пенополистирол используют для утепления фундамента. Однако в этом случае нужно учесть, что плиты будут испытывать нагрузку, создаваемую грунтом, а также морозным пучением почвы. Обычно, когда пенопласт крепят на стены, используют армирующую сетку и штукатурку. Если же пенополистирол применяют для обработки подвальных помещений, то следует позаботиться о создании более надежной защиты, в качестве которой может выступить кирпичная кладка либо деревянная опалубка.

Достоинства пенопласта

В ряде ситуаций пенопласт не имеет альтернатив, что связано с его уникальными свойствами.

  • Маленький вес. Технология изготовления пенополистирола предусматривает последующее охлаждение полистирола, на долю которого в структуре готового продукта приходится только 2%, а остальное занимают пузырьки воздуха. Эта особенность и делает плиты пенополистирола столь лёгкими: их вес настолько мал, что их может держать в руках и ребенок. Общеизвестным является факт, что вес пенопласта более чем сопоставим с водой. По этой причине, если его бросить в воду, то он не утонет. Эта особенность и обеспечила его распространение в качестве буйков, дающих подсказку о местах, где глубина достигает максимальных отметок.
  • Из других достоинств пенополистирола следует выделить отсутствие проблем в обработке и установке. Но при этом необходимо получить представление о технологии приклеивания плит к определенной поверхности и в точности выполнять требования инструкции.
  • Значимым плюсом пенопласта является и высокая стойкость к внешним факторам. Этот материал нейтрален к воздействию солнечных лучей, резких температурных колебаний, отличается морозоустойчивостью, а также стоек к повышенному атмосферному давлению. Именно перечисленные качества и обеспечили ему распространение в качестве строительного материала, используемого при возведении жилых объектов и проведении отделочных работ.
  • Также следует упомянуть о таком параметре, как теплоемкость. Неслучайно распространено мнение, что именно пенополистирол в состоянии обеспечить наилучший уровень термозащиты. Также этот материал отличается низким коэффициентом термического расширения: плиты пенопласта сохраняют стабильность при температуре эксплуатации в диапазоне от — 180 до + 80 градусов. При работе с крупноформатными блоками чаще всего их укладывают на стены зданий, что заметно увеличивает теплосберегающие характеристики дома.
  • Способность эффективно противостоять внешним шумам ударного характера и создавать конструкции сложной конфигурации, что практически реализуется посредством использования растворов на основе цемента, гипса и мастики.
  • Плиты пенопласта безопасно использовать в строительстве в плане пожаробезопасности. Поэтому для зданий, где такая угроза особенно высока, этот материал представляется наилучшим выбором. Хотя ему не под силу ликвидировать огонь, все же он будет препятствовать его распространению и даже в состоянии уменьшить его.
  • Плиты этого материала обладают значительным эксплуатационным ресурсом.
  • Помимо этого они демонстрируют нейтральность ко многим химическим веществам. Этот материал является абсолютно экологичным, не приводит к возникновению пыли и не имеет неприятного запаха. Материал абсолютно безопасен для здоровья, поскольку в качестве основных компонентов, которые используются для его производства, выступают газы и вещества, не наносящие вред окружающей среде и человеку. В составе плит отсутствуют соединения фреонового ряда, способные оказывать разрушающее воздействие на озоновую оболочку.

Недостатки пенопласта

При всех своих преимуществах пенопласт нельзя считать идеальным материалом из-за наличия у него и определенных минусов:

  • В первую очередь следует упомянуть о его механической прочности, которая имеет определенный запас. По этой причине после укладки плит возникает необходимость в создании дополнительной защиты от механических повреждений.
  • Плиты этого материала не обладают способностью «дышать», что негативным образом сказывается на воздухообмене.
  • Негативное воздействие на этот материал оказывают различные лакокрасочные покрытия или нитрокраски. По этой причине перед работами по укладке пенопласта следует подобрать подходящий состав для его склеивания.

Сравнение пенопласта с другими материалами

Если сравнивать пенополистирол с другими типами теплоизоляторов, то помимо упомянутых прекрасных изоляционных и механических свойств, он будет отличаться и достаточно доступной ценой. К тому же этим плитам присуща значительная конструкционная гибкость. Установка плит из этого материала не требует наличия определенных навыков и оборудования, из-за чего работы по установке пенопласта может выполнить любой владелец.

Очень часто к пенопласту прибегают в качестве материала для утепления подземных конструкций зданий, объясняя выбор тем, что большинство традиционных изоляторов не подходят по причине капиллярного поднятия грунтовой воды. Плиты обеспечивают высокий уровень защиты гидроизоляционного слоя, разрушающее действие на который могут оказывать внешние факторы.

Важным параметром, по которому пенопласт превосходит прочие изоляторы, является и уровень теплопроводности. При использовании плит пенопласта толщиной порядка 60 мм, можно добиться аналогичного утепляющего эффекта, что и при использовании:

  • Минваты, толщина которой составляет 110 мм;
  • Сухого пенобетона, который достигает в толщину 500 мм;
  • Дерева, толщина которого составляет 195 мм;
  • Кирпичной закладки, чья толщина равна 850 мм;
  • Бетона, имеющего толщину 2132 мм.

Заключение

Неслучайно пенополистирол получил широкое распространение в качестве утеплителя для различных объектов. Популярность ему обеспечили уникальные характеристики, которые должны лечь в основу выбора каждого потребителя, думающего о покупке теплоизоляционного материала. Хотя пенопласт и имеет немало плюсов, все же для достижения желаемого эффекта необходимо учесть все его недостатки, а именно, позаботиться о создании защиты от механических повреждений. Только в этом случае он сможет эффективно сохранять тепло на протяжении долгого времени.

Оцените статью: Поделитесь с друзьями!

kotel.guru

Оставить комментарий

avatar
  Подписаться  
Уведомление о