Экструдированный пенополистирол коэффициент теплопроводности: Теплопроводность пенополистирола, от чего зависит и на какие параметры влияет

Теплопроводность пенополистирола, от чего зависит и на какие параметры влияет

Из всех бюджетных видов утеплителей, обладающих несущими способностями, пенопласт имеет минимальный коэффициент теплопроводности: не более 0,043 Вт/м·К при применении в обычных условиях. Отличные теплоизоляционные свойства объясняет ячеистая структура материала: только 2 % от общего объема занимают полистирольные стенки вспененных гранул, остальные 98 приходится на воздух. Как следствие, плиты пенопласта имеют низкий удельный вес и не перегружают строительные конструкции. Также положительно оценивается неизменность изоляционных параметров утеплителя в процессе эксплуатации. Пенопласт не боится намокания в сравнении с минватой, не теряет форму как эковата, единственным условием является закрытие его от лучей солнца.

Оглавление:

  1. Что влияет на теплопроводность?
  2. Взаимосвязь с другими параметрами
  3. Сравнение разных марок

От чего зависит теплопроводность пенополистирола?

Теплоизоляционные свойства этого материала определяются объемом содержащегося внутри гранул воздуха. Сама по себе характеристика отражает количество перенесенной тепловой энергии от более горячего участка строительной конструкции к холодному, соответственно, чем она меньше, тем лучше. Плиты из пенополистирола в этом плане выигрывают у других утеплителей: ячеистая структура обеспечивает не только хорошую изоляцию, но и более равномерное распределение градиента температуры по всей толщине.

Распространенным заблуждением является мнение, что главным влияющим на теплопроводность фактором служит плотность пенопласта. На практике, эти две характеристики имеют линейную взаимосвязь, уплотнение приводит к уменьшению объема воздуха внутри гранул, но одновременно улучшает коэффициент водонепроницаемости материала и упрочняет стенки ячеек. Минимальная теплопроводность наблюдается у плит из пенополистирола с удельным весом около 30 кг/м3, увеличение плотности вызывает незначительное (доли процентов) ухудшение теплоизоляционных способностей и при достижении определенных показателей коэффициент становится неизменным – 0,043 Вт/м·К.

На практике значение зависит от:

  • Структуры пенопласта: качественные марки с плотно запаянными ячейками лучше держат тепло.
  • Толщины плит.
  • Условий эксплуатации: влажности и температуры (возрастание последней приводит к снижению теплопроводности пенопласта).

Взаимосвязь с другими характеристиками и показателями

Для достижения нужного эффекта энергосбережения проводится теплотехнический расчет толщины прослойки из пенопласта. Теплопроводность утеплителя при этом является главным учитываемым фактором, наряду с общей величиной сопротивления, определяемой климатическими особенностями региона и типом строительной конструкции. Практика показывает, что максимальная толщина (и, соответственно, минимальная теплопроводность) требуется при обустройстве полов, фундаментных участков, подвалов и перекрытий. В этом случае используются марки от 0,033 до 0,038 Вт/м·К. При утеплении внешних стен приобретается пенопласт со средним значением характеристики (от 0,037 Вт/м·К).

Замечено, что величина коэффициента теплопроводности ухудшается при длительной эксплуатации в условиях повышенных температур (верхний предел составляет 80 °C). Также пенопласт теряет свои теплоизоляционные способности при изменении структуры под прямым воздействием солнечного излучения и атмосферных осадков. Этого легко избежать – достаточно просто закрыть плиты сайдингом, стяжкой, штукатуркой или краской. Последним важным требованием является отсутствие мостиков холода: вне зависимости от величины теплового сопротивления утеплителя неплотная укладка плит приводит к потерям температуры. Для предотвращения подобной ситуации все возможные стыки аккуратно заполняются монтажной пеной (выбираются марки с минимальным вторичным расширением, не сдвигающие материал) и герметизируются, в идеале укладывается два слоя пенополистирола со смещением листов.

Сравнение теплопроводности у марок с разной плотностью и назначением

Более наглядно зависимость теплоизоляционных свойств от степени наполненности пенопласта и закрытости его структуры показывает сопоставление этих параметров у продукции разных видов. Не секрет, что при равной толщине плит теплопроводность экструдированного пенополистирола более низкая в сравнении с обычным. Хорошую изоляцию также обеспечивают гранулы, точное значение зависит от размера фракций, но в целом лучшие наблюдаются у вспененной крошки, худшие – у дробленки. Результаты сравнения характеристик разных марок сведены в таблицу:

Наименование марки пенопластаПлотность, кг/м3Коэффициент теплопроводности, Вт/м·К
Кнауф ТермДача150,048
Стена250,04
Фасад350,031
Пол400,035
Дом40-420,032
Кровля0,036
ПСБ-СДо 150,043
15-250,041
15-350,038
50
Экструдированный пенополистирол33-380,03
38-450,032
М-50 вспененная крошка с размером гранул от 0,5 до 1 мм30*0,036
М-25, то же с более крупными гранулами (4-6 мм)10*0,042
Дробленка (3-6 мм)11*0,05

* — насыпная плотность материала.

Результаты сравнения доказывают, что плотность пенопласта влияет на теплопроводность линейно и косвенно. Тяжелые марки экструдированного пенополистирола обладают лучшими изоляционными свойствами, несмотря на снижение объема воздуха внутри ячеек, низкая теплопроводность у них достигается за счет введения графитовых добавок и хорошей влагостойкости.

Как следствие, значение этого показателя стоит уточнить еще до выбора и приобретения утеплителя, он относится к основным рабочим характеристикам и обязательно подтверждается соответствующей документацией от производителя (указывается ГОСТ и итоги испытаний).

Коэффициент теплопроводности экструдированного пенополистирола

Экструдированный пенополистирол обладает пористой структурой, благодаря которой отлично сохраняет тепловую энергию. Теплопроводность материала зависит от его плотности, характеристика которой выносится в его маркировку. В отличие от пенопласта, ячейки которого заполнены газом, этот теплоизолятор содержит внутри себя воздух, который не испаряется, сохраняя свойства даже при намокании.

Рис.1 Смещение точки росы при снижении теплопроводности материала


Понятие теплопроводности материалов

Любые тела, газообразные, жидкие среды при контакте друг с другом стремятся выровнять температуру молекул, из которых состоят. Обмен частиц различных материалов энергией и называется теплопроводностью.

Например:

  • в зимнее время холодный уличный воздух стремится выровнять температуру внутри помещений;
  • для чего забирает тепловую энергию у стен зданий;
  • которая передается им нагретым от регистров отопительных приборов воздухом.

Положительный коэффициент теплопроводности экструдированного пенополистирола означает передачу энергии лишь в сторону увеличения температуры. Вещества с отрицательным коэффициентом ТП понижают температуру окружающей среды (инертные газы, использующиеся в климатическом оборудовании).

В строительстве применяются материалы, способные предотвратить теплопотери, защитить жилище от холода. Поэтому, тепловой барьер должен быть непрерывным, чтобы отсутствовали мостики холода, сводящие на нет усилия по теплоизоляции здания.

Рис.2 Сравнение теплопроводности конструкционных, теплоизоляционных материалов


Факторы, влияющие на теплопроводность пенополистирола

Плотность материалов показывает содержание в них воздуха, с увеличением этой характеристики коэффициент теплопроводности снижается. Для пенополистирола при увеличении плотности от 10 до 35 кг/м3 он снижается с 0,044 единиц до 0,032 единиц. Для облегчения расчетов при проектировании производители утеплителя добавляют в состав графит, выравнивая теплопроводность пенополистирола любой плотности до единого значения 0,055 единицы.

Поэтому, приобретая на строительном рынке листы ЭППС, потребителю не нужно проверять данную характеристику материалов разной плотности.

Сравнение пенополистирола с прочими теплоизоляторами

Утеплители используются в строительстве для снижения толщины стен, перекрытий, кровельного пирога.

Конструкционные материалы этих силовых конструкций оклеиваются теплоизолятором для распределения свойств:

  • бетон, кирпич, дерево обеспечивают стабильную геометрию коробки здания, прочность, достаточную для эксплуатационных нагрузок;
  • пенополистирол создает тепловой барьер для снижения теплопотерь.

Слой этого материала в 2 см успешно заменяет:

  • 27 см пенобетона;
  • 37 см кирпича;
  • 20 см пиломатериала;
  • 4 см минваты;
  • 3 см пенопласта;

Основным достоинством ПСБ-С является сохранение свойств при контакте с водой. Недостаток заключается в оплавлении при контакте с открытым огнем. Присутствие в материале антипиренов не может полностью решить проблему пожаробезопасности. Поэтому, пенополистирол запрещен нормативами СНиП для полного оклеивания фасадов.

Вокруг оконных, дверных блоков, в межэтажных противопожарных отсечках допускается только негорючая базальтовая вата. Вся остальная плоскость наружной стены может быть защищена в целях экономии экструдированным пенополистиролом.

С этой статьей также читают:

Теплопроводные свойства пенополистиролаСтройкод

Утепление дома – задача со множеством вариантов и способов решения, один из которых – пенополистирол (или же, как его чаще называют в народе, пенопласт). Помимо практичности, небольшого веса, простоты в монтаже и экологичности, этот материал обладает крайне важным свойством для любого жилья – низкая теплопроводность, позволяющая сберечь помещение от холода.

Ключевые факторы высокой теплоизоляции пенопласта

Для начала уясним, что теплопроводность – это передача энергии от одних микрочастиц к другим при их соприкосновении. Чем меньше этот показатель, тем меньше тепла будет проводить через себя материал. Это и называется изоляционным свойством.

Наиболее низкой проводимостью тепловой энергии обладает воздух, что в первую очередь и используется при изготовлении пенопласта. Многочисленные ячейки его пористой структуры наполнены газом (воздухом), который составляет львиные 98% от состава всего материала.

Однако даже с таким преимуществом свойства пенопласта зависят ещё и от целого ряда дополнительных факторов, которые обязательно должны быть учтены при утеплении помещений:

  • Толщина слоя пенополистирола. Всегда можно добиться более качественного уровня теплоизоляции, попросту увеличив её используемые объёмы. Так, проводимость пенопласта толщиной в 500 мм будет гораздо более ниже, чем у аналогичного по плотности, но более тонкого слоя в 100 мм.
  • Влажность. Чем меньше её в материале, тем лучше. Любая жидкость всегда негативно сказывается на теплоизоляционных характеристиках.
  • Средние показатели температуры слоя. Увеличение нагрева также ухудшает теплоизоляционные свойства пенопласта.

В сравнительном познании

Строительный рынок невероятно богат на огромный ассортимент всевозможных утеплителей. В том же числе это касается и многочисленных разновидностей полистирольного пенопласта.

Характеристики каждого из них так или иначе разнятся между собой. К примеру, экструдированный вариант состоит из такого же вещества, что и обычный. Единственное отличие заключается в том, что в процессе изготовления первого применяется иная технология по созданию гранул. Благодаря чему он получается легче своего аналога. При этом экструдированный пенопласт обладает ещё и более лучшей теплоизоляцией.

Однако теплопроводность пенополистирола крайне зависима и от толщины используемых слоёв. Более очевидным образом это заметно в сравнении с иными утеплителями.

К примеру, лист из минеральной ваты толщиной в 100-120 мм вполне можно вытеснить менее габаритным 50-60 мм пенополистирольным вариантом (соотношение 1:2). Эти же 50 мм полностью равноценны 8.5 см кирпичной закладки и 21 см бетонного слоя.

С другой стороны, те же 100 мм «Пеноплекса» покажут ещё более низкую теплопроводность по сравнению с пенопластом. Для равных показателей потребуется соотношение 100 мм первого к 125 мм второго (1:1. 25).

Решающий коэффициент теплопроводности

В расчётах этого параметра используется греческий символ λ, размерность которого определяется как Вт/(м*К):

  • Вт – это то количество энергии (Ватт), которое материал способен предавать через себя;
  • м – в метрах измеряется расстояние, на которое тепло проходит через какой-либо материал;
  • К – определённый перепад температур (Кельвины), при котором происходит передача энергии.

К примеру, наивысшими показателями теплопроводности обладают металлы, стекло, камни. Они не способны надолго сохранить энергию, в отличии от воздуха и газов – лучших природных теплоизоляторов. Поэтому пористая структура пенопласта обладает гораздо меньшей проводимостью тепла.



Среди всего множества строительных материалов особенно стоит отметить пенопласт ПСБ-С 15/25/35, пробковую мелочь и пенополиуретан – они заметно выделяются своим низким коэффициентом теплопроводности. Экструдированный пенополистирол в сравнении со своим обычным аналогом также выглядит довольно привлекательно: 0. 03 Вт/(м*К) против 0.038.

Подробнее о габаритах приобретаемого пенополистирола

Эффективное применение любой теплоизоляции напрямую связано с правильным подбором размеров материала. За эти вычисления отвечает достаточно простой алгоритм, который без труда способен освоить любой гражданин со школьным аттестатом за плечами.

Общий порядок действий таков:

  1. Узнать общее теплосопротивление в условиях своего региона проживания. Эта величина климата постоянна. Для Юга России, к примеру, она составляет 2,8 кВт/м2. Для Средней полосы это значение равняется 4,2 кВт/м2.
  2. После этого необходимо выяснить значение теплосопротивления самой стены дома. Для этого потребуется знать её толщину p и λ материала, из которого она состоит (значение этого коэффициента для любого материала можно без труда найти в сети Интернет).

Уже на основе этих сведений находим R стены по формуле p/λ:

  1. Вычислить необходимое значение сопротивления для пенополистирола по формуле: R общее — R стены.
  2. Наконец, остаётся лишь узнать необходимую толщину пенопласта. Её находим по формуле p = R изоляции * λ. Обратите внимание, что в качестве λ здесь обозначен расчётный коэффициент теплопроводности материала.

Наглядный пример: резиденту одного из регионов Средней полосы нужно выяснить, какой толщины подобрать слой пенопласта, плотность которого составляет 30 кг/м3. Стена его дома состоит только из силикатного кирпича (утепляется участок длиной в 50 см).

Из всего набора условий выявляем начальные сведения:

  • Общее теплосопротивление в регионе = 4,2 кВт/м2
  • λ пенопласта = 0,047 Вт/(м*К)

Далее вычисляем R стен. Т.к. коэффициент теплопроводности силикатного кирпича составляет 0,7 Вт/(м*К), его значение сопротивления будет следующим:

R стены = 0,5/0,7 = 0,71 кВт/м2

Аналогичную величину рассчитываем и для пенопласта:

R пенополистирола = 4,2 – 0,71 = 3,49 кВт/м2

И уже на основе полученных данных узнаём необходимую для своих нужд толщину изоляционного слоя:

p = 3,49 * 0,047 = 0,16 м

Подобный алгоритм вычислений несомненно пригодится и в любой другой местности. Главное – правильно выяснить начальные данные. Всегда помните, что грамотный подбор пенопласта в необходимых размерах заведомо избавит от лишних материальных и временных затрат.

При этом итоговый результат окажется гораздо более лучше всех ожиданий. Сравните сами: 10 см пенополистирола способны заменить целую кладку в один кирпич (но только при условии 15-17 кг/м3 плотности). Однако листы с ещё более плотные листы дадут возможность обойтись уже без пары рядов камней. Наконец, даже вычисления доказывают, что пара сантиметров пенопласта полностью эквивалентны 50 см кирпичной стены.

Коэффициент теплопроводности экструдированного пенополистирола

Экструзионный пенополистирол ТЕХНОНИКОЛЬ XPS представляет собой теплоизоляционный материал с равномерно распределенными замкнутыми ячейками. ТЕХНОНИКОЛЬ XPS не впитывает воду, не набухает и не дает усадки, химически стоек и не подвержен гниению.

Высокая прочность позволяет получить ровное и одновременно жесткое основание, что существенно увеличивает срок эксплуатации всей теплоизоляционной системы.

ТЕХНОНИКОЛЬ XPS применяется в общегражданском строительстве при устройстве теплоизоляции фундамента, кровли, полов, утеплении фасадов.

Экструдированный пенополистирол (или экструзионный пенополистирол) — это новое слово в сфере теплоизоляционных технологий. Даже несмотря на то, что материал начали производить более 60-ти лет назад, он по-прежнему не имеет аналогов ни в России, ни в мире. Пенополистирол ТЕХНОНИКОЛЬ XPS — это универсальный утеплитель во всех отношениях.

Во-первых, экструдированный пенополистирол позволяет эффективно осуществлять теплоизоляцию самых различных объектов, конструкций и сооружений. Другими словами, он имеет поистине широкую сферу применения. ТЕХНОНИКОЛЬ XPS используют при устройстве теплоизоляции полов, стен, фундаментов, кровли, а также различных инженерных сооружений и дорог.

Таким образом, экструдированный пенополистирол находит применение как в промышленном, так и в частном строительстве.

Во-вторых, утеплитель ТЕХНОНИКОЛЬ XPS обладает уникальными техническими характеристиками. Экструдированный пенополистирол имеет один из самых низких показателей теплопроводности в ряду другой аналогичной продукции. Кроме того, ТЕХНОНИКОЛЬ XPS характеризуется химической стойкостью, высокой прочностью на сжатие, водо- и паронепроницаемостью, а также устойчивостью к образованию плесени и грибков. Таким образом, экструдированный пенополистирол ТЕХНОНИКОЛЬ XPS не только обеспечивает теплоизоляцию, но и эффективно препятствует воздействию целого ряда других разрушительных и негативных факторов.

Кроме того, экструдированный пенополистирол относится к классу экологически чистых материалов, что делает его вне конкуренции в ряду других утеплителей.

Корпорация ТЕХНОНИКОЛЬ осуществляет производство экструзионного (экструдированного) пенополистирола с применением самых современных технологий и новейшего оборудования, что позволяет изготавливать действительно качественный, надежный и долговечный теплоизоляционный материал.

В ассортименте компании представлен ТЕХНОНИКОЛЬ XPS нескольких видов, ориентированных на оптимальное решение задач по теплоизоляции.

XPS ТЕХНОПЛЕКС, ТЕХНОНИКОЛЬ CARBON ECO, ТЕХНОНИКОЛЬ CARBON ECO FAS, ТЕХНОНИКОЛЬ CARBON ECO SP, ТЕХНОНИКОЛЬ CARBON PROF, ТЕХНОНИКОЛЬ CARBON PROF SLOPE, ТЕХНОНИКОЛЬ CARBON SOLID, ТЕХНОНИКОЛЬ CARBON SAND. Данные виды экструзионного пенополистирола различаются показателями прочности на сжатие, водопоглощения, а также коэффициентами теплопроводности при различных условиях эксплуатации.

Правильно подобранный экструзионный пенополистирол — это эффективное решение проблем с теплоизоляцией на долгие годы вперед, высокая экономия затрат на отопление и гарантия долговечности конструкций и сооружений.

Пенополистирол экструдированный что это такое? Экструзионный (экструдированный) пенополистирол – синтетический материал для теплоизоляции, разработанный американской строительной компанией в 50-е годы ХХ века. Изготавливается с применением технологии вспенивания, в составе используются полимерные композиции. Материал продавливается через специальную форму и соединяется в цельный элемент.

Выпускается в форме плит, подложки. Встречается на рынке как декоративный элемент.

Стандартный размер плит составляет 600х1200 или 600х2400 мм. Стандартные размеры установлены ГОСТами, но многие компании изменяют размеры, делая пластины другой ширины. Распространен размер 580 мм. Толщина элементов варьируется от 20 мм до 10 см, в зависимости от производителя.

В торговые точки материал завозится упаковками по несколько элементов. Количество единиц в одной упаковке зависит от толщины изделий. Например, если толщина плит составляет 5 см, упаковка содержит обычно 8 единиц товара. При толщине 10 см упаковывается 4 пластины.

Дополнительная информация: возможен выпуск пеноплистирола в качестве напольного покрытия. Современный рынок предлагает материалы под ламинат, паркет, линолеум. Возможно изготовление на основе материала декоративных элементов.

Выглядят они в точности как из гипса.

Достоинства и недостатки

Как и любой другой материал, экструдированный пенополистирол обладает достоинствами и некоторыми недостатками. До приобретения и использования стоит с ними ознакомиться.

Достоинства экструдированного пенополистирола:

  • Поглощение влаги в пределах 0,2%. Этот показатель означает практически полную водонепроницаемость.
  • Минимальный показатель теплопроводности. При стандартной температуре 25 о С составляет около 0,032 Вт/м*К. Если сравнивать проводимость тепла, по показателям получается следующее: 55 см кирпича равняется 3 см пенополистирола.
  • Хорошо выдерживает деформацию. Использовать можно для кладки под отмостку, закладывать после фундамента.
  • Не вступает в реакцию с неорганическими химическими реагентами.
  • Выдерживает значительные перепады температур, показатели не меняются при температуре воздуха от -50 до +75 о С.
  • По документации, использовать материал можно в течение не менее полувека. За это время характеристики не изменятся.
  • Экологически чистое вещество. Используется не только как утеплитель, а, например, для производства легких одноразовых тарелок или других видов дешевой посуды. Из него производятся детские игрушки.
  • Имеет минимальный вес. Небольшой толщины достаточно для хорошего утепления.

Кроме многочисленных положительных характеристик, можно выделить некоторые недостатки:

  • сравнение с другими видами утеплителей показывает, что цена материала высокая;
  • сильная горючесть. В процессе горения выделяются вредные вещества, черный дым;
  • под воздействием ИК лучей разрушается. Для сохранения эксплуатационных характеристик необходимо спрятать от прямых солнечных лучей;
  • производители заверяют, что внутри утеплителя не заводятся грызуны. Действительно, они не живут внутри, но часто проделывают каналы для передвижения;
  • растворители разрушают структуру.

Кроме перечисленных недостатков, к ним можно добавить низкую проницаемость пара. Иногда это плюс, но если утеплять деревянный дом, возможно возникновение грибков, плесени. Как результат, появляется неприятный запах в жилище, постоянно ощущается сырость.

Область применения

Экструдированный серый пенополистирол имеет широкую область применения. Преимущественно используется для утеплительных работ. Ограничивается сфера использования только температурными показателями (не выше 75 о С). Материал можно укладывать во влажных местах, в землю.

Обычно сфера использования ограничивается только финансовыми возможностями. Дороговизна делает нецелесообразным применение во многих местах. В местах, где отсутствует необходимость высоких технических характеристик, вместо ППС используется обычный пенопласт, отзывы про который тоже положительные, чтобы сэкономить средства.

Используется для утепления:

  • бетонных или деревянных полов;
  • стен внутри помещения или снаружи здания. Совместим с любым материалом;
  • колодцев. Нередко бетонные кольца покрываются материалом для дополнительной защиты;
  • отмостки;
  • поверхности земли. Чтобы не произошло разрушение структуры, наносится краска. Даже тонкий слой не допустит порчи состава.

Кроме перечисленных сфер, материал применяется в дорожном строительстве. Входит в состав многих холодильных установок, как экструзия утеплитель. Используется в сельском хозяйстве. Пенополистиролом утепляют кровли, подземные этажи. Одно из перспективных направлений – производство сэндвич панелей.

Технические характеристики экструдированного пенополистирола

Материал обладает одними из самых высоких технических характеристик на рынке товаров для утепления. У любого газа теплопроводность намного ниже, чем у твердых тел. Для воздуха показатель составляет 0,026 Вт/м* о С. Экструдированный пенополистирол является воздушной смесью примерно на 90%. Обладает теплопроводностью в 0,03 Вт/м* о С. Почти как воздух, а значит, тепло удерживается идеально.

Материал выпускают с различными показателями плотности. Производители предлагают от 25 до 47 кг/м 3 . Чем выше цифра, тем большая прочность. По мере повышения плотности, прочность увеличивается от 20000 до 50000 кг/м 2 .

Вода впитывается пенополистиролом плохо. Примерно за месяц одна плитка способна впитать около 0,4% собственного объема, если погрузить ее полностью в воду. Дальше процент впитанной жидкости не увеличивается, а останавливается. Паропроницаемость минимальная. Составляет 0,0128 Мг/(м*ч*Па). Часто компании, специализирующиеся на выполнении ремонтных работ, предлагают не использовать пароизоляцию, ограничившись использованием только полистирола.

Утеплитель способен выдержать температуру в пределах от -50 до +75 о С. Его использование возможно почти в любом климате. Горючесть высокая, класс изменяется в зависимости от добавления дополнительных веществ, от Г1 до Г4.

В некоторых моделях проделана специальная выемка по краям. Сделана для повышения плотности прилегания плит за счет изоляции швов. Данное нововведение не дает образовываться прослойкам холода между элементами, обеспечивая полное сохранение тепла.

С пенополистиролом были проведены испытания. Смысл их – многократное замораживание, размораживание мокрой плитки. Определено опытным путем, что без изменения технических характеристик материал выдерживает 80 циклов. Для пользователей эта информация полезна: примерно столько лет способен выдержать состав при эксплуатации.

Дополнительная информация: по сравнению с пенопластом, пенополистирол выигрывает по сохранению тепла примерно в 2 раза. Повышена прочность, уменьшена толщина. По сравнению с другими утеплителями, звукопроницаемость не очень высокая. Компенсируется недостаток простотой укладки. Для здоровья полностью безопасен.

Правила выбора материала

Спрос на пенополистирол высокий, увеличивается ежегодно. Чтобы утеплитель прослужил как можно дольше, выполнял без сбоев все требуемые функции, необходимо правильно совершить покупку. Каждый производитель утверждает, что его изделие – самое лучшее на рынке, но это не всегда правда.

Правила выбора:

  • Обозначается полистирол двумя цифрами. Если маркировка ниже индекса 28, стоит отказаться от покупки. Проверка обязательна, некоторые марки изделия не подходят для фасадных работ, не справятся с утеплением дома. Выбирать материал с индексом 40 и выше. Неплохо зарекомендовала себя марка ПСБ-С-40, самозатухающий состав.
  • Перед покупкой посмотреть стандарты, на основе которых осуществлялось производство. Многие изготовители выполняют плиты не по ГОСТам, а собственным техническим условиям. Возможен некачественный товар. Обычно понижается плотность, за счет чего снижается себестоимость. Не стоит ориентироваться на число марки, обязательно ознакомиться с характеристиками.
  • Чтобы убедиться в высоком качестве продукции, можно отломить небольшой кусочек от края. Если на месте излома будут заметны небольшие шарики, пенополистирол, вероятно, низкосортный. На изломе должны быть многогранники правильной формы. Отломленный кусочек ровный. Тест показывает метод производства: экструзия, выполненная на профессиональном оборудовании, или кустарный способ, как у простого пенопласта.
  • Приобретать товар у зарекомендовавших себя производителей. Таковыми являются «Penoplex» УРСА, Кнауф и «Технониколь» – русские. «Басф» или «Новахимикалс» – зарубежные.

Не стоит забывать, что производство пенополистирола – сложный технологический процесс. Методы производства отличаются у многих производителей. Некоторые безопасны, другие способны нанести вред здоровью человека.

Марки производителя

Каждая марка производитель пенополистирола отличается от конкурентов некоторыми особенностями. Чтобы разобраться в многообразии предлагаемого выбора, стоит рассмотреть изделия каждого производителя подробней.

Кнауф

Производитель из Германии. Производство представлено многочисленными вариантами пеноплистирола.

Используются утеплители:

  • Knauf Therm Compack. Универсальный, используется для любого вида бытовой теплоизоляции. Имеет низкий коэффициент теплопроводности 0.032 Вт/мк, высокие звукоизоляционные свойства. Индекс снижения воздушного шума 47 Дб, ударный шум гасится, если показатель не превышает 24 Дб. Благодаря показателям хорошо подходит для утепления небольших помещений.

Поставляется плитами длиной 1х0,6 м. толщина 5 см. Паропроницаемость 0,033 мг/мчПа

  • Knauf Therm Roof Light. Плотность низкая, 10–15 кг/м³. используется для удержания тепла на стропильных каркасах домов. Характеристики: проводимость тепла 0,034 Вт/мк, проводимость пара – 0,035 Вт/мк.
  • Knauf Therm Wall – для утепления стен. Показатели совпадают с прошлыми конструкциями, отличается повышенная механическая прочность. 60 кПа – показатель устойчивости на сжатие. Выбор размеров плит широкий. Теплопроводность: 0,033 Вт/мк, паропроводность: 0,032 мг/мчПа. Г3 – класс горючести.

Имеются модели Knauf Therm Flor, подходящая для изоляции полов, с низкой теплопроводностью 0,03 Вт/мк и Knauf Therm 5 in 1. Последняя выделяется максимальной прочностью среди всех моделей компании. Выдерживает до 17 т/м 2 .

Производитель пенополистирола УРСА из России представляет несколько вариантов изделий.

Модель/ХарактеристикиURSA XPS N-IIIURSA XPS N-III-G4URSA XPS N-V
Теплопроводность0,032 Вт/мК0,032 Вт/мК0,033 Вт/мК
Температура примененияот -50 до +75от -50 до +75от -50 до +75
Водопоглощение0,3% от объема за 24 часа0,3% от объема за 24 часа0,3% от объема за 24 часа
Коэффициент паропроницаемости0,004 мг/мчПа0,004 мг/мчПа0,004 мг/мчПа
Прочность на сжатие25 т/м²25 т/м²50 т/м²

От других производителей изделия отличаются повышенными показателями прочности. Материал незаменим для профессионального строительства. Один из наиболее прочных вариантов, выдерживающий значительные нагрузки.

Пеноплэкс

Отечественный производитель пенополистирола. Обладает широким модельным рядом. Плиты можно использовать для различных вариантов утепления.

Выделяют следующие виды изделий:

  • Пеноплекс Стена
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность25,0-32,0 кг/м³
Прочность на сжатие0,20 МПа
Водопоглощение0,5%
ОгнестойкостьГ3
Диапазон температур-50 … +75 °С
  • Пеноплекс Фундамент
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность29,0-33,0 кг/м³
Прочность на сжатие0,27 МПа
Водопоглощение0,5%
ОгнестойкостьГ4
Диапазон температур-50 … +75 °С
  • Пеноплекс Кровля
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность28,0-33,0 кг/м³
Прочность на сжатие0,25 МПа
Водопоглощение0,5%
ОгнестойкостьГ3
Диапазон температур-50 … +75 °С
  • Пеноплекс Комфорт
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность25,0-35,0 кг/м³
Прочность на сжатие0,20 МПа
Водопоглощение0,5%
ОгнестойкостьГ4
Диапазон температур-50 … +75 °С
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность35,0-47,0 кг/м³
Прочность на сжатие0,5 МПа
Водопоглощение0,4%
ОгнестойкостьГ4
Диапазон температур-50 … +75 °С
Технониколь

Считается лидером в области утеплительных материалов. С каждым годом объем выпускаемой продукции стремительно увеличивался. Сейчас утеплители стоят немного дороже, чем у конкурентов на российском рынке, но качество товара самое высокое. Специализируется на выпуске многочисленных наименований различных утеплителей. Пенополистирол представлен несколькими моделями.

Характеристики/МодельТехноплексCarbon EcoXPS 35-300Prof
Теплопроводность0,032 Вт/мк0,029 Вт/мк0,028 Вт/мк0,028 Вт/мк
Плотностьот 26 до 35 кг/м³26-32 кг/м³35 кг/м³30 кг/м³
Прочность на сжатие200 кПа250 кПа400 Кпа300 кПа
Водопоглощение0. 2%0.2%0.2%0.2%
ОгнестойкостьГ4Г4Г4Г4
Диапазон температур-50 … +75 °С-50 … +75 °С-50 … +75 °С-50 … +75 °С
Паропроницаемость0,01 мг/мчПа0,011 мг/мчПа0,01 мг/мчПа0,01 мг/мчПа

Часто задаваемые вопросы

– Что лучше под стяжку керамзит или пенополистирол?

Коэффициент теплопроводности керамзита в среднем 0,12, а пеноплэкса 0,03 Вт/м*С. Т.е. почти на порядок. Таким образом, для обеспечения требуемой теплоизоляции полов засыпка кермазита будет намного толще, чем уложить листы пеноплэкса и им подобным. И как следствие, вся конструкция полов с керамзитом будет много толще, чем конструкция полов с пеноплэксом.

– Пенополиуретан или пенополистирол что лучше?

Проведя сравнительный анализ обоих утеплителей, можно сказать следующее: пенополиуретан обладает более высокими характеристиками по шумоизоляции, влагостойкости, термостойкости. Имеет более высокий класс пожаробезопасности. Однако теплопроводность его на порядок ниже.

Учитывая, что речь идет о выборе материала для утепления, пенополистирол будет лучшим. Хотя, если учитывать опыт пользователей, нет необходимости использовать материал с настолько высокими показателями, как у полистирола. Потому предпочтение при покупке стоит отдать пенополиуретану.

– Вреден ли для здоровья человека пенополистирол?

Нет, материал полностью безопасен при использовании. Единственный момент – при горении выделяется едкий дым.

– Какие поверхности нельзя утеплять пенополистиролом?

Нельзя утеплять поверхности, температура которых превышает указанные пределы: -50 … +75 °С. Еще одно ограничение: в деревянных домах, где требуется хорошая пароизоляция, материал применять нежелательно. Возможно образование плесени, грибка между стеной и утеплителем. Из дома не будет выходить влажный воздух. В помещении будет постоянная высокая влажность.

Что такое экструдированный пенополистирол? Универсальный утеплитель. Считается одним из современных образцов материалов данного класса. При его использовании стоит соблюдать установленные температурные нормативы и другие важные требования. Если утепление ЭППС выполнено правильно, производители дают гарантию на срок службы полистирола не менее 50 лет.

Климат в России очень холодный, поэтому практически любой дом, построенный за городом, приходится утеплять. Для этого можно использовать самые разные материалы. Одним из наиболее популярных является пенополистирол. Монтируется этот утеплитель элементарно. Коэффициент же теплопроводности у него ниже, чем у любого другого современного изолятора.

Что представляет собой пенополистирол

Изготавливается этот материал примерно по тому же принципу, что и любые другие вспененные утеплители. Сначала в специальную установку наливается жидкий стирол. После добавления в него особого реагента происходит реакция с выделением большого количества пены. Готовая вспененная густая масса до застывания пропускается через формовочный аппарат. В результате получаются листы материала с огромным количеством мелких воздушных камер внутри.

Такая структура плит и объясняет высокие изоляционные качества пенополистирола. Ведь воздух, как известно, тепло сохраняет очень хорошо. Существуют виды пенополистирола, в ячейках которых содержатся и другие газы. Однако самыми эффективными изоляторами все же считаются плиты именно с воздушными камерами.

Входящие в структуру пенополистирола ячейки могут иметь размер от 2 до 8 мм. На их стенки при этом приходится примерно 2% массы материала. Таким образом, пенополистирол на 98% состоит из воздуха.

Что такое теплопроводность

Узнать, насколько хорошо тот или иной материал способен сохранять тепло, можно по коэффициенту его теплопроводности. Определяют этот показатель очень просто. Берут кусок материала площадью в 1 м2 и толщиной в метр. Одну из его сторон нагревают, а противоположную ей оставляют холодной. При этом разница температур должна быть десятикратной. Далее смотрят какое количество тепла достигнет холодной стороны за один час. Измеряют теплопроводность в ваттах, разделенных на произведения метра и градуса (Вт/мК). При покупке пенополистирола для обшивки дома, лоджии или балкона обязательно следует посмотреть на этот показатель.

От чего зависит теплопроводность

Способность пенополистирольных плит сохранять тепло зависит в основном от двух факторов: плотности и толщины. Первый показатель определяется по количеству и размеру воздушных камер, составляющих структуру материала. Чем плотнее плита, тем больший коэффициент теплопроводности у нее будет.

Зависимость от плотности

В таблице ниже можно посмотреть каким именно образом теплопроводность пенополистирола зависит от его плотности.

Плотность (кг/м3)Теплопроводность (Вт/мК)
100.044
150.038
200.035
250.034
300.033
350.032

Представленная выше справочная информация, однако, скорее всего, может пригодиться только владельцам домов, использовавшим пенополистирол для утепления стен, пола или потолка довольно-таки давно. Дело в том, что при изготовлении современных марок этого материала производители используют специальные графитовые добавки, в результате чего зависимость теплопроводности от плотности плит сводится практически на нет. В этом можно убедиться, взглянув на показатели в таблице:

МаркаТеплопроводность (Вт/мК)
EPS 500.031-0.032
EPS 700.033-0.032
EPS 800.031
EPS 1000.03-0.033
EPS 1200.031
EPS 1500.03-0.031
EPS 2000.031

Зависимость от толщины

Разумеется, чем толще материал, тем лучше он сохраняет тепло. У современного пенополистирола толщина может колебаться в пределах 10-200 мм. По этому показателю его принято классифицировать на три больших группы:

  1. Плиты до 30 мм. Этот тонкий материал обычно используется при утеплении перегородок и внутренних стен зданий. Коэффициент его теплопроводности не превышает 0.035 Вт/мК.
  2. Материал толщиной до 100 мм. Пенополистирол этой группы может применяться для обшивки как внешних, так и для внутренних стен. Тепло такие плиты сохраняют очень хорошо и с успехом используются даже в регионах страны с суровым климатом. К примеру, материал толщиной 50 мм имеет теплопроводность в 0.031-0.032 Вт/Мк.
  3. Пенополистирол толщиной более 100 мм. Такие габаритные плиты чаще всего используются для изготовления опалубок при заливке фундаментов на Крайнем Севере. Теплопроводность их не превышает 0.031 Вт/мК.

Расчет необходимой толщины материала

Точно вычислить толщину необходимого для утепления дома пенополистирола довольно-таки сложно. Дело в том, что при выполнении этой операции следует учитывать массу самых разных факторов. К примеру, таких, как теплопроводность материала, выбранного для сооружения утепляемых конструкций и его разновидность, климат местности, тип облицовки и пр. Однако примерно рассчитать необходимую толщину плит все-таки можно. Для этого понадобятся следующие справочные данные:

  • показатель требуемого теплосопротивления ограждающих конструкций для данного конкретного региона;
  • коэффициент теплопроводности выбранной марки утеплителя.

Собственно сам расчет производится по формуле R=p/k, где p — толщина пенопласта, R — показатель теплосопротивления, k — коэффициент теплопроводности. К примеру, для Урала показатель R равен 3,3 м2•°C/Вт. Допустим, для утепления стен выбран материал марки EPS 70 с коэффициентом теплопроводности 0.033 Вт/мК. В этом случае расчет будет выглядеть следующим образом:

То есть толщина утеплителя для наружных ограждающих конструкций на Урале должна составлять минимум 100 мм. Обычно владельцы домов холодных регионов обшивают стены, потолки и полы двумя слоями пенополистирола на 50 мм. При этом плиты верхнего слоя располагают таким образом, чтобы они перекрывали швы нижнего. Таким образом можно получить максимально эффективное утепление.

Экструдированный пенополистирол

Обычный утеплитель этого типа маркируется буквами EPS. Вторая разновидность материала — экструдированный пенополистирол обозначается буквами XPS. Отличаются такие плиты от обычных, прежде всего, структурой ячейки. Он у них не открытая, а закрытая. Поэтому экструдированный пенополистирол гораздо меньше простого набирает влагу. То есть способен сохранять свои теплоизоляционные качества в полной мере даже под воздействием самых неблагоприятных факторов внешней среды. Коэффициент теплопроводности экструдированного пенополистирола в зависимости от марки может составлять 0.027-0.033 Вт/мК.

Сравнение утеплителей

Таким образом, экструдированный и обычный пенополистирол считаются у владельцев загородных участков едва ли не самыми лучшими видами утеплителя. Ниже представляем вашему вниманию таблицу с коэффициентами теплопроводности других видов изоляторов.

МатериалКоэффициент теплопроводности (Вт/мК)
Минеральная вата0.045-0.07
Стекловата0.033-0.05
Керамзит0.16
Керамзитобетон0.31
Пенополиуретан0.02-0.041

Как видите, лучше пенополистирола, коэффициент теплопроводности которого составляет 0.031-0.033 Вт/мК, стены, потолки и полы можно утеплить только пенополиуретаном. Однако последний стоит очень дорого. К тому же при его нанесении используется специальное конструктивно сложное оборудование. А следовательно, наилучшим вариантом изолятора в плане способности сохранять тепло на данный момент является все же именно пенополистирол.

Пенопласт и его коэффициент теплопроводности. Экструдированный пенополистерол

Коэффициент теплопроводности пенопластов складывается в общем случае из коэффициентов теплопроводности твёрдой фазы, газа , а также конвективной и лучистой, или радиационной составляющих. При использовании пенопластов в качестве теплоизолирующих материалов следует по возможности уменьшить вклад каждой из компонент в суммарную величину . Вклад величины весьма мал по двум причинам. Во-первых, коэффициент теплопроводности полимерной фазы весьма незначителен и составляет 0,1-0,3 ккал/м*час*град. Во-вторых, доля полимерной фазы (стенок и рёбер ячейки) в пенопластах занимает незначительную часть общего объёма материала.

Коэффициент теплопроводности  пенопластов складывается в общем случае из коэффициентов теплопроводности твёрдой фазы, газа , а также конвективной и лучистой, или радиационной составляющих.

При использовании пенопластов в качестве теплоизолирующих материалов следует по возможности уменьшить вклад каждой из компонент в суммарную величину . Вклад величины  весьма мал по двум причинам. Во-первых, коэффициент теплопроводности полимерной фазы весьма незначителен и составляет 0,1-0,3 ккал/м*час*град. Во-вторых, доля полимерной фазы (стенок и рёбер ячейки) в пенопластах занимает незначительную часть общего объёма материала.
 

 
Уменьшение пенопласт коэффициент теплопроводности за счёт снижения доли твёрдой фазы не всегда возможно, не все полимеры можно вспенивать с высокой кратностью), не всегда целесообразно (по экономическим и технологическим соображениям) или нежелательно (чем меньше объёмный вес, тем, в частности, ниже прочностные показатели пенопластов). Коэффициент теплопроводности определяется в основном составом газовой фазы. Газ, содержащийся в ячейках вносит наибольший вклад в теплопередачу, потому что объёмное содержание газа в пеноматериале обычно превышает 90%.
 
 
 Одним из важнейших факторов, увеличивающих теплопроводность пенопластов в строительстве в процессе эксплуатации, является влияние влаги окружающей среды. Особенно велико действие влаги на повышение теплопроводности в том случае, когда существует резкий перепад температур на поверхностях образца. Например, при использовании пенопластов в холодильной технике, когда внутренние слои материала находятся при отрицательных температурах, водяные пары сначала конденсируются в ячейках пенопласта, а затем превращаются в лёд. Поскольку коэффициенты теплопроводности воды и льда составляют соответственно 0,5 и 1,5 ккал/м*час*град, то даже незначительные их количества способствуют резкому ухудшению теплоизоляционных свойств пенопластов. Поэтому структура вспененного материала, а точнее — соотношение общего объёма «изолированных» ячеек и «открытых» пор и их размер имеют решающее значение на получемеый теплоизоляционный эффект.
 

 
Чем выше процент изолированных (закрытых) ячеек и чем меньше размер ячеек, тем меньше проникновение паров влаги в теплоизоляционный материал, а следовательно и больший энергосберегающий результат.
Строительные компании, которым не безразлична их репутация для теплоизоляции трубопроводов систем кондиционирования, водоснабжения и охлаждения выбирают эластичные вспененные материалы на каучуковой основе.
В сопроводительной документации все компании, производящие эти материалы, акцентируют внимание покупателей на том, что эти вспененные каучуковые материалы имеют «закрытоячеистую» структуру. Следует отметить, что эластичных вспененных материалов со 100%-й «закрытой» структурой ячеек не существует, т. к. полностью избежать образования «дыр» в стенках ячеек в процессе вспенивания даже при методе высоких давлений невозможно.
 
 
Известно, что у зарубежных теплоизоляционных материалов на каучуковой основе используется общий технологический приём — свободное (неограниченное) вспенивание при нагреве в туннельных печах трубчатых или листовых заготовок, содержащих необходимые компоненты, обеспечивающие синхронизацию процессов вулканизации каучука и разложение химического газообразователя. От состава каучуковых смесей, условий вспенивания и других особенностей технологий зависит качество получаемых материалов и прежде всего процентное соотношение «закрытых» и «открытых» пор. Однако, неоспорим тот факт, что при свободном вспенивании процент «закрытых» пор всегда будет меньше, чем в случае, если вспенивание проводить «ограниченное», то есть под определённым давлением, позволяющим недопустить разрушение ячеек.
В этом и состоит отличие «Олигопена» от близких ему по полимерной основе и структуре материалов. Высокая прочность «Олигопена» является косвенным подтверждением того, что «дефектных» ячеек у «Олигопена» значительно меньше, при этом размеры ячеек в 5-20 раз меньше, чем в аналогичных материалах. 
 
Читайте подробнее: как правильно утеплять кровли и стены пенопластом и пеноизолом, изготовление пенопласта в домашних условиях.

Теплопроводность и применение пенопласта

Теплопроводность пенопластов зависит от химического состава, а также от количества, размера и расположения пор.

Коэффициент теплопроводности пенопластов на основе полипропилена достаточно низок и к тому же очень медленно растет при повышении температуры. Низкий коэффициент теплопроводности пенопласта ( 0 033 ккал / м — час — град) Micro foam определяется как большой долей газовой фазы ( 99 %), так и закрытоячеистой структурой. Более низкие значения коэффициента Я, для подобных легчайших пенопластов наблюдаются только для пен, наполненных фреонами, тогда как заполнитель ячеек пенопласта Microfoam — воздух.

Весьма низкий коэффициент теплопроводности пенопластов, а следовательно, их высокие теплоизоляционные свойства, объясняются тем, что 90 — 95 % их объема составляет газ или воздух, являющиеся плохими проводниками тепла. Для улучшения теплоизоляционных свойств определенного пенопласта в композицию вводят вещество с высокой излучательной способностью или вспенивают пенопласт более тяжелым газом. Большие размеры молекул тяжелых газов затрудняют диффузию их через полимерные стенки, поэтому тяжелые газы удерживаются в ячейках в течение многих лет и снижают теплопроводность пенопластов.

Еще одним фактором, увеличивающим теплопроводность пенопластов в процессе эксплуатации, является влияние влаги окружающей среды. Так, для пенополиуретанов, наполненных СС13Г, при температуре 25 С и относительной влажности 65 % скорость диффузии влаги воздуха составляет 10 — 20 г / м2 за 24 часа. Особенно велико действие влаги на повышение теплопроводности в том случае, когда существует резкий перепад температур на поверхностях образца. Например, при использовании пенопластов в холодильной технике, когда внутренние слои материала находятся при отрицательных температурах, водяные пары сначала конденсируются в ячейках пенопласта, а затем превращаются в лед.
По мере удаления высокомолекулярного газа из ячеек пены повышается теплопроводность пенопластов.

Существование минимума на кривой А / ( у) можно объяснить различным механизмом теплопроводности пенопластов в зависимости от размеров ячеек. Так, в области малых у из-за незначительного содержания твердой — фазы создаются благоприятные условия для лучистого теплообмена.

Таким образом, из-за незначительного вклада составляющих А-тв, А-к и Ар коэффициент теплопроводности пенопластов определяется, за исключением легчайших пенопластов, в основном составом газовой фазы.

Как видно, особенно при низкой температуре они очень близки к коэффициенту теплопроводности воздуха, который равен 0 02 ккал / ( м2 — ч-град), что, собственно, является предельной теоретической величиной для коэффициентов теплопроводности. Теплопроводность пенопласта изменяется очень незначительно в широком интервале температур; она в 15 раз меньше, чем теплопроводность твердой невспененной смолы, из которой получают пену.

Замкнуто-ячеистое строение певдполистирола обеспечивает его высокие теплоизоляционные свойства, малое влаго-и водопоглощение. Коэффициент теплопроводности пенопласта с Yo0 l г / см3 составляет 0 033 ккал / м шс С. Пенопласт ПС-1 поглощает воды в три раза меньше.

Коэффициент теплопроводности пенопластов на основе полипропилена достаточно низок и к тому же очень медленно растет при повышении температуры. Низкий коэффициент теплопроводности пенопласта ( 0 033 ккал / м — час — град) Micro foam определяется как большой долей газовой фазы ( 99 %), так и закрытоячеистой структурой. Более низкие значения коэффициента Я, для подобных легчайших пенопластов наблюдаются только для пен, наполненных фреонами, тогда как заполнитель ячеек пенопласта Microfoam — воздух.

Поскольку при низких температурах конвекция уже не является основным средством теплопередачи, основным фактором, влияющим на изоляционные свойства ППУ при криогенных температурах, становятся размеры и однородность ячеек. При этом влияние природы вспенивающего агента и полимера на теплопроводность пенопласта более сильно проявляется при — 25, чем при — 180 С.

Для изготовления формованных деталей интерьера автомобилей используют также материалы на основе вспененных полимеров, в частности листы из пенополиолефинов и термопластичных пенополиуретанов. Применение таких материалов позволяет значительно уменьшить массу конструкции, повысить комфортабельность автомобилей — благодаря низкой звуко — и теплопроводности пенопластов, а также травмобезо-пасности.

Это позволяет говорить о возможности назначения коэффициентов условий работы к расчетным значениям напряжений сопротивлений пенопласта при его силовой работе в ограждениях конструкций. Этот же принцип, очевидно, в совокупности с результатами исследований влияния структурных параметров может и должен быть в конечном итоге применен к расчетным значениям теплопроводности пенопластов, что, наряду с продолжением исследований выносливости новых марок фенольных пенопластов для разработки предложений по нормированию их длительной прочности и деформативности, становится одной из важных задач настоящей работы.

Пенополистирол (пенопласт) и экструдированный пенополистерол

Пенополистирол (пенопласт)

Пенополистирол (пенопласт) – теплоизоляционный материал, получаемый путем вспенивания полистирола. 98% процентов его объема составляет воздух, запечатанный в гранулах, что объясняет его отличные теплоизоляционные и звукоизоляционные свойства. Коэффициент теплопроводности один из самых низких -0,033 — 0,040 Вт/м К – ниже , чем у минераловатных утеплителей.

Практически полное отсутствие водопоглощения – серьезное преимущество пенопласта. Пенополистирол не подвергается биологическому разложению, долговечен, плиты имеют малую массу и удобны в установке – могут быть приклеены к любому строительному материалу.

Пенополистирол относится к группе сгораемых материалов, добавки антипирена при производстве придают способность к самозатуханию, но температуры выше 90 градусов пенополистирол не выдерживает.

К недостаткам пенополистирола можно отнести и невысокую паропроницаемость, что ограничивает его применение в качестве внешнего утеплителя фасадных систем. При использовании пенопластовых плит для утепления под кровлей необходимо предусмотреть эффективную систему вентиляции.

Область применения зависит от марки пенополистирола.
ПСБ-С 15 – утепление конструкций, не подвергающихся механической нагрузке – утепление кровель, в том числе межстропильного пространства, потолочные перекрытия.
ПСБ-С 25 и 25Ф– самая широко применяемая марка – для утепления практически любых поверхностей(стен, фасадов, потолков, под напольное покрытие, кровельное утепление).
ПСБ-С 35 и 50 – утепление объектов с постоянной высокой нагрузкой.
 Экструдированный пенополистерол

Экструдированный пенополистирол СтиродурЭкструдированный пенополистерол (экструзия) – высокоэффективный теплоизоляционный материал для различных типов ограждающих конструкций. Коэффициент теплопроводности различных марок колеблется от 0,027 до 0,033 Вт/м К.

Материал имеет ячеистую структуру, причем полная закрытость ячеек обеспечивает абсолютную водонепроницаемость материала. Экструдированный пенополистирол рекомендуется использовать для утепления в условиях повышенной влажности или возможного частого контакта в водой – прежде всего, для утепления фундаментов в коттеджном строительстве, подвальных помещений. Экструдированный пенополистирол будет сохранять свои теплоизоляционные свойства в условиях недостаточной гидроизоляции.

Экструдированный пенополистирол отличается высокой устойчивостью к деформациям сжатия, и потому может использоваться для утепления поверхностей, несущих нагрузку. Широко применяется в утеплении фасадных систем, особенно если облицовочный материал имеет значительный вес.

Также материал выдерживает резкие и постоянные температурные перепады, не разрушаясь. Нормальный температурный диапазон – от-120 до +75 градусов.

Недостатки экструдированного пенополистирола – разрушаемость его при контакте с некоторыми химическими веществами (сложными углеводородами), горючесть, хотя обладает свойствами самозатухания.

Пеноплекс: технические характеристики — коэффициент теплопроводности и другие свойства, видео и фото

Пеноплекс — что это такое, какими свойствами и характеристиками обладает, и для каких целей применяется? Я часто работаю с этим материалом, и готов ответить на поставленные вопросы. А также рассказать, где лучше всего его использовать.

Пеноплекс — экструдированный пенополистирол от отечественного производителя

Особенности Пеноплекса

Общие сведения

Этот утеплитель — экструдированный пенопласт от одноименного российского производителя. Первая производственная линия для изготовления экструдированного пенополистирола Пеноплекс появилась в далеком 1998 году.

Благодаря строгому контролю качества и применению передовых технологий, эта компания занимает на сегодняшний день лидирующие позиции по производству теплоизоляционных материалов на отечественном рынке.

Производство Пеноплекса осуществляется на современном высокотехнологичном оборудовании

Напомню, что экструзионный пенополистирол — это, можно сказать, модифицированный вариант обычного пенополистирола (пенопласта). В результате особой технологии изготовления, характеристики и эксплуатационные качества у экструдированного пенополистирола значительно выше, чем у обычного пенопласта.

Свойства

Как и любой другой утеплитель, пеноплекс имеет свои достоинства и недостатки, с которыми ознакомимся ниже.

Так выглядит структура пеноплекса в увеличенном виде

Плюсы:

  • Прочность. Имеет однородную мелкоячеистую структуру. Благодаря этому он не крошится как пенопласт, а также имеет гораздо большую прочность на сжатие.
    Поэтому данный утеплитель может выдерживать большие нагрузки. К примеру, его можно укладывать под стяжку или использовать для утепления фундамента;

Благодаря высокой прочности Пеноплекс можно укладывать под стяжку

  • Эффективность. Теплопроводность так же выше, чем у пенопласта;
  • Долговечность. Материал даже в неблагоприятных условиях может прослужить более полувека;
  • Устойчивость к влаге. Утеплитель имеет практически нулевое влагопоглощение, поэтому не нуждается в гидроизоляции;
  • Пожаробезопасность. В составе материала имеются антипирены. Поэтому Пеноплекс — это негорючий пенополистирол.
    Надо сказать, что данное качество также выгодно отличает материал от обычного пенопласта. Дело в том, что негорючий пенопласт встречается очень редко;

Утеплитель не впитывает влагу

  • Экологичность. Материал не выделяет в атмосферу вредных веществ;
  • Устойчивость к химическим веществам. Экструдированный пенополистирол не вступает в реакцию с большинством видов химических веществ. Это позволяет использовать утеплитель в грунте для утепления фундаментов и отмосток.

Органические растворители растворяют экструзионный пенополистирол. Это необходимо учитывать при выборе клеящих составов или красок для данного материала.

Минусы:

  • Низкая паропроницаемость. Утепленное экструзионным пенополистиролом жилье перестает дышать;
  • Высокая стоимость. Плиты Пеноплекса стоят значительно дороже пенопласта.

Сравнение теплопроводности пеноплекса с другими материалами

Основные параметры

Технические характеристики материала:

ПараметрыЗначения
Коэффициент теплопроводности плит, Вт/м·ºК0,03
Плотность, кг/м³25-47
Прочность на сжатие при 10% деформации, МПа0,20-0,50
Водопоглощение в течение 28 суток, % от объема0,5
Огнестойкость плитГ3-Г4
Размеры, мм600х1200
Толщина плит, мм20-100

Как вы видите, характеристики пеноплекса достаточно высокие.

Стандартные размеры листа утеплителя

Виды и предназначение

Итак, со свойствами и цифрами Пеноплекса мы разобрались. Теперь давайте рассмотрим где он используется. Область применения у этого материала очень обширна.

Утеплитель можно использовать для утепления фундамента

В настоящее время компания предлагает следующие марки Пеноплекса:

  • Фундамент. Особенность этих плит заключается в высокой прочности на сжатие, что позволяет им выдерживать большие нагрузки. В частности, они отлично подходят для утепления фундамента или для укладки под стяжку.
    Имейте в виду, что утеплитель пеноплекс этой серии не содержит в составе антипирен. Поэтому его можно использовать лишь в конструкциях с защитным слоем;
  • Кровля. Эта серия обладает низкой теплопроводностью и высокой прочностью. Кроме того, кромки плит имеют г-образную форму, что позволяет легко укладывать плиты своими руками, и при этом создавать сплошной теплоизоляционный слой без мостиков холода.
    Надо сказать, что производитель позиционирует материал, как утеплитель для плоской кровли, однако, его можно применять и для утепления других конструкций;

Серия Кровля предназначена для утепления плоских крыш

  • Пеноплэкс 45. Эта серия предназначена для утепления дорожного полотна, чтобы предотвратить морозное пучение.
    Кроме того, плиты используют при строительстве дорог в условиях вечной мерзлоты. Утеплитель в этом случае предотвращает подтаивание почвы и просадку дорожного полотна.
    Главная характеристика материала этой серии — это высокая прочность. Данный показатель составляет 0,50 Мпа;
  • Комфорт. Этот материал предназначен для утепления частных домов и квартир, а также балконов и лоджий. Основной упор сделан на экологичность — в составе утеплителя нет вредных химических веществ.

Пеноплекс комфорт — универсальный утеплитель для внутреннего применения

Кроме того, пеноплекс комфорт имеет г-образные кромки, такие же, как у серии Кровля;

  • Скатная кровля. Название этой серии говорит само за себя — она предназначена для скатных крыш. Эти плиты отличаются невысокой плотностью, но при этом они сохраняют жесткость и влагостойкость. Благодаря наличию шипов и пазов на кромках, они надежно состыковываются друг с другом и образуют сплошной слой.
    Если монтировать плиты снаружи, как показано на фото, то они также обеспечивают дополнительную защиту от влаги.

Серия Скатная кровля обеспечивает надежное и эффективное утепление скатных крыш

  • Основа. Этот материал позиционируется как утеплитель для гражданско-промышленного строительства. В плане применения его можно назвать универсальным — этими плитами можно выполнять утепление стен, полов, перекрытий, крыш и т.д.
    Утеплитель способен выдерживать большие нагрузки, при этом он экологичный и легкий;
  • Фасад. Данная серия предназначена для утепления наружных стен. Однако, эти плиты так же могут применяться для утепления внутренних стен и перегородок.
    Благодаря фактурной поверхности, плиты можно использовать не только для навесных, но и мокрых фасадов, т.е. их поверхность можно покрывать штукатурно-клеевыми смесями. Кроме того, в составе материала имеются антипирены;

Серия Фасад подходит для утепления наружных стен как по технологии навесной фасад, так и по технологии мокрый фасад

  • Уклон. Эти плиты предназначены исключительно для создания уклона и контруклона на плоских крышах, так как одна их сторона толще другой;
  • Стена. Данная серия мало чем отличаются от серии Фасад, за исключением меньшей плотности. Соответственно, пеноплекс стена применяется в тех же случаях, что и фасадный материал. Кроме того, производитель рекомендует этот утеплитель для трехслойных стен из мелкоштучных материалов.

Пеноплекс Стена можно использовать для внутреннего утепления стен

Несмотря на то, что серия Фасад имеет фактуру, перед оштукатуриванием крайне желательно обработать поверхность плит адгезионной грунтовкой. Причем, инструкция по применению грунтовки требует ее нанесения в 2 слоя, что позволяет добиться наибольшего эффекта, т.е. хорошей адгезии штукатурки с утеплителем.

Стоимость

Цены таблице актуальны весной 2017 г.:

МаркаЦена в рублях за упаковку
Фундамент (толщина 50 мм, 8 шт.)1400
Кровля (80 мм, 5 шт.)1420
Комфорт, (40 мм 10 шт.)1200
Основа, (50 мм, 8 шт.)1665
Фасад, (50 мм, 8 шт.)1350
Стена, (50 мм, 8 шт.)1 350

Вот и вся информация о Пеноплексе, которой я хотел с вами поделиться.

 

Вывод

Мы выяснили, что представляет собой Пеноплекс, и для каких целей его можно использовать. Дополнительно рекомендую просмотреть видео в этой статье. Если какие-то моменты вам непонятны — пишите комментарии, и я с радостью вам отвечу.


Почему важно знать коэффициент теплопроводности полиуретана и как это влияет на качество теплоизоляции?

Зачем знать коэффициент теплопроводности при выборе утеплителя, как он влияет на качество теплоизоляции и как рассчитать толщину слоя утепления. Читайте в статье.

ППУ для теплоизоляции в сравнении с другими утеплителями

Пенополиуретан (ППУ) — газонаполненная пластмасса, которая получается в результате смешивания полиола и полиизоцианата. После химической реакции вещество увеличивается в объеме от 5 до 25 раз в зависимости от формулы.

В строительстве ППУ применяют для теплоизоляции. Его теплопроводность позволяет защитить от холода кирпичные и деревянные дома, строения из газобетона и камня, блочные и бетонные конструкции. Материал не пропускает влагу и может защищать от воды. Имеет высокую адгезию, легко заполняет щели и пустоты, устойчив к растворам щелочей, кислот, осадкам. При длительной эксплуатации пенополиуретан не плесневеет. Он не восприимчив к грибкам, защищает от насекомых и грызунов. Служит дольше 30 лет.

Пенополиуретан не горит и не выделяет в атмосферу вредные вещества. Компания «Химтраст» предлагает материалы с разным классом горючести: от «Химтраст СКН-60 Г1» (трудногорючий) до «Химтраст СКН-30 Г3» (самозатухающий).

В строительстве для теплоизоляции используют базальтовое волокно, стекловату, полиуретан, пенопласт, пенополистирол. Коэффициент теплопроводности полиуретана один из самых низких среди утеплителей. Чем ниже коэффициент, тем тоньше нужен слой утеплителя. 


Средний коэффициент теплопроводности полиуретана — 0,028 Вт/(м·К). У открытоячеистого ППУ, который используют для тепло- и шумоизоляции закрытых помещений — 0,037 Вт/(м·К). У закрытоячеистого для наружных стен — 0,022 Вт/(м·К). Этот показатель говорит о том, насколько сильно материал сопротивляется проникновению холода извне и отдаче тепла наружу. Сравнение теплопроводности ППУ приведено в Приложении 3 СНиП 2-3-79.


Базальтовый утеплитель, стекловата и эковата

Базальтовым утеплителем (каменной ватой) часто укрывают здания. Он не горит и способен к самозатуханию. Теплопроводность материала — 0,04 Вт/(м·К), это тоже хороший показатель, но, в отличие от ППУ, слой базальтового утеплителя должен быть в два раза толще, чтобы защитить конструкцию. Такой же коэффициент у стекловаты и эковаты.

Экструдированный пенополистирол

Плитами из экструдированного пенополистирола защищают жилые дома от холодов. Теплопроводность материала — 0,032 Вт/(м·К), этого достаточно для утепления, однако нужно учитывать и другие свойства пенополистирола. Его класс горючести Г4, он легко воспламеняется и выделяет токсины.

Пенопласт

Пенопласт по плотности схож с пенополистиролом, только менее устойчив к механическому воздействию и держит тепло хуже. Коэффициент теплопроводности — 0,038 Вт/(м·К). Значит, его слой при утеплении должен быть на 30 % толще, чем ППУ.

За тепло в помещении отвечает не только теплопроводность ППУ при изоляции, но и другие материалы: кирпичная кладка, облицовочные панели, слой штукатурки, гидроизоляция. Все они имеют плотность и влияют на защиту здания от холода. 

Теплопроводность ППУ в сухом и влажном состоянии

При намокании любой материал впитывает влагу и расширяется. Разбухание приводит к частичной или полной потере теплоизоляционных свойств. Поэтому важно обращать внимание на водопоглощение по объему, которое измеряется в процентах. 

У закрытоячеистого ППУ типа «Химтраст СКН-40 Г2» этот показатель — 2 %, а у базальтовых утеплителей — 35 %. Это значит, что при попадании влаги большая часть теплоизоляционных свойств минеральной ваты, эковаты и стекловаты будет утрачена. С коэффициентом водопоглощения пенополиуретана сравнимы показатели пенополистирола и пенопласта: 1 % и 4 %. Однако при утеплении эти материалы нужно укладывать плитами и не допускать зазоров между ними, иначе тепло будет уходить сквозь щели. ППУ для теплоизоляции наносят на поверхность установками безвоздушного напыления единым слоем без швов и зазоров. Подробнее прочитать о напылении ППУ можно в этой статье.

Как рассчитать толщину слоя ППУ для теплоизоляции

Толщина слоя утеплителя зависит от коэффициента теплопроводности полиуретана. Но также на нее влияют климатическая зона, влажность внутри помещения, температура, влагопоглощение и свойства материала.

Расчет теплоизоляционного слоя регламентируется нормативными документами: СНиП 23-02-2002, СП 23-101-2004 «Проектирование тепловой защиты зданий», ГОСТ Р 54851-2011. 

Один из основных показателей для расчета толщины — суммарное сопротивление теплопередаче конструкций или термическое сопротивление. Оно обозначает необходимую разницу температур снаружи и внутри материала для прохождения энергии. Измеряется в (м²·K)/Вт. Чем выше величина показателя, тем надежнее утеплитель.

Чтобы рассчитать сопротивление, нужно толщину материала в метрах разделить на коэффициент теплопроводности пенополиуретана. 

dппу = (Rтреб — Rконстр) • ʎппу = (Rтреб — dконстр / ʎконстр) • ʎппу,

где dппу — требуемый слой ППУ в метрах,

Rтреб — требуемое сопротивление теплопередаче в (м²·K)/Вт,

Rконстр — сопротивление теплопередаче существующей ограждающей конструкции в (м²·K)/Вт,

ʎппу — коэффициент теплопроводности ППУ в Вт/(м•K),

ʎконстр — коэффициент теплопроводности существующей ограждающей конструкции в Вт/(м•K).

Подробнее о том, как найти оптимальную толщину слоя утеплителя, читайте в статье.



Для утепления помещения необходимо учитывать коэффициент теплопроводности материала. В зависимости от его физико-химических свойств определяется способность удерживать тепло. Чем ниже коэффициент теплопроводности, тем лучше защищает от холода. Также важно учитывать другие особенности теплоизоляторов: способность отталкивать влагу, горючесть, экологичность и срок эксплуатации.


Теплопроводность пенополистирола XPS

Пенополистирол является хорошими теплоизоляционными материалами и поэтому часто используется в качестве строительных изоляционных материалов. Экструдированный пенополистирол (XPS) состоит из закрытых ячеек и обеспечивает улучшенную шероховатость поверхности, большую жесткость и пониженную теплопроводность. На изображении ниже показано применение изоляционного материала в типичной домашней конструкции. XPS применяется в этом случае для повышения эффективности изоляционной системы для каркасного потолка.

Поскольку теплопроводность материала XPS является ключевым показателем качества, производители и заказчики постоянно ищут простые способы получения данных о характеристиках теплопроводности материала. Недавно европейский производитель материала XPS отправил в нашу лабораторию несколько образцов для определения характеристик с помощью датчика C-Therm Modified Transient Plane Source. Производитель отправил несколько образцов купонов.

Хотя производитель образцов XPS вырезал образцы до меньших размеров, чем типичные размеры платы XPS — это НЕ ОБЯЗАТЕЛЬНО — датчик MTPS может легко обрабатывать образцы большего формата — в конечном итоге образцы были определены по размеру из-за соображений доставки.

Тестовая установка MTPS

Испытательная установка соответствовала довольно типичной схеме размещения образца на датчике, как показано на рисунке ниже. Для лучшей поддержки образца на датчике использовалась удлинительная пластина. Для образцов большего размера датчик на тестовом образце был бы перевернут. Образец тестировали как сверху, так и снизу для оценки однородности / консистенции образца.

Результаты эксперимента

Результаты тестирования образца были доступны в течение 10 минут при тестировании как верхней, так и нижней части образца и обобщены в таблице ниже:

900
Образец Верх Низ
1 0.0334 0,0341
2 0,0344 0,0342
3 0,0341 0,0342
4 0,0343 0,0340
5 0,0340 0,0340
5 0,0340
Среднее значение 0,0341 0,0341
Результаты испытаний на теплопроводность XPS (Вт / мК)

Результаты испытаний показали, что материал имеет превосходную консистенцию и полностью соответствует ожидаемому диапазону теплопроводности. материала.Все испытания проводились в условиях окружающей среды (приблизительно 24 ° C). Технические характеристики датчика MTPS предлагают точность <5% и точность <1%.

Экструдированный полистирол — XPS — Теплоизоляция

Пример — изоляция из экструдированного полистирола

Основной источник тепловых потерь из дома — через стены. Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена толщиной 15 см (L 1 ) сделана из кирпича с теплопроводностью k 1 = 1.0 Вт / м.К (плохой теплоизолятор). Предположим, что температура внутри и снаружи составляет 22 ° C и -8 ° C, а коэффициенты конвективной теплопередачи на внутренней и внешней сторонах h 1 = 10 Вт / м 2 K и h 2 = 30 Вт / м 2 К соответственно. Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от внешних и внутренних условий (ветер, влажность и т. Д.).

  1. Рассчитайте тепловой поток ( тепловых потерь ) через эту неизолированную стену.
  2. Теперь предположим, что теплоизоляция на внешней стороне этой стены. Используйте изоляцию из экструдированного полистирола толщиной 10 см (L 2 ) с теплопроводностью k 2 = 0,028 Вт / м · К и рассчитайте тепловой поток ( теплопотерь ) через эту композитную стену.

Решение:

Как уже было написано, многие процессы теплопередачи включают композитные системы и даже включают комбинацию теплопроводности и конвекции.С этими композитными системами часто удобно работать с общим коэффициентом теплопередачи , известным как U-фактор . Коэффициент U определяется выражением, аналогичным закону охлаждения Ньютона :

Общий коэффициент теплопередачи связан с общим тепловым сопротивлением и зависит от геометрии проблемы.

  1. голая стена

Предполагая одномерную теплопередачу через плоскую стенку и не принимая во внимание излучение, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0.15/1 + 1/30) = 3,53 Вт / м 2 K

Тепловой поток можно рассчитать просто как:

q = 3,53 [Вт / м 2 K] x 30 [K] = 105,9 Вт / м 2

Суммарные потери тепла через эту стену будут:

q убыток = q. A = 105,9 [Вт / м 2 ] x 30 [м 2 ] = 3177 Вт

  1. композитная стена с теплоизоляцией

Предполагая одномерную теплопередачу через плоскую композитную стенку, отсутствие теплового контактного сопротивления и без учета излучения, общий коэффициент теплопередачи можно рассчитать как:

Тогда общий коэффициент теплопередачи равен:

U = 1 / (1/10 + 0.15/1 + 0,1 / 0,028 + 1/30) = 0,259 Вт / м 2 K

Тепловой поток можно рассчитать просто как:

q = 0,259 [Вт / м 2 K] x 30 [K] = 7,78 Вт / м 2

Суммарные потери тепла через эту стену будут:

q убыток = q. A = 7,78 [Вт / м 2 ] x 30 [м 2 ] = 233 Вт

Как видно, добавление теплоизолятора приводит к значительному снижению тепловых потерь. Его надо добавить, добавление следующего слоя теплоизоляции не дает такой большой экономии.Это лучше всего видно из метода термического сопротивления, который можно использовать для расчета теплопередачи через композитных стен . Скорость устойчивой теплопередачи между двумя поверхностями равна разнице температур, деленной на общее тепловое сопротивление между этими двумя поверхностями.

Теплопроводность экструдированного полистирола

Теплопередача:
  1. Основы тепломассообмена, 7-е издание. Теодор Л. Бергман, Эдриен С.Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
  2. Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
  3. Министерство энергетики, термодинамики, теплопередачи и потока жидкости США. Справочник по основам DOE, том 2 из 3, май 2016 г.

Ядерная и реакторная физика:

  1. Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Addison-Wesley, Reading, MA (1983).
  2. Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную инженерию, 3-е изд., Прентис-Холл, 2001, ISBN: 0-201-82498-1.
  3. В. М. Стейси, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Glasstone, Сесонске. Nuclear Reactor Engineering: Reactor Systems Engineering, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
  5. W.S.C. Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г., ISBN: 978-0198520467
  6. г.Р.Кипин. Физика ядерной кинетики. Аддисон-Уэсли Паб. Co; 1-е издание, 1965 г.
  7. Роберт Рид Берн, Введение в эксплуатацию ядерного реактора, 1988.
  8. Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам DOE, том 1 и 2. Январь 1993 г.
  9. Пол Ройсс, нейтронная физика. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

Advanced Reactor Physics:

  1. К. О. Отт, В. А. Безелла, Введение в статику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
  2. К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
  3. Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
  4. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.

Докторантура, Публикации в бумажных материалах, Публикации в публикациях, Публикации в научных исследованиях

Paper Publications — одна из ведущих индийских организаций по публикации исследовательских работ.Это объединение хорошо известных ученых, заслуженных профессоров, профессоров-исследователей, академиков и отраслевых консультантов для самого широкого распространения знаний по всему миру. Наша деятельность — международная публикация статей, организация конференций международного и национального уровня, публикация материалов конференций и поддержка исследовательской работы отдельных ученых и авторских коллективов. Мы работаем с авторами, чтобы подготовить публикации, характеризующиеся исключительно высоким качеством исследований.Нашим главным приоритетом является быстрое распространение научных знаний, поэтому все наши международные журналы имеют открытый доступ.

В состав нашего редакционного и консультативного совета входят известные авторы, профессора-исследователи ведущих университетов, выдающиеся академики из Великобритании, Франции, Германии, России, Индии, Малайзии, Соединенных Штатов Америки, Канады, Италии, Греции, Японии, Юга. Корея и Иран и многие другие. Члены нашей редакционной коллегии признательны за огромный оригинальный вклад исследовательской работы и получают большие исследовательские гранты от международной организации с высоким статусом.Многие члены редакционной коллегии постоянно работают в научно-исследовательских лабораториях для достижения качества и инноваций в исследованиях.

Все международные журналы публикаций Paper выбирают процесс двойного слепого рецензирования. Эта процедура обзора принята, в частности, для поддержания высокого качества публикации исследований во всех журналах. В этом случае автор и рецензент незнакомы друг с другом, поэтому автор защищен от предвзятого отношения к решению о рецензировании.Помимо публикации научно-исследовательской работы, обзорной статьи, письма редактору и краткой заметки; Paper Publication также публикует полные или частичные диссертации, магистерские и дипломные проекты и диссертации.

В целом наш журнал посвящен темам, связанным с медицинскими науками, психологией, ветеринарными науками, здравоохранением, социальными науками, экономикой, социологией, науками о жизни, гуманитарными науками, менеджментом, инженерией и технологиями. У нас тоже есть отдельный сегмент — международный журнал, который занимается междисциплинарными и междисциплинарными областями исследований.Мы постоянно стремимся стать первоклассными поставщиками научных знаний. Мы предоставляем международные журналы с полным открытым доступом для распространения качественных исследований, знаний и образования среди человечества. В бумажном издании приветствуется авторский стиль написания рукописи. Автору предоставляется полная свобода без наложения ограничений на размер статьи или количество страниц.

(PDF) Теплоизоляционные свойства пенополистирола как конструкционного и изоляционного материала

4.РЕЗУЛЬТАТЫ

При определении значений теплопроводности строительных материалов, которые будут использоваться для теплоизоляции здания

, знание физических свойств материалов (конструкция, прочность на кручение

,

и т. Д.) И использование соответствующих методик позволит получить более

правильных полученные результаты. Определение коэффициентов теплопроводности после этапа производства строительных материалов

заставит производителя производить высококачественные материалы, а также

будет удовлетворять соответствующие экономические условия за счет уменьшения толщины изоляционных материалов

, используемых в зданиях

Определено в ходе испытаний Для изделий из пенополистирола коэффициент теплопроводности

изменяется обратно пропорционально плотности.Таким образом, можно сделать вывод, что уменьшение коэффициента теплопроводности

обеспечивается увеличением количества зерен EPS в единице объема

приводит к уменьшению пустотного объема между зернами, а также приводит к увеличению количества пор в зернах EPS

. Тем не менее, это уменьшение коэффициента теплопроводности действительно до оптимального значения

, поскольку уменьшение общего количества пустот в EPS

приведет к увеличению плотности, таким образом, значение коэффициента теплопроводности может увеличиться на

. .

В литературе и стандартах приводится только одно значение коэффициента теплопроводности

пенополистирола, и предлагается любой метод изменения этого значения в зависимости от веса единицы.

Будет более подходящим изменить значение коэффициента теплопроводности, например, способ

, приведенный в PrEn 12524, в зависимости от количества образцов, чтобы разработать новые

и более качественные материалы, используя результаты, полученные в ходе экспериментов, с использованием рассчитанного значения

умножив значение коэффициента теплопроводности на коэффициент безопасности.

СПИСОК ЛИТЕРАТУРЫ

1. Брайант, С., Люм, Э., 1997. Система Брайанта Уоллинга. Concrete ’97 для конференции

Future, проходящей каждые два года, Аделаидский конференц-центр, 641-649.

2. Алдер, Г., 1999. Вызов 21 века. Компьютерная графика (ACM), 33 (3), 19-22.

3. Эдремит А., 1997. Проведение экономического анализа изоляционных материалов с помощью

Определение физических свойств; Магистерская работа, Технический университет Йылдыз

Стамбул, стр.114, Турция. (На турецком языке)

4. Манселл, У. К., 1995. Стенные конструкции с фиксированным креплением революционизируют дом

Строительство. Бетонное строительство, The Aberdeen Group, 12 стр., США.

5. Фиш, Х., июль 2002 г. Пластмассы — инновационный материал в строительстве и строительстве

, EUROCHEM — конференция 2002 / TOULOSUE

(http://www.apme.org). 30 апреля 2003 г.

6. Линч, Г., 1999. Combat Cold. Компьютерная графика (ACM), 33 (3), 24-25.

7.Шрив Н., Бринк А. Дж. (Перевод на турецкий Чаталташ И. А.), 1985. Chemical

Process Industries, p. 350, Стамбул, Турция.

8. Общество производителей полистирола, 2003 г. (http://www.pud.org.tr). 30 апреля

2003, Стамбул, Турция. (На турецком языке)

9. Йылмаз, К., Колип, А., Касап, Х., 1997. Несущий полистирол с превосходной изоляцией

Панели, помещенные в стальную сетку, Симпозиум по изоляции’97, с. 75-82, Элязыг, Турция.

(на турецком языке)

Диаграмма теплопроводности изоляционного материала | Инженеры Edge

Связанные ресурсы: теплопередача

Таблица теплопроводности изоляционного материала

Теплообменная техника

Таблица теплопроводности различных изоляционных материалов

R-значений на дюйм в единицах СИ и британской системе мер (Типичные значения являются приблизительными и основаны на среднем значении имеющихся результатов.Диапазоны отмечены знаком «-».

Материал м 2 · К / (Вт · дюйм) фут 2 · ° F · ч / (БТЕ · дюйм) м · К / Ш
Панель с вакуумной изоляцией 7,04! 5,28–8,8 3000! R-30 – R-50
Аэрогель кремнезема 1,76! 1,76 1000! Р-10
Жесткая панель из полиуретана (расширенная CFC / HCFC) начальная 1.32! 1.23–1.41 0700! R-7 – R-8
Жесткая панель из полиуретана (вспененный CFC / HCFC), возраст 5–10 лет 1,1! 1,10 0625! Р-6.25
Жесткая панель из полиуретана (вспененный пентан) начальная 1,2! 1,20 0680! Р-6.8
Жесткая панель из полиуретана (вспененный пентан), возраст 5–10 лет 0,97! 0,97 0550! Р-5.5
Жесткая панель из полиуретана с пленочным покрытием (вспененный пентан) 45-48
Жесткая панель из полиизоцианурата, облицованная фольгой (вспененный пентан) начальная 1,2! 1,20 0680! Р-6.8 55
Жесткая панель из полиизоцианурата, облицованная фольгой (вспененный пентан), возраст 5–10 лет 0,97! 0.97 0550! Р-5.5
Пена для распыления полиизоцианурата 1,11! 0,76–1,46 0430! R-4.3 – R-8.3
Пенополиуретан с закрытыми порами 1.055! 0.97–1.14 0550! R-5.5 – R-6.5
Фенольная аэрозольная пена 1.04! 0.85–1.23 0480! R-4.8 – R-7
Тинсулейт утеплитель для одежды 1.01! 1.01 0575! Р-5.75
Панели карбамидоформальдегидные 0,97! 0,88–1,06 0500! R-5 – R-6
Пена карбамид 0,924! 0,92 0525! Р-5.25
Экструдированный пенополистирол (XPS) высокой плотности 0,915! 0,88–0,95 0500! R-5 – R-5.4 26-40
Пенополистирол 0.88! 0,88 0500! R-5.00
Жесткая фенольная панель 0,79! 0,70–0,88 0400! R-4 – R-5
Пена карбамидоформальдегидная 0,755! 0,70–0,81 0400! R-4 – R-4.6
Войлок из стекловолокна высокой плотности 0,755! 0,63–0,88 0360! R-3.6 – R-5
Экструдированный пенополистирол (XPS) низкой плотности 0.725! 0,63–0,82 0360! R-3.6 – R-4.7
Айсинен насыпной (заливной) 0,7! 0,70 0400! Р-4
Формованный пенополистирол (EPS) высокой плотности 0,7! 0,70 0420! Р-4.2 22-32
Пена для дома 0,686! 0,69 0390! Р-3.9
Рисовая шелуха 0.5! 0,50 0300! Р-3.0 24
Стекловолокно 0,655! 0,55–0,76 0310! R-3.1 – R-4.3
Вата (утеплитель Blue Jean) 0,65! 0,65 0370! Р-3,7
Формованный пенополистирол (EPS) низкой плотности 0,65! 0,65 0385! Р-3.85
Айсинин спрей 0.63! 0,63 0360! Р-3.6
Пена для распыления полиуретана с открытыми ячейками 0,63! 0,63 0360! Р-3.6
Картон 0,61! 0,52–0,7 0300! R-3 – R-4
Войлок из каменной и шлаковой ваты 0,6! 0,52–0,68 0300! R-3 – R-3.85
Целлюлоза сыпучая 0.595! 0,52–0,67 0300! R-3 – R-3.8
Целлюлоза для влажного распыления 0,595! 0,52–0,67 0300! R-3 – R-3.8
Каменная и шлаковая вата сыпучая 0,545! 0,44–0,65 0250! R-2.5 – R-3.7
Стекловолокно насыпное 0,545! 0,44–0,65 0250! R-2.5 – R-3.7
Пенополиэтилен 0.52! 0,52 0300! Р-3
Цементная пена 0,52! 0,35–0,69 0200! R-2 – R-3.9
Перлит сыпучий 0,48! 0,48 0270! Р-2.7
Деревянные панели, например обшивка 0,44! 0,44 0250! Р-2.5 9
Жесткая панель из стекловолокна 0.44! 0,44 0250! Р-2.5
Вермикулит сыпучий 0,4! 0,38–0,42 0213! R-2.13 – R-2.4
Вермикулит 0,375! 0,38 0213! Р-2.13 16-17
Солома 0,26! 0,26 0145! Р-1.45 16–22
Бетон 0260! Р-2.6-R-3.2
Хвойная древесина (большая часть) 0,25! 0,25 0141! Р-1.41 7,7
Древесная щепа и прочие сыпучие лесоматериалы 0,18! 0,18 0100! Р-1
Снег 0,18! 0,18 0100! Р-1
Твердая древесина (большая часть) 0.12! 0,12 0071! Р-0,71 5,5
Кирпич 0,03! 0,030 0020! Р-0,2 1,3–1,8
Стекло 0,024! 0,025 0024! Р-0,14
Литой бетон 0,014! 0,014 0008! Р-0,08 0,43-0,87

Пробка

Пробка, вероятно, является одним из старейших изоляционных материалов, используемых в коммерческих целях, а в прошлом она была наиболее широко используемым изоляционным материалом в холодильной промышленности.В настоящее время из-за нехватки деревьев для производства пробки его цена относительно высока по сравнению с другими изоляционными материалами. Поэтому его использование очень ограничено, за исключением некоторых машинных оснований для уменьшения передачи вибрации. Он доступен в виде вспененных плит или плит, а также в виде гранул, его плотность варьируется от 110 до 130 кг / м 3, а среднее механическое сопротивление составляет 2,2 кг / м 2. Его можно использовать только при температуре до 65 ° C. Он обладает хорошей теплоизоляционной эффективностью, достаточно устойчив к сжатию и трудно поддается возгоранию.Его основным техническим ограничением является тенденция к поглощению влаги со средней проницаемостью для водяного пара 12,5 г см м -2 день -1 мм рт. Ст. В таблицах A и B приведены некоторые типичные характеристики пробки.

ТАБЛИЦА A
Значения теплопроводности и плотности при 0 ° C стекловолоконной изоляции

Тип

Плотность

Теплопроводность

(кг / м 3)

(Вт · м -1 ° C -1) / (ккал · ч -1 м -1 ° C -1)

Тип I

10-18

0.044 / 0,038

Тип II

19-30

0,037 / 0,032

Тип III

31-45

0,034 / 0,029

Тип IV

46-65

0.033 / 0,028

Тип V

66-90

0,033 / 0,028

Тип VI

91

0,036 / 0,031

Стекловолокно, связанное смолой

64-144

0.036 / 0,031

Источник : Подготовлено авторами на основе данных Melgarejo, 1995.

ТАБЛИЦА B
Значения теплопроводности и плотности пробковой изоляции при 20-25 ° C

Тип

Плотность

Теплопроводность

(кг / м 3)

(Вт · м -1 ° C -1) / (ккал · ч -1 м -1 ° C -1)

Гранулированный сыпучий, сухой

115

0.052 / 0,0447

Гранулированный

86

0,048 / 0,041

Плита пробковая вспененная

130

0,04 / 0,344

Доска пробковая вспененная

150

0.043 / 0,037

Вспененный со смолами / битумом

100–150

0,043 / 0,037

Вспененный со смолами / битумом

150–250

0,048 / 0,041

Источник : Подготовлено авторами на основе данных Melgarejo, 1995.

Связанные ресурсы:

© Copyright 2000-2021, Engineers Edge, LLC www.engineersedge.com
Все права защищены
Отказ от ответственности | Обратная связь | Реклама | Контакты

Дата / Время:

Обзор факторов, влияющих на теплопроводность строительных изоляционных материалов

Основные моменты

Рассмотрены факторы, влияющие на теплопроводность строительных изоляционных материалов.

Температура, влажность и плотность являются наиболее важными факторами.

Другие факторы включают толщину, скорость воздуха, прессование и время старения.

Представлена ​​взаимосвязь основных факторов с теплопроводностью.

Неопределенность относительно теплопроводности обычно используемых изоляционных материалов.

Аннотация

Решение вопроса о традиционном потреблении энергии и поиск подходящих альтернативных ресурсов являются жизненно важными ключами к политике устойчивого развития.В последние годы было разработано множество различных теплоизоляционных материалов для повышения энергоэффективности и уменьшения ущерба окружающей среде. Эти продукты подтвердили свою полезность в зданиях благодаря своим преимуществам, таким как низкая плотность, высокое тепловое сопротивление и экономическая эффективность. Эффективность теплоизоляции зависит от их теплопроводности и способности сохранять свои тепловые характеристики в течение определенного периода времени. В этом исследовании представлены факторы, влияющие на коэффициент теплопроводности трех основных групп, включая традиционные, альтернативные и новые современные материалы.Наиболее распространенными факторами являются влажность, разница температур и насыпная плотность. Другие факторы объясняются в некоторых зависимых исследованиях, таких как скорость воздушного потока, толщина, давление и старение материала. Также была обобщена взаимосвязь между значениями теплопроводности со средней температурой, влажностью и плотностью, которые были получены в результате экспериментальных исследований. Наконец, неопределенность в отношении значения теплопроводности некоторых распространенных изоляционных материалов также рассматривается как основа выбора или проектирования продуктов, используемых в ограждающих конструкциях зданий.

Ключевые слова

Строительные изоляционные материалы

Теплопроводность

Факторы воздействия

Разница температур

Влажность

Плотность

Рекомендуемые статьи Цитирующие статьи (0)

Просмотр аннотации

© 2021 Автор (ы).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *