Прочность кирпичной кладки: Прочность, теплосопротивление и плотность кирпичной кладки

Прочность, теплосопротивление и плотность кирпичной кладки


 При строительстве кирпичного дома важно знать о свойствах кирпичной кладки:

  • прочность;
  • плотность;
  • сопротивление теплопередаче.

Прочность кирпичной кладки

зависит от свойств кирпича и раствора. Так, прочность на сжатие кирпичной кладки с использованием достаточно прочного раствора и стандартных методов возведения – не более 40-50% от прочности самого кирпича. Причина в следующем: поверхность кирпича, а также шва кладки не является идеально плоской; толщина и плотность слоя раствора горизонтального шва – неравномерна. По этой причине неравномерно распределяется и давление по поверхности кирпича, вызывая тем самым напряжения изгиба. Кирпич же, подобно бетону, хорошо сопротивляется сжатию, но плохо растяжению, изгибу – предел прочности кирпича на изгиб в 4-6 раз меньше предела прочности на сжатие. В результате разрушение кирпичной кладки происходит раньше достижения напряжением предела прочности кирпича на сжатие.

Разрушение кирпичной кладки начинается с появления в отдельных кирпичах вертикальных трещин в местах, расположенных под вертикальными швами, так как именно в них наблюдается концентрация напряжений растяжения и изгиба (рисунок а). Рост нагрузок приводит к увеличению трещин и разделению кирпичной кладки на столбики (рисунок б). В последствии столбики теряют устойчивость, выпучиваются, происходит окончательное разрушение кладки (рисунок в).

а – возникновение трещин в кирпиче;
б – расчленение кирпичной кладки на столбики;
в – выпучивание и разрушение кладки.
Свойства раствора также влияют на прочность кладки. Более слабый раствор легче сжимается, вызывая большие деформации кладки. Поэтому для повышения прочности используют раствор более высокой марки. Вместе с тем, повышение прочности раствора увеличивает прочность кладки незначительно. Большее влияние оказывает пластичность раствора, которая позволяет лучше расстилаться раствору по постели кирпича. В результате можно получить шов равномерной толщины и плотности, что повысит прочность кладки посредством уменьшения напряжений изгиба в отдельных кирпичах.

Влияние размера и формы кирпича на прочность кладки. При увеличении толщины кирпича количество горизонтальных швов кладки уменьшается, а сопротивление кирпича изгибу, наоборот, увеличивается. Поэтому при прочих равных условиях кладка из кирпичей большей толщины является прочнее.  В свою очередь правильная форма кирпича позволяет лучше заполнять раствором шов кладки, лучше передавать нагрузки, лучше перевязывать кладку. В результате прочность кирпичной кладки увеличивается.

Качественный шов кладки  — необходимее условие повышение её прочности. Горизонтальные и вертикальные швы должны быть: хорошо заполнены раствором, равномерно уплотнены; одной толщины. При большей толщине шва трудно достигнуть его равномерной плотности, кирпич больше работает на изгиб, увеличивается деформация кладки и снижается её прочность.

В соответствии с п. 7.6 СНиП   3.03.01-87 «Несущие и ограждающие конструкции» толщина горизонтального шва кирпичной кладки должна составлять — 12 мм, допустимые отклонения -2;+3 мм; вертикального шва — 10 мм (-2;+2 мм).

Для выявления зависимости прочности кладки от качества швов был проведен эксперимент: одновременно двумя каменщиками была выполнена кладка с использованием одинаковых материалов. Каменщики имели разную квалификацию – высокую и низкую. В результате прочность кладки, выполненной высококвалифицированным каменщиком, составила 5 МПа, кладка низкоквалифицированного каменщика имела прочность 2,8 МПа, что в 1,8 раза меньше.

// ]]>

Плотность и теплосопротивление кирпичной кладки.

С одной стороны, долговечность кирпичных домов, их огнестойкость, бо’льшая химическая стойкость обусловлены плотной структурой кирпича. С другой стороны, большая плотность кирпича увеличивает теплопроводность кладки. Поэтому часто наружные кирпичные стены дома необходимо делать толще, чем требуется по расчетам прочности и устойчивости. При уменьшении плотности кирпича с 1800 кг/см

3 до 800 кг/см3 толщина стен /потребность в материалах сокращаются на 55%, а масса стен уменьшается на 80%. Таким образом, кладка из кирпича более низкой плотности обладает более лучшими теплотехническими свойствами и требует меньшего количества строительных материалов.

Ниже приведены теплотехнические характеристики сплошных кирпичных кладок в соответствии с таблицей Г.2 ГОСТ530-2007:

Качество швов также влияет на теплотехнические свойства кирпичной кладки: стена, у которой плохо заполнены раствором швы, легко продувается и промерзает зимой.

Расчет кирпичной кладки на прочность

Наружные несущие стены должны быть, как минимум, рассчитаны на прочность, устойчивость, местное смятие и сопротивление теплопередаче. Чтобы узнать, какой толщины должна быть кирпичная стена, нужно произвести ее расчет. В этой статье мы рассмотрим расчет несущей способности кирпичной кладки, а в следующих статьях — остальные расчеты. Чтобы не пропустить выход новой статьи, подпишитесь на рассылку и вы узанете какой должна быть толщина стены после всех расчетов. Так как наша компания занимается строительством коттеджей, то есть малоэтажным строительством, то все расчеты мы будем рассматривать именно для этой категории.

Несущими называются стены, которые воспринимают нагрузку от опирающихся на них плит перекрытий, покрытий, балок и т.д.

Также следует учесть марку кирпича по морозостойкости. Так как каждый строит дом для себя, как минимум на сто лет, то при сухом и нормальном влажностном режиме помещений принимается марка (Мрз) от 25 и выше.

При строительстве дома, коттеджа, гаража, хоз.построек и др.сооружений с сухим и нормальным влажностным режимом рекомендуется применять для наружных стен пустотелый кирпич, так как его теплопроводность ниже, чем у полнотелого. Соответственно, при теплотехническом расчете толщина утеплителя получится меньше, что сэкономит денежные средства при его покупке. Полнотелый кирпич для наружных стен необходимо применять только при необходимости обеспечения прочности кладки.

Армирование кирпичной кладки допускается только лишь в том случае, когда увеличение марки кирпича и раствора не позволяет обеспечить требуемую несущую способность.

 

Пример расчета кирпичной стены.

Исходные данные: Рассчитать стену первого этажа двухэтажного коттеджа на прочность. Стены выполнены из кирпича М75 на растворе М25 толщиной h=250мм, длина стены L=6м. Высота этажа H=3м.

Решение.

Несущая способность кирпичной кладки зависит от многих факторов — от марки кирпича, марки раствора, от наличия проемов и их размеров, от гибкости стен и т.д. Расчет несущей способности  начинается с определения расчетной схемы. При расчете стен на вертикальные нагрузки, стена считается опертой на шарнирно-неподвижные опоры. При расчете стен на горизонтальные нагрузки (ветровые), стена считается жестко защемленной. Важно не путать эти схемы, так как эпюры моментов будут разными.

Пример:

 

расчет несущей способности кирпичной стены

 

Выбор расчетного сечения.

В глухих стенах за расчетное принимается сечение I-I на уровне низа перекрытия с продольной силой N и максимальным изгибающим моментом М. Часто опасным бывает сечение II-II, так как изгибающий момент чуть меньше максимального и равен 2/3М, а коэффициенты mg и φ минимальны.

В стенах с проемами сечение принимается на уровне низа перемычек.

 

Давайте рассмотрим сечение I-I. 

Из прошлой статьи Сбор нагрузок на стену первого этажа возьмем полученное значение полной нагрузки, которая включает в себя нагрузки от перекрытия первого этажа P

1=1,8т и вышележащих этажей G=Gп+P2+G2= 3,7т:

 

N = G + P1 = 3,7т +1,8т = 5,5т

 

Плита перекрытия опирается на стену на расстоянии а=150мм. Продольная сила P1 от перекрытия будет находиться на расстоянии а / 3 = 150 / 3 = 50 мм. Почему на 1/3? Потому что эпюра напряжений под опорным участком будет в виде треугольника, а центр тяжести треугольника как раз находится на 1/3 длины опирания.

Нагрузка от вышележащих этажей G считается приложенной по центру.

Так как нагрузка от плиты перекрытия (P1) приложена не по центру сечения, а на расстоянии от него равном:

 

e = h/2 — a/3 = 250мм/2 — 150мм/3 = 75 мм = 7,5 см,

 

то она будет создавать изгибающий момент (М) в сечении I-I. Момент — это произведение силы на плечо.

 

M = P1*e = 1,8т * 7,5см = 13,5 т*см

 

Тогда эксцентриситет продольной силы N составит:

 

e= M / N = 13,5 / 5,5 = 2,5 см

 

Так как несущая стена толщиной 25см, то в расчете следует учесть величину случайного эксцентриситета eν=2см, тогда общий эксцентриситет равен:

 

e= 2,5 + 2 = 4,5 см

 

y=h/2=12,5см

При e0=4,5 см < 0,7y=8,75 расчет по раскрытию трещин в швах кладки можно не производить.

Прочность кладки внецентренно сжатого элемента определяется по формуле:

 

N ≤ mφR Aω

 

Коэффициенты mg и φ1 в рассматриваемом сечении I-I равны 1.

— R — расчетное сопротивление кладки сжатию. Определяем по таблице 2 СНиП II-22-81 (скачать СНиП II-22-81). Расчетное сопротивление кладки из кирпича М75 на растворе М25 равно 11 кг/см2 или 110 т/м2

— Ac — площадь сжатой части сечения, определяется по формуле:

 

пример расчета кирпичной стены

 

A — площадь поперечного сечения. Так как сбор нагрузок считали на 1 пог. метр, то и площадь поперечного сечения определяем от одного метра стены A = L * h = 1 * 0,25 = 0,25 м2

 

A= 0,25 (1 — 2*0,045/0,25) = 0,16 м2

 

— ω — коэффициент, определяемый по формуле:

 

ω = 1 + e0/h = 1 + 0,045/0,25 = 1,18 ≤ 1,45 условие выполняется

 

Несущая способность кладки равна:

 

N ≤ 1*1*110*0,16*1,18=20,8 т

 

5,5 ≤ 20,8

 

Прочность кладки обеспечена.

← Предыдущая Следующая →

Статья была для Вас полезной?

Оставьте свой отзыв в комментарии

 


Определение прочности кирпичной кладки.

В составе любого обследуемого здания могут быть стальные, железобетонные, деревянные и каменные конструкции. Как любые строительные материалы, каменная кладка имеет свои параметры прочности. Каменная кладка состоит из непосредственно камня (различные по плотности блоки или кирпичи) и раствора (цементно-песчаного, глиняного или известкового). Каменная кладка образует строительную конструкцию (стену или колонну), работающую на сжатие (центральное или внецентренное), на сжатие с изгибом или на смятие.

Соответственно, каменная кладка имеет свойства сопротивления вышеперечисленным внешним воздействиям, называемыми расчетными сопротивлениями сжатию и смятию (это основные расчетные характеристики кладки).

При проведении технического обследования строительных конструкций зданий и сооружений выполняется этап по инструментальному контролю параметром прочности, и для каменной кладки это не исключение. Определение фактической прочности кирпичной кладки и дальнейшее соответствие ее проектным значениям либо выполнение расчета несущей способности является основным при оценке технического состояния каменных конструкций.

Определение фактической величины прочности кирпичной кладки достигается следующими способами:

разрушающим — при помощи приборов механического воздействия, или неразрушающим — наиболее часто использующимся при проведении натурных исследований.

При использовании разрушающего метода определения прочности кирпичной кладки стен или колонн производят отборку образцов необходимого размера высверливанием алмазным дисковым инструментом. Далее ослабленное место отбора восстанавливается замещающей кладкой либо бетоном или специальным ремонтным составом. После этого отобранный образец доставляется в лабораторию для разрушения его на специальном испытательном прессе или стенде.

При использовании неразрушающего метода определения прочности кирпичной кладки, данная работа делится на две составляющие:

определение прочности кирпича и определение прочности раствора. Прочность блока или кирпича может быть определена с помощью прибора «Оникс» или «ПроКондтрол» методом ударного импульса либо ударом бойка молотка.

Умение пользования последним способом достигается опытом при неоднократном инструментальном определением прочности бетона и камня прибором и молотком с дальнейшим сравнением результатов. В учебных пособиях приведены правила определения прочности кирпича и бетона при помощи удара молотка путем изучения следа от удара, однако, инженер-обследователь, как правило, помимо изучения следа от удара основывается на ощущениях и звуке при ударе. Ультразвуковой метод при определении прочности кирпичной кладки не используется, т.к. он основывается на зависимости между величиной скорости распределения ультразвука в теле кладки и параметров прочности, а кирпичная кладка имеет пустоты в кирпичах. Прочность раствора кладки можно определить по испытаниям отобранных горизонтальных образцов.

Также прочность раствора кладки определяют с помощью ножа: с достаточным усилием проводят лезвием ножа по раствору и смотрят какой остался след. Если на растворе остается только след (раствор царапается), то марка раствора выше М75, если раствор немного крошится, то марка М50, если раствор сильно выкрашивается, то от М10 до М25, если же раствор сильно выкрашивается, то прочность раствора от «нулевой» до М5. По результатам натурного обследования кирпича и раствора уже можно определить прочность самой кирпичной кладки при помощи таблицы 2 СНиП «Каменные и армокаменные конструкции».

Кирпичные стены — все о кладке кирпича

Кирпич — прочный и долговечный материал. Стена толщиной 25 см (в один кирпич) способна нести любую равномерно распределенную нагрузку, возникающую в одно-, двухэтажных домах от вышерасположенных конструкций, в том числе от железобетонных перекрытий. Срок службы кирпичных стен при надежных фундаментах и правильно выполненной кладке практически не ограничен.  

Вместе с тем кирпич, особенно полнотелый, обладая высокой прочностью, по своим теплозащитным качествам, уступает многим другим стеновым материалам. Например, при расчетной температуре наружного воздуха -30 °С  (большинство районов центральной части России) наружные стены сплошной кладки из полнотелого кирпича должны иметь толщину 64 см (2,5 кирпича). В то же время толщина деревянных брусчатых стен может быть лишь 16-18 см.  

Для того чтобы сократить расход кирпича, уменьшить массу стен и нагрузку на фундаменты, наружные стены следует выкладывать либо из пустотелого, либо из полнотелого кирпича, вести кладку с образованием пустот, колодцев, уширенных швов, а также применять эффективные утеплители, теплые кладочные и штукатурные растворы. Применение сплошной кладки из полнотелого кирпича толщиной более 38 см (1,5 кирпича) экономически нецелесообразно. При заполнении воздушных, полостей минеральным войлоком (битуминизированная минеральная вата) тепловая эффективность кирпичной стены увеличивается на 30-40 %, а при использовании пенопласта — на 200 %. Применение теплых кладочных растворов (на основе мелких заполнителей из шлака, керамзита, туфа, трепела, перлита, опилок и т. п.) также повышает теплозащитные качества стен на 10-15 %.  

Типы кладок кирпичных стен

Распространенной и экономичной конструкцией наружных кирпичных стен является так называемая колодцевая кладка, при которой стену выкладывают из двух самостоятельных стенок толщиной в полкирпича, соединенных между собой вертикальными и горизонтальными кирпичными мостиками с образованием замкнутых колодцев. Колодцы по ходу кладки заполняют утеплителем: шлаком, керамзитом, легким бетоном. Колодцевая кладка хорошо защищает утеплитель от внешних воздействий, хотя несколько и ослабляет конструктивную прочность стены. 

При сплошной кладке экономичным решением является также устройство кирпичных стен с утеплением их снаружи или изнутри помещений. В этом случае толщину кирпичной стены можно принять минимальной исходя лишь из требований прочности, т.е. во всех климатических районах она может быть равной 25 см. Тепловая защита при таком решении обеспечивается толщиной и качеством утеплителя.  

При расположении утепляющего слоя изнутри его защищают от водяных паров пароизоляцией, при расположении снаружи защищают от атмосферных воздействий экраном или штукатуркой. При использовании пустотелого (многодырчатого) кирпича возможны все перечисленные выще варианты устройства наружных стен, в том числе и сплошная. кладка без утепления, при которой толщина стены будет примерно на 0,5 кирпича меньше, чем при кладке из полнотелого кирпича.  

Кирпичные стены имеют большую тепловую инерционность: они медленно прогреваются и также медленно остывают, причем инерционность тем больше, чем толще стена, чем больше ее масса. В кирпичных домах температура внутри помещений имеет незначительные суточные колебания, и это является достоинством кирпичных стен. Вместе с тем в домах периодического проживания (дачи, садовые домики) это свойство кирпичных стен не всегда желательно, особенно в холодное время года. Большая масса охлажденных стен требует каждый раз для своего прогрева значительного расхода топлива, а резкие перепады температуры внутри помещений приводят к конденсации влаги на внутренних поверхностях кирпичных стен. В таких домах стены изнутри лучше обшить досками.  

Виды кирпича

Для кладки стен малоэтажных зданий пригодны практически все виды кирпича, выпускаемые промышленностью. 
Красный (глиняный) обыкновенный и пустотелый кирпич пластического прессования применяют без ограничения. Тот же кирпич полусухого прессования и силикатный нельзя применять без дополнительной защиты в наружных стенах ванных комнат, душевых и постирочных. Внутренние несущие стены обычно выкладывают из полнотелого (глиняного или силикатного) кирпича любой выпускаемой промышленностью марки. Минимальная толщина внутренних несущих стен 25 см, сечение столбов не менее 38х38 см, простенков не менее 25х51 см.

При больших нагрузках несущие столбы и простенки армируют металлической сеткой из проволоки диаметром 3-б мм через 3-5 рядов кладки по высоте. Перегородки выкладывают толщиной 12 см (вполкирпича) и 6,5 см (кирпич «на ребро»). При длине перегородок, выложенных «на ребро», более 1,5 м их также армируют проволокой через 2-3 ряда кладки по высоте. Для облицовки фасадов лучше всего использовать лицевой керамический кирпич. По внешнему виду, фактуре и допустимым отклонениям в размерах он является наиболее качественным. 

Кладка кирпича

Кладку кирпичных стен ведут на цементно-песчаном, цементно-известковом или цементно-глиняном растворе. Цементно-песчаный раствор практически при любой марке цемента получается излишне прочным и жестким, поэтому лучше, если в его состав добавить известковое или глиняное тесто. Раствор от такой добавки станет более пластичным и удобоукладываемым, а расход цемента уменьшится в 1,5-2 раза. Марка раствора для несущих стен и столбов, а также для штукатурки фасадов — 25, для несущих стен и перегородок — 10. 
 

Марка цемента

Марка раствора

25

10

Соотношение частей раствора

( цемент : [известь либо глина] : песок )

400

1 : 2 : 12

1 : 4 : 20

300

1 : 1,5 : 10

1 : 3 : 16

200

1 : 1 : 8

1 : 2 :12

100

1 : 0,5 : 4

1 : 1 : 6

Известковое тесто, применяемое в качестве добавки к цементно-песчаному раствору, готовят из гашеной извести. Если имеется негашеная известь в виде отдельных кусков (кипелка) или порошка (пушонка), ее необходимо погасить водой в творильной яме, обшитой досками, и выдержать в таком состоянии не менее двух недель. Чем больше срок выдержки, тем лучше, так как повышаются однородность состава и прочность известкового теста.  
 

Глиняное тесто, используемое для кладочных растворов, также целесообразно приготовить заранее. Для этого куски глины замачивают в воде и выдерживают их до полного размокания (3-5 сут). Затем добавляют воду, перемешивают и процеживают смесь, после отстоя сливают лишнюю воду и употребляют тесто в дело. Срок хранения глиняного теста неограниченный. 

Раствор для кирпичной кладки приготавливают непосредственно перед началом работ и используют его в течение 1,5-2 ч. 

Толщину вертикальных швов принимают в среднем равной 10 мм. Горизонтальные швы при использовании раствора с пластифицирующими добавками (известь или глина) выкладывают также толщиной 10 мм, без добавок — 12 мм. Максимальная толщина швов 15, минимальная — 8 мм. 

Кладку наружных стен начинают с углов здания, на каждом из которых делают маяки высотой в 6-8 рядов кирпича в виде наклонных штраб. Затем между ними, с отступом от вертикальной плоскости стены на 3-4 мм, на уровне верха укладываемых кирпичей натягивают шнур-причалку. Кладку кирпичей всегда начинают с наружной стороны. Для прочности ряды кирпичной кладки ведут с перевязкой вертикальных продольных и поперечных швов, используя при этом не только целый кирпич, но и его части: 1/4, 1/2 и 3/4. Если кирпичную стену штукатурят с двух сторон, следует стремиться к перевязке швов в каждом ряду. При кладке стен с расшивкой наружных швов перевязка лицевых кирпичей подчиняется принятому рисунку кирпичной кладки, однако и в этом случае необходимо, чтобы облицовочный ряд кирпичей был перевязан со стеной не реже чем через 5 рядов. 

На рисунке показана сплошная кладка наружных стен толщиной 25, 38 и 51 см с системой полной перевязки вертикальных швов как в каждом ряду, так и через 3 или 5 рядов. 

При чередовании только первого и второго рядов получается однорядная перевязка швов, если же после второго ряда уложить третий, снова второй, затем первый и т. д. (показано в аксонометрии), то получится трехрядная перевязка. При двойном чередовании второго и третьего рядов полная перевязка вертикальных швов произойдет через пять рядов. 

Прочность кирпичной кладки, выполненной с перевязкой вертикальных швов в каждом ряду или через 3-5 рядов, практически одинакова. Она значительно увеличивается, если независимо от системы кладки в горизонтальных швах через 3-5 рядов проложить арматурную сетку с ячейками шириной 6-18 см из проволоки диаметром 3-6 мм. 
Ненесущие перемычки над оконными и дверными проемами при их длине до 1,5 м могут быть рядовыми, т. е. выполненными на месте, по ходу кладки, путем устройства армированного пояса из высокопрочного цементно-песчаного раствора толщиной слоя 3-5 см, уложенного по деревянной опалубке. Рядовую перемычку можно усилить прокладкой дополнительной арматуры в 2-3 нижних рядах кладки из проволоки диаметром 4-6 мм с заведением ее отогнутых концов в кладку на 1-1,5 кирпича в каждую сторону от проема. 

Брусковые сборные железобетонные перемычки при толщине (высоте) 7-14 см могут перекрывать пролеты длиной соответственно до 1,8-2,3 м. Если на такую перемычку опираются балки перекрытия, то с внутренней стороны стены ее высота должка быть 22-29 см. Для крепления коробок столярных изделий по ходу кладки устанавливают деревянные антисептированные (покрытые битумом и обернутые рубероидом) пробки, кратные по размеру кирпича: в оконных проемах по две, в дверных — по три с каждой стороны проема. 

Стены с воздушной прослойкой устраивают при использовании как полнотелого, так и эффективного кирпича. При этом виде кладки лицевые (ложковые) ряды перевязывают с основной стеной через 4-6 рядов тычковыми рядами кирпичей либо металлическими связями. С наружной стороны такие стены во избежание продувания обычно оштукатуривают или выкладывают с расшивкой швов при строгом контроле качества работ.  

  1. воздушные прослойки
  2. металлические связи
  3. наружная верста из тычковых кирпичей

Металлические связи (анкеры из проволоки диаметром 4-6 мм) защищают от коррозии битумом, цементным раствором или эпоксидной смолой. Тепловая эффективность таких стен значительно увеличивается, если воздушную прослойку заполнить теплым раствором, минеральной ватой или пенопластом. 
Особенно эффективен пенопласт. При его использовании общую толщину наружной стены можно уменьшить до 29 см (12+5+12), причем такая стена по теплозащитным качествам эквивалентна сплошной кирпичной кладке из полнотелого кирпича толщиной 64 см. 

Кирпичные стены с внутренним или наружным утеплением упрощают процесс кирпичной кладки и позволяют вести работы по их утеплению во вторую очередь. При утеплении стек изнутри можно использовать фибролит, арболит, опилкобетон, мягкие древесно-волокнистые плиты, а также термоизоляционные блоки из легкого бетона. Плиты из органических материалов устанавливают по маякам на относе, неорганические утеплители крепят к стене непосредственно на растворе или неорганических клеях. 
Для наружного утепления лучше всего использовать минеральную вату или пенопласт. 

  1. утеплитель
  2. воздушная прослойка
  3. маяки из раствора
  4. дощатая обшивка

Стена колодцевой кладки состоит из двух продольных стенок толщиной в полкирпича, расположенных одна от другой на расстоянии 14-27 см и соединенных между собой через 65-120 см вертикальными поперечными стенками. 
Колодцы между продольными и поперечными стенками заполняют утеплителем слоями толщиной 10-15 см с послойным трамбованием. Для предупреждения усадки утеплители через 30-60 см по высоте устраивают горизонтальные диафрагмы из армированного цементно-песчаного раствора или тычковых рядов кирпича. 

Колодцевую кладку применяют в тех случаях, когда имеется в достаточном количестве относительно легкий и малотеплопроводный материал для заполнения внутреннего пространства стен: шлак, керамзит, щебень или песок легких горных пород, древесные опилки и т. п. Минеральные материалы (не поддающиеся биологическому разрушению) можно использовать в виде сухой засыпки, органические — обязательно в виде легких бетонов на основе неорганических вяжущих: цемента, извести, гипса или глины. 

 

инструкция, фото и видео-уроки, цена

Как определить прочность кирпича на сжатие? В каких случаях этой характеристике стоит уделить пристальное внимание? Какие виды кирпича наиболее прочны и как их устойчивость к механическим воздействиям влияет на надежность кладки в целом? Попробуем разобраться.

Кирпичные стены традиционно ассоциируются с надежностью. Всегда ли такая точка зрения оправдана?

Кирпичные стены традиционно ассоциируются с надежностью. Всегда ли такая точка зрения оправдана?

Почему это важно

А в самом деле, из-за чего сыр-бор? Веками дома строились из обожженного кирпича – и, заметьте, стояли те дома тоже веками! Их прочность была заведомо ниже современных строительных материалов. Так, быть может, не стоит создавать себе проблем?

При одноэтажном строительстве, в самом деле, класс прочности кирпича не имеет особого значения. С правильно выполненной перевязкой рядов и при условии армирования кладки даже  стена в полкирпича прекрасно выдержит массу стропильной системы и кровли; большего от нее и не требуется.

Нюанс: на практике для целостности стен одноэтажного строения куда большее значение имеет прочность фундамента. Его смещение или неравномерная усадка способны создать  больше проблем, чем использование для кладки стен материала с низкой механической прочностью.

Одноэтажный дом из кирпича-сырца.

Одноэтажный дом из кирпича-сырца.

Ситуация в корне меняется, если планируется многоэтажное строительство. Из чего складывается нагрузка на нижние ряды кирпича в стенах?

На них давят:

  • Все расположенные выше ряды кладки. При плотности под две тонны на кубометр уже это немало.
  • Перекрытия. В многоэтажных домах типичное решение – железобетонные плиты перекрытий; их масса тоже весьма значительна.
  • Стропильная система и кровля не так уж легки сами по себе. Добавим к ним массу скапливающегося зимой на крыше снега.
  • Чтобы ничего не упустить – вспомним про ветровые нагрузки, которые воспринимаются стенами, усадку фундамента и прочие часто забывающиеся мелочи.

Определенно, с учетом вышесказанного расчет кирпичной кладки на прочность представляется вполне здравой идеей. Однако здесь возникает пара проблем:

  1. Существующие методики расчета весьма сложны.
  2. При этом они дают весьма приблизительные результаты.
Впрочем, вместо расчета иногда можно использовать справочные данные.

Впрочем, вместо расчета иногда можно использовать справочные данные.

Отложим пока решение нашей задачи и давайте посмотрим, какие параметры влияют на результирующую надежность и долговечность кирпичной стены.

О прочности стен

Слагаемые успеха

Итак, из чего складывается прочность кладки?

  • Прочность при сжатии кирпича, как ее часто называют  (правильнее все-таки употреблять выражение “прочность на сжатие”) – это способность изделия выдержать без разрушения определенную механическую нагрузку. Как ее определить? Предельно просто: марка – это и есть предел прочности кирпича при сжатии в килограммах на квадратный сантиметр. К примеру, строительный кирпич марки М 75 в среднем будет разрушаться при давлении в 75 кгс/см2.
  • Марка раствора тоже непосредственно влияет на результат. Здесь действует тот же принцип: марка – это прямое указание на разрушающее давление в килограммах на квадратный сантиметр.

Раствор М 25 способен выдержать давление в 25 кгс/см2, М 100 – 100 кгс/см2 и так далее. Марка раствора тем выше, чем больше в нем цемента и чем выше марка этого цемента: для раствора М 200 рекомендуется использовать цемент М 500.

  • Равномерность заполнения швов раствором тоже весьма важна. В этом смысле показателен давний эксперимент: разные участки стены с использованием идентичных материалов клались опытным каменщиком и новичком. Разрушающее давление при испытаниях на участке мастера оказалось в 1,8 раза выше, чем на участке ученика.
От каменщика надежность кладки зависит не меньше, чем от материала.

От каменщика надежность кладки зависит не меньше, чем от материала.

Приоритеты

Нужен ли сверхпрочный кирпич при частном строительстве?

На этот вопрос можно дать однозначный ответ: нет. Едва ли вы станете строить своими руками дом хотя бы в 5 этажей: ИЖС законодательно ограничено двумя жилыми этажами и мансардой.

Между тем, для 16-этажных домов действуют следующие нормы:

  1. Первые три этажа возводятся из кирпича марки М 150.
  2. Для остальных этажей разрешено применять марку М 100.

Думается, нагрузку в обоих случаях сопоставить несложно. Чтобы проверить свои размышления, давайте оценим давление, которому подвергается поверхность рядового кирпича в двухэтажном доме.

Разумеется, оценка будет крайне грубой.

  1. Два этажа по 3 метра каждый дадут нам высоту кладки в 6 метров.
  2. Общую массу перекрытий и стропильной системы оценим как равную массе стен.
  3. Стало быть, на каждый квадратный сантиметр поверхности первого ряда кирпичей будет давить своим весом столб объемом 0,0001 м2 (квадратный сантиметр – 1/10000 квадратного метра) х 12 метров (высоту в 6 м мы умножаем на два) = 0,0012 м3.
  4. Плотность кирпичной кладки примерно равна 1700 кг/м3. Вес нашего столба будет равен 0,0012*1700=2,04 кг. Два килограмма на сантиметр! Даже кирпич низшей марки М75 имеет огромный запас прочности.

На что стоит обратить внимание при выборе материала?

Если вы живете в регионе с суровым климатом, инструкция очевидна: на морозостойкость. В маркировке кирпича она указывается с индексом F или МРЗ и означает количество циклов заморозки и оттаивания, которые кирпич гарантированно может выдержать без признаков разрушения. Хорошим считается значение морозостойкости не менее 50 циклов.

На фото для кладки фасада использован материал с низкой морозостойкостью. Последствия не заставили себя ждать.

На фото для кладки фасада использован материал с низкой морозостойкостью. Последствия не заставили себя ждать.

Важно: чтобы оценить реальный ресурс стен, морозостойкость материала можно умножить на 2,5-3. Точное значение коэффициента зависит от того, насколько суровые морозы характерны для вашего города.

Однако

И все-таки существует вполне реальная ситуация, в которой предел прочности при сжатии кирпича имеет очень большое значение. Не догадаетесь? Подскажем: облицовка фасада.

  • Облицовочный кирпич (в т.ч. декоративный) испытывает большие ударные нагрузки. Попросту говоря, фасад вы куда чаще цепляете переносимыми предметами.
  • Ветровую эрозию тоже стоит учитывать. Так уж получилось, что устойчивость по отношению к ней линейно зависит от прочности.
  • Морозостойкость и низкое влагопоглощение, которые крайне важны для облицовочного материала, зависят от того же свойства материала, что и механическая прочность: от минимального размера пор.

Сравнительная прочность разных видов кирпича

К какому виду относится самый прочный кирпич?

Давайте устоим экспресс-обзор разных его типов.

  • Силикатный кирпич производится пропаркой в автоклаве при высоких температуре и давлении сформованной песчано-известковой смеси. Максимальная прочность силикатного кирпича соответствует марке М200.
Силикатный кирпич популярен, прежде всего, благодаря относительной дешевизне, обусловленной технологичностью производства. На одну партию уходит всего 4-6 часов против суток для керамики.

Силикатный кирпич популярен, прежде всего, благодаря относительной дешевизне, обусловленной технологичностью производства. На одну партию уходит всего 4-6 часов против суток для керамики.

К слову: этот материал нельзя использовать для кладки фундаментов, да и от осадков стены из него лучше защищать свесами кровли.

  • Красный керамический уже заметно прочнее: максимальная марка – М 300. Обжиг глины вызывает спекание ее частиц; в результате получившаяся масса напоминает структурой камень с небольшими порами, появляющимися в ходе испарения воды.
  • Гиперпрессованный кирпич, как несложно догадаться по его названию, представляет собой продукт прессовки. Сырье – наполнитель (известняк, ракушечник, кирпичный бой, шлак или любой другой) и портландцемент марки 500.

В процессе пропарки и последующего хранения на теплом складе материал набирает прочность; он часто служит для облицовки фасадов. Пропарочную камеру готовый кирпич покидает с прочностью, соответствующей марке М 200 – М 250, однако в процессе хранения в течение первого месяца достигает марки М 350.

  • Наконец, клинкер по этому параметру – бесспорный победитель. Отечественными стандартами предусмотрена прочность вплоть до М 1000; однако лучшие образцы облицовочного клинкерного кирпича выдерживают усилие на сжатие в 1700 – 1800 кгс/см2. Понятно, что цена таких изделий намного выше конкурирующих решений.

Как достигается столь выдающийся результат? Принципиальной разницы с обычной керамикой нет: сырье – та же глина, однако более высокая температура обжига обеспечивает исключительно глубокое спекание частиц.

Клинкер - однозначный чемпион. Вдумайтесь: кирпич стандартного размера (25х12х6,5 сантиметра) марки М 1000 способен выдержать без разрушения вес до 300 тонн!

Клинкер – однозначный чемпион. Вдумайтесь: кирпич стандартного размера (25х12х6,5 сантиметра) марки М 1000 способен выдержать без разрушения вес до 300 тонн!

Влияет ли на прочность что-то, кроме сырья и технологии производства? Несомненно.

  • Пустотность. Если полнотелый кирпич наиболее прочен, то поризованный и пустотный (так называемый эффективный) благодаря полостям раздавить куда легче.

Важно: не стоит отказываться от эффективного кирпича из-за его меньшей механической прочности. Как мы выяснили, реальная нагрузка в частном домостроении несопоставима с возможностями даже низших марок; а вот теплоизоляционные качества пустотного материала – большой и несомненный плюс.

  • Форма. Благодаря неоднородности швов нагрузка на изгиб может возникать даже внутри горизонтальных рядов; этой нагрузке лучше противостоят изделия большой толщины. Двойной кирпич имеет меньше шансов дать трещину по сравнению с одинарным.
Двойной силикатный кирпич М 150 на практике оказывается прочнее одинарного той же марки.

Двойной силикатный кирпич М 150 на практике оказывается прочнее одинарного той же марки.

Вывод

    1. Прочность не является определяющей характеристикой рядового кирпича в случае частного домостроения. Морозостойкость и низкая теплопроводность в реальной обстановке куда более полезны.

  1. Если все же оценивать способность противостоять механическим воздействиям, безоговорочный лидер – клинкер. Полнотелый и максимально большой толщины. Впрочем, встретить такой материал в продаже малореально.

Как обычно, в представленном видео в этой статье вы найдете дополнительную информацию по данной теме. Успехов в строительстве!

Прочность кирпича, марки, класс и предел прочности кирпича Прочность кирпича

Выбирая строительный материал, необходимо обращать внимание на его главные технические характеристики, которые располагают к созданию комфортного и долговечного объекта. Прочность кирпича — один из показателей качества материала, позволяющий оценить, для каких целей он окажется наиболее актуальным. Разные виды кирпичных изделий применяются в различных сферах строительства, и марка прочности нередко является определяющим фактором при выборе материала.

Прочность стены определяется следующими нюансами:

  • Прочность кирпича на сжатие является способностью изделия выдерживать нагрузку и механическое воздействие, оказывая сопротивление и не проявляя признаков разрушения и деформации. Определить возможности материала в этом направлении просто — достаточно знать его марку, которая определяет предел прочности кирпича в соотношении килограммов на квадратный сантиметр при осуществлении воздействия на изделие. Средние показатели строительного кирпича: 75 кгс/см2 и его марка называется М75.

  • На прочность кирпича и стены, которая выложена из него влияет и марка раствора. Она свидетельствует о давлении, оказываемом в килограммах на квадратный сантиметр при условии проявления нагрузки на кладку. К примеру, раствор марки М25 способен выдерживать воздействие в 25кгс/см2 и в зависимости от марки он позволит сделать стену более крепкой и устойчивой к повреждениям. Марка раствора увеличивается в соответствии с увеличением цемента в его составе. Чем больше марка раствора — тем выше и марка второго компонента. Так раствору М 200 подойдет цемент марки М 500.
  • Для увеличения прочности кладки специалисты рекомендуют следить за равномерным заполнением цементным раствором строительных швов.

Чем выше прочность кирпича, который вы выбрали для строительства, тем более устойчивым к механическим воздействиям и повреждениям окажется строение, которое вы планируете возвести.


Прочность разных видов кирпича

В современном строительстве используется весь спектр кирпичных изделий, которым отдают предпочтение при осуществлении кладки, мощении, облицовке, создании декоративных элементов интерьера. В зависимости от типа материала прочность кирпича может разниться.

  • Силикатный кирпич изготавливают с использованием смеси песка и извести посредством парового воздействия в автоклаве. Его производство не занимает много времени и относительно не дорогое, а прочность полученного материала равна М200.
  • Керамический кирпич создают из глиняной смеси в процессе обжига и в финале получается крепкое изделие, прочность которых несколько выше, чем у силикатных, М 300.
  • Гиперпресованный кирпич имеет марку М 350 и собирает в своем составе цемент, ракушечник, известняк и добавки.
  • Клинкерный кирпич обладает высокими показателями прочности и среди представителей материала этого типа можно найти те, которые обладают маркой М 1000, что позволяет использовать материал для мощения и в тех сферах, где он будет подвержен постоянному механическому воздействию.


Марки прочности кирпича

Приобретая строительные материалы, интересуйтесь маркой их прочности, так как для выполнения различных задач этот показатель будет иметь большое значение. Строительство личного дома предполагает использование высокопрочных изделий, они же находят применение и в промышленности. Определение прочности кирпича производят посредством выбора 5 изделий из выпущенной партии, которые проверяют на устойчивость изгибу и сжатию, в результате чего, присваивают марки прочности кирпича.

В зависимости от данных, полученных в процессе эксперимента, материалам может быть присвоена одна из восьми возможных марок. Среди них М75, М100, М125, М150, М200, М250 и М300. Планируя условия использования объекта, специалисты отдают предпочтение той или иной марке прочности кирпича. Например, для возведения малоэтажных домов с 2–3 этажами подходит материал с прочностью М100, а укладка фундамента и строительство высоток требует больших показателей: М150 и М200. Более высокие марки предполагаются для создания несущих фундамента, массивных зданий и построек, в конструкции которых большое давление оказывается на нижний ряд кладки.

marka-prochnosti-kirpicha.jpg

Отечественное законодательство четко описывает характеристики, которым должна соответствовать продукция, выпускаемая для строительства. Прочность кирпича по госту оговаривается в отдельных статьях и зависит от состава материала.

Существует ряд ситуаций, в которых сложно переоценить значение класса прочности кирпича. Речь идет об облицовке фасада здания. Приобретая облицовочный кирпич, стоит помнить, что он испытывает высокие ударные нагрузки и чаще подвергается механическому воздействию от ветра и морозов. Прочность также показывает способность изделия сопротивляться перепадам температур и не допускать поглощения влаги.

Для покупки высококачественного прочного кирпича, подходящего для строительства малоэтажных и высотных зданий, облицовки фасадов, укладки фундамента и мощения дорожек, обращайтесь в компанию «УниверсалСнаб»!

Прочность и устойчивость кладки

Категория: Кирпичная кладка


Прочность и устойчивость кладки

Способность кладки воспринимать нагрузку от вышележащих конструктивных элементов называют прочностью.

От действия нагрузок в кладке возникают внутренние напряжения и деформации. Марка раствора и кирпича, форма и размеры кладочных материалов, толщина и плотность растворных швов — все это влияет на прочность кладки.

Способность кладки сохранять свое положение при действии горизонтальных (например, ветровых) нагрузок называют устойчивостью. Это свойство ограничивает высоту кладки в зависимости от ее толщины и величины ветровых нагрузок. Например, стенка толщиной 250 мм при ветровой нагрузке более 400 Па не должна быть выше 2,25 м.

Внешние нагрузки, действующие на кладку, создают в ней напряженное состояние. При нормальной эксплуатации (первая стадия) внутренние напряжения не вызывают видимых повреждений кладки. При увеличении нагрузки (вторая стадия) в отдельных кирпичах появляются трещины. Продолжающийся рост нагрузки приводит к развитию вертикальных трещин (третья стадия), однако кладка еще способна воспринимать действующие на нее внешние силы. Дальнейшее нарастание нагрузки расслаивает кладку на тонкие столбики (четвертая стадия). Кладка разрушается из-за потери устойчивости конструкции, расчлененной вертикальными трещинами.

Рис. 1. Однорядная система перевязки 1 — тычковый ряд; 2 — ложковый ряд; 3 — смещение вертикальных швов на четверть кирпича

Рис. 2. Многорядная система перевязки 1 — тычковый ряд; 2 — ложковые ряды; 3 — смещение вертикальных швов на четверть кирпича; 4 — то же, на половину кирпича

Рис. 3. Трехрядная система перевязки 1 — тычковый ряд; 2 — ложковые ряды; 3 — совпадение трех

Как видно из условного графика, прочность кладки мало зависит от системы перевязки швов.

Толщина швов. С увеличением толщины швов уменьшается прочность кладки. Это обусловлено тем, что прочность раствора всегда меньше прочности кладочного материала. Однако и уменьшение толщины швов не повышает прочности кладки, так как уложенные кирпичи неровностями граней касаются друг друга и в этих местах вместо сжатия работают на изгиб, что снижает прочность кладки. Чтобы все кирпичи, уложенные в конструкции, работали на сжатие, нормируют толщину горизонтальных и вертикальных швов: толщина горизонтальных швов: 10…15 мм, вертикальных — 8…15.

Рис. 4. Напряженное состояние кладки от действия внешней нагрузки 1 — силы внутреннего напряжения; 2 — железобетонная подушка; 3 — железобетонная балка

Рис. 5. Стадии работы кладки при возрастании внешней нагрузки а — первая; б — вторая; в — третья; г — четвертая; 1 — силы внутреннего напряжения; 2 — появление трещин; 3 — развитие вертикальных трещин; 4 — расслоение кладки

Рис. 6. Условный график иллюстрирующий прочность кладки а — однорядной; б — многорядной; в — трехрядной



Кирпичная кладка — Прочность и устойчивость кладки

6 дефектов в кирпичной кладке из-за плохой работы

ВЛИЯНИЯ ПРОИЗВОДСТВА НА ПРОЧНОСТЬ МАЗОНИИ

Масонство имеет очень давнюю традицию строительства мастерами, без технического надзора, применяемого к железобетонным конструкциям. Следовательно, он часто рассматривается с некоторым подозрением в качестве конструкционного материала и имеет гораздо более высокие коэффициенты безопасности, чем бетон. Конечно, этому есть какое-то оправдание: если не существует надзора, любой структурный элемент, будь то каменный или бетонный, будет иметь неопределенную прочность.С другой стороны, если к каменной кладке применяется такой же уровень контроля, какой обычно требуется для бетона, кладка будет такой же надежной, как и бетон. Поэтому для инженеров, проектирующих и строящих в каменной кладке, важно понимать факторы качества изготовления, которые важны для развития определенной прочности. Эта информация была получена путем проведения испытаний на стенах, в которые были встроены известные дефекты, и сравнения результатов с соответствующими испытаниями на стенах без дефектов.На практике эти дефекты будут присутствовать в некоторой степени, и при неудовлетворительной работе их комбинация может привести к тому, что стенка будет вдвое менее прочной, чем должна быть. Однако такая стена, очевидно, будет плохо построена и будет настолько далеко выходить за рамки разумных требований, что будет совершенно неприемлемой.

Конечно, гораздо лучше, если в первом случае правильно построить каменную кладку, и время, потраченное инженером на объяснение важности пунктов, изложенных ниже, для слоя кирпича или блока и его непосредственного руководителя будет временем израсходованы.

1. Невыполнение стыков станины

Важно, чтобы стыки станины в кирпичной кладке были полностью заполнены. Разрывы в строительном растворе могут быть вызваны просто небрежностью или спешкой, или практикой, известной как « бороздка », что означает, что каменщик делает зазор с помощью своего шпателя в середине строительного раствора параллельно поверхности стены. Испытания показывают, что не полностью заполненные стыки слоев могут снизить прочность кирпичной кладки на 33%.

Было обнаружено, что отсутствие заполнения вертикальных швов оказывает очень незначительное влияние на прочность кирпича на сжатие, но снижает сопротивление изгибу.Кроме того, незаполненные перпендикулярные соединения нежелательны с точки зрения исключения погодных условий и звукоизоляции, а также указывают на небрежное качество изготовления в целом.

2. Стыковые стыки чрезмерной толщины

Увеличение толщины шва приводит к снижению прочности кладки, поскольку оно создает более высокие поперечные растягивающие напряжения в кирпичах, чем в случае с тонкими швами. Таким образом, стыки слоя толщиной 16–19 мм приведут к снижению прочности на сжатие до 30% по сравнению с соединениями толщиной 10 мм.

3. Отклонение от вертикальности или выравнивания

Стена, которая построена из отвеса, изогнута или не выровнена со стеной на этаже выше или ниже, приведет к эксцентрической нагрузке и последующему снижению прочности. Таким образом, стена с дефектом этого типа 12–20 мм будет на 13–15% слабее, чем стена, которая не .

4. Воздействие неблагоприятных погодных условий после укладки

Вновь уложенную кирпичную кладку следует защищать от чрезмерного нагрева или замерзания, пока раствор не затвердеет.Чрезмерная потеря влаги в результате испарения или воздействия жаркой погоды может помешать полной гидратации цемента и, как следствие, неспособности развить нормальную прочность раствора. В результате прочность стены может быть уменьшена на 10%. Замораживание может вызвать смещение стены от вертикали с соответствующим снижением прочности. Надлежащее отверждение может быть достигнуто путем покрытия работы полиэтиленовыми листами, а в холодную погоду также может потребоваться нагрев материалов, если кладка кирпича должна выполняться в условиях замерзания .

5. Отказ от регулировки всасывания кирпичей

Рисунок 1

Более тонкий дефект может возникнуть, если тонкие стены должны быть построены из кирпича с высокой степенью поглощения. Причина этого проиллюстрирована на Рисунке-1 , в котором показано, как стык кровати может иметь форму « подушки », если кирпичи над ним слегка изогнуты при укладке. Если вода была удалена из раствора путем всасывания кирпичей, возможно, она стала слишком сухой, чтобы вернуть свою первоначальную плоскую форму.Получающаяся в результате стена, очевидно, будет иметь недостаточную стабильность из-за выпуклой формы слоя раствора и может быть на 50% слабее, чем следует ожидать из-за прочности кирпича и состава раствора. В качестве меры предосторожности следует смачивать кирпичи перед укладкой, чтобы снизить их скорость всасывания ниже 2 кг / м 2 / мин, а доля извести в растворной смеси поможет удержать в нем воду против всасывания кирпичей.

6. Неправильное дозирование и смешивание раствора

Влияние прочности раствора на прочность кладки можно судить по Рис-2 , из которого можно увидеть кирпичи, имеющие прочность на раздавливание 30 Н / мм. 2 , что снижает прочность раствора с 11 Н / мм. 2 до 4.Можно ожидать, что 5 Н / мм 2 уменьшит прочность кирпичной кладки с 14 Н / мм 2 до 11 Н / мм 2 . Это соответствует изменению в растворной смеси с 1: 3 цемент: песок до 1: 4,5 или примерно на 30% слишком мало цемента в смеси. Снижение прочности раствора также может быть связано с относительно высоким отношением воды к цементу, в то же время производя пригодную смесь. Поэтому важно видеть, что требования к прочности раствора соблюдены, хотя существует присущая степень допуска, достаточная для учета небольших ошибок при дозировании и смешивании раствора.Использование неподходящего или чрезмерного количества пластификатора вместо извести приведет к образованию пористого и, возможно, слабого строительного раствора, и его необходимо защищать.

Рис-2-отношения между ними кирпича прочность кирпича-каменной кладки, прочность строительного раствора прочность

Связанные темы, которые могут вам помочь

Также читайте: Как проверить качество кирпича на сайте?

Читайте также:

.

О нас

Вивек Кулкарни, основатель группы компаний Brickwork, — новатор и дальновидный предприниматель, начал свою карьеру в качестве сотрудника IAS и проработал в правительстве 22 года. В качестве секретаря по информационным технологиям в правительстве штата Карнатака, Вивек стал инициатором многих новаторских инициатив, направленных на активное продвижение Бангалора в качестве предпочтительного направления для глобальных компаний по созданию своих офисов и центров для работы в плену. Именно под его руководством Бангалор стал широко известен как «Силиконовая долина» Индии.

В 2004 году Вивек рано ушел в отставку из правительства и начал свой предпринимательский путь. Он стал соучредителем B2K Corp, приобретя подразделение Talisma, крупной CRM-компании. B2K предоставила услуги технической поддержки крупным мировым компаниям, а также услуги в области здравоохранения и анализа данных.

В начале 2005 года Вивек и его жена Сангита соучредили Brickwork India, чтобы предложить преимущества аутсорсинга, доступного для частных лиц и малых и средних компаний (МСП), путем предоставления простой и сложной помощи бизнесу по доступной цене. ,Чтобы воплотить эту идею в жизнь, они впервые применили уникальную концепцию удаленной помощи руководству (REA TM ) с двойной целью. Один из них — дать возможность крупным предприятиям оптимизировать время своих руководителей, освобождая их от рутинных и неосновных задач, предоставляя индивидуальные и персонализированные услуги. И, во-вторых, создать платформу для всех глобальных МСП и предпринимателей, чтобы использовать их доступ к разнообразным услугам для выполнения как текущих, так и специальных задач.

Эта уникальная концепция предоставления персонализированных и персонализированных услуг через команду удаленных исполнительных помощников (REA TM ) получила мгновенное всемирное признание и внимание средств массовой информации.Томас Фридман писал о Brickwork в своем бестселлере «New York Times» 2005 года «Мир плоский». С тех пор более 100 печатных и вещательных медиа-компаний профилировали кирпичную кладку. Другой бестселлер New York Times «4-часовая рабочая неделя», написанный Тимом Ферриссом, описал, как Brickwork помогает занятым профессионалам стать более продуктивными, перераспределяя свое время. Knowledge @ Wharton также опубликовал статью о кирпичной кладке.

Со времени своего первого проекта по исследованию рынка для Credit Suisse, до настоящего времени, Brickwork поддерживал клиентов в 170 странах и реализовал более 29 000 проектов.Его клиентура варьируется от компаний из списка Fortune 500, малых и средних предприятий и стартапов до инновационных предпринимателей и занятых CXO в более чем 52 отраслях. Некоторые из клиентов, которые воспользовались поддержкой REA, включают в себя известных промышленников, сенаторов, медиа-знаменитостей, старших консультантов, фирмы с Уолл-стрит, советников президента США и CXO из крупных предприятий.

Сегодня Brickwork превратилась в бутиковую фирму, предлагающую нишу и специализированные услуги поддержки в рамках административного, информационного и технического портфеля.Кирпичная кладка понимает уникальные потребности своих клиентов и разработала специализированные услуги для крупных предприятий, а также для малого бизнеса.

Разнообразие реализованных проектов включает в себя сотрудничество с Университетом Пенсильвании, Банком IIM и больницей Сент-Джонс для исследования, спонсируемого фондом Билла и Мелинды Гейтс, написание речи об аутсорсинге для сенатора США, предоставление услуг по поиску по всей Индии для второго по величине производителя металла в мире. и будучи бывшим представителем Индии в округе Фэрфакс.

Чтобы понять, как работает концепция REA, несколько видных деятелей, представителей международных университетов и иностранных правительств посетили офис Brickwork в Бангалоре. Среди посетителей были дипломатические делегации из Германии, Мексики, Франции, Китая. Колледж Уильяма и Мэри, Вирджиния, США, и Университет Бетела, Сент-Пол, Миннесота, США. Студенты из Гарварда, UPENN и Чили также прошли стажировку в Brickwork и т. Д.

Для бизнеса, который очень сложен, разнообразен и требует предпринимательского пути, было очень трудным и сложным как для Vivek, так и для Sangeeta.Они руководили организацией в нестабильных рыночных условиях, используя свои сильные стороны, настойчивость, этичность и сосредоточенность на своем видении и миссии. Идентичность бренда была результатом их видения, направленного на развитие организации на основе проверенных временем ценностей, инноваций, сильного управления, качества, ориентированной на клиента доставки, расширения возможностей и благосостояния сотрудников. Они также успешно позволили организации, поддерживающей технологии, и создали структуру, которая измеряет эффективность, прозрачность, подотчетность каждого REA во всей организации.Постоянно настаивают на повышении стандартов обслуживания клиентов, а также на предоставлении более широкого спектра услуг. Корпоративные ценности кирпичной кладки внедряются во всех REA, которые демонстрируют приверженность через искренность, честность и ответственность во всех своих действиях.

Кирпичная группа значительно выросла за десятилетие. Среди компаний группы — Brickwork Ratings, 5-е индийское агентство кредитных рейтингов, Brickwork Finance Academy (BFA), которое предлагает программу выходного дня в области финансов, а также Brickwork Foundation, который является подразделением группы по КСО.

,
Архитектурные тенденции в кирпичной кладке | Анкон Лтд

Кирпич — самый популярный облицовочный материал в Великобритании. Он обычно выбирается в новой сборке, чтобы соответствовать существующей и смежной застроенной среде, однако, сегодня кирпичная кладка также все чаще используется для создания потрясающих архитектурных элементов и культовых зданий благодаря гибкости дизайна, долговечности и устойчивости.

© Алекс Аптон

В городских ландшафтах, где иногда преобладают сталь и стекло, красиво оформленные, бросающие вызов гравитации кирпичные фасады могут действительно привлечь внимание и обеспечить освежающий, иногда вызывающий, контраст по сравнению с архитектурным народным выражением.Но претворение в жизнь идеи архитектора о кирпиче часто требует закулисных систем поддержки конструкций.

Специальные стальные крепежные и опорные системы обеспечивают прочность и целостность, необходимые для создания элементов кирпичной кладки, таких как изогнутые стены, перфорированные фасады, взлетно-посадочные балки и глубокие откосы и откосы. Системы поддержки каменной кладки Ancon — это секретная сила, стоящая за некоторыми из самых впечатляющих кирпичных зданий в последнее время.

Привлекательный новый дом для современного искусства

© Алекс Аптон

Одним из них является расширение Tate Modern в Лондоне, которое открылось в июне 2016 года.Внушительный новый Switch House возвышается на 65 метров над Темзой, предоставляя посетителям 360-градусный обзор горизонта Лондона с его десятого этажа террасы. Тем не менее, наиболее примечательной особенностью этого знакового здания является его геометрическая, решетчатая кирпичная внешность, имеющая форму витой пирамиды и рассеченная горизонтальными прорезями окон.

Кирпич

был выбран в качестве дополнения к зданию электростанции, в котором находится оригинальный Tate Modern, но привлекательный дизайн поставил некоторые серьезные структурные проблемы.Анкон изготовил сделанные на заказ карнизы и штифты из нержавеющей стали для поддержки и удержания на месте огромного кирпичного фасада.

дыр в стене выиграть кирпич награды

Saw Swee Hock Студенческий центр, Лондонская школа экономики

Перфорированные кирпичные стены становятся все более востребованной особенностью, другим примером является отмеченный наградами Студенческий центр Saw Swee Hock при Лондонской школе экономики. Сложная структура этого привлекательного кирпичного здания выиграла три категории в 2014 году.Этот «шедевр здания, который создает совершенно новый язык для кирпичной кладки», «сдул» судейскую панель.

Сложный каменный фасад требовал использования специальных наклонных опорных углов из кирпича, прикрепленных назад к литым каналам с изготовленными на заказ ветровыми опорами для создания областей из сплошной кирпичной кладки и перфорированных областей без каких-либо открытых металлических конструкций. Перфорированная кирпичная кладка пропускает естественное освещение в течение дня, а ночью искусственный свет изнутри пронизывает внешний вид и создает красивые узоры.

Опора для гравитационных кирпичей

Популярной тенденцией в проектировании кирпичных зданий является глубокая обнаженность или перекрытие, где большие участки кирпичной кладки обнажаются на нижней стороне свесов или углублений зданий. Такие привлекательные особенности создают значительные инженерные проблемы, так как большие пространства кирпича должны быть подвешены к невидимым металлоконструкциям.

Для обеспечения эффективного и безопасного создания этих функций в сотрудничестве с Ibstock Kevington Ancon разработала новую легкую, легко регулируемую систему крепления Nexus.Nexus изготовлен за пределами площадки, с кирпичными накладками, соединенными с конструкционной стальной конструкции с использованием высокопрочного клея. Эта система упрощает и ускоряет установку современных софитов с кирпичной облицовкой и функций глубокого раскрытия.

Sky’s предел для кирпичных «летающих балок»

Кирпичные летающие балки в развитии Bow River Village

Удовлетворяя спрос на полностью кирпичную эстетику без оголенных стальных конструкций, технические характеристики кирпичных летающих балок становятся все более популярными.Представленный в ультрасовременном жилом проекте Bow River Village на южных окраинах лондонского Олимпийского парка, на верхних этажах лестничных клеток были построены глубокие кирпичные балки с использованием изготовленных на заказ легких сборных перекрытий Nexus, которые со всех сторон были облицованы кирпичной кладкой. Специальные блоки скольжения кирпича были прикреплены болтами непосредственно к системе поддержки углов кирпича Ancon MDC, которая была предварительно прикреплена к раме из конструкционной стали.

Стальные системы опережают кривую

Фотография предоставлена ​​Hazle McCormack Young LLP.

Изогнутые кирпичные стены могут улучшить здания любого размера, создавая формы, которые бросают вызов угловой природе материала. Прекрасный пример этого можно увидеть на офисном здании Broadside в Кенте, спроектированном архитектором Hazle McCormack LLP.

Специальные стальные опорные системы, как правило, требуются для этих изогнутых кирпичных стен, которые соответствуют высоте, длине и кривизне стены. В зависимости от радиуса изгиба могут использоваться отдельные стальные опорные кронштейны или короткие длины непрерывных угловых опор, позволяющие закрепить наружный лист кирпичной кладки по гладкой кривой, поддерживаемой этими скрытыми системами.

Интернет CPD от Ancon

Поскольку все мы меняем способ работы, Ancon расширил свои технические услуги, включив в него вебинары «по требованию», позволяющие тем из вас, кто занимается социальным дистанцированием, работая дома или в офисе, быть в курсе вашего профессионального развития. ,

Ancon празднует Международный день женщин-инженеров

Вторник, 23 июня 2020 года, — всемирно отмечаемый Международный день женщин-инженеров (INWED).Ancon будет чествовать своих женщин-инженеров, познакомившись с некоторыми из них немного лучше и поделившись с вами своим опытом.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *