Армирование фундаментной плиты: Армирование плитного фундамента: зачем проводится, выбор арматуры, схема армирования, этапы работ

Армирование фундаментной плиты, как армировать?

Кажущаяся простота конструкции фундаментной плиты весьма обманчива, поскольку от правильности и аккуратности выполнения всех необходимых действий зависит его надежность и долговечность. Армирование дает возможность создать для здания прочную основу и избежать значительной усадки и растрескивания стен. Ремонтировать фундамент не только сложно, но и достаточно дорого, а это значит, что лучше изначально нужно позаботиться о его качестве.

Фундаментные плиты испытывают нагрузки на изгиб не только в продольном, но и в поперечном направлении. Нередко возникают и скручивающие нагрузки. Чтобы их выдержать необходимо создание арматурного каркаса.

Прежде чем приступить к армированию фундаментной плиты, необходимо провести гидроизоляционные работы, которые выполняются при помощи битумных мастик и линокрома – современного материала, обеспечивающего защиту от воды. Также следует грамотно установить опалубку.

Армирование фундаментной плиты проводится при возведении не только горизонтальных, но и вертикальных элементов строения.

Поэтому существуют следующие виды: продольное и поперечное. Какой из них выбрать определяется по направлению весовой нагрузки, но чаще всего используются оба.

Для соединения элементов арматуры специалисты не рекомендуют применять сварку, потому что при воздействии высоких температур прочность металла несколько снижается. Допускается сваривать арматуру, имеющую в маркировке букву «С». Все другие марки соединяются при помощи вязальной проволоки катушечным способом или при помощи специальных крючков. Задачей такой проволоки является фиксация элементов в проектном положении, а также недопущении смещений в процессе укладки бетона.

Стоимость фундаментной плиты выше, чем у большинства других видов оснований, потому что для его создания необходимо большое количество бетона и металлических конструкций, придающих жесткость и прочность. Армировать фундамент следует по правилам, которые изложены в нормативных документах.

Как армировать фундаментную плиту?

Прежде чем приступить к армированию, необходимы подготовительные процедуры. Арматура из стали не должна иметь жировой пленки или следов коррозии, потому что даже незначительное загрязнение уменьшают сцепление с бетоном, а это значит, что вся конструкция получится не особо прочной.

Армировать фундаментную плиту можно готовой сеткой марки Ж100 III, Ж 8А III сделанной на предприятии, либо изготавливают ее из прутков прямо на месте. Обычно используют сетку с диаметром прута в пределах 5-6 мм и сечением 15х15 мм. Если же используются отдельные прутки, что происходит значительно чаще, то их размещают с интервалом от 20 до 40 мм. Это расстояние называют шагом, и оно напрямую зависит от проекта: чем выше тяжесть здания, тем меньше промежутки.

Прежде чем начать процесс укладки арматуры на гидроизоляционный материал, расположенный на дне котлована, необходима установка распорок, которые должны иметь плоскую форму. Для них используется изделия из искусственного материала в виде кольца, рельса, а лучший вариант – специально созданные для этой цели тарельчатые фиксаторы.

Высота распорок выбирается таким образом, чтобы готовый арматурный каркас при бетонировании располагался ниже верхнего уровня фундаментной плиты минимум на сантиметр, но при этом расстояние до него снизу не должно быть меньше 50 мм. Таким образом, сверху создается защитный слой, если же арматура будет возвышаться над готовой плитой, то в таких местах возможен излом.

Когда будет полностью собрана нижняя сетка, к ней привязывают соединители, для которых чаще всего используют ребристую арматуру. Они должны иметь одинаковую длину и готовятся заранее. Затем приступают к следующему этапу — созданию второй сетки, по аналогии с первой. При выполнении работ необходимо создание зазора в 50 мм между каркасом и опалубкой. На этом работы по созданию каркаса заканчиваются, остается только закрепить его надежно и приступать к заливке бетона.

Выполнить все необходимые работы профессионально и недорого могут специалисты компании «Проект». Работаем мы в Москве и Подмосковье, знаем все особенности создания фундаментных плит не только в теории, но и имеем достаточный опыт создания подобных сооружений.

Особенности поперечного армирования фундаментной плиты

При создании фундаментной плиты кроме горизонтальной арматуры нужна еще и поперечная, которая необходима для того, чтобы воспринимать усилия от продавливания и других вертикальных нагрузок. Чаще всего ее устанавливают в местах, где располагаются колонны или простенки. Отсутствие поперечной арматуры может вызвать моментальное разрушение здания. В случае если высота плиты превышает 150 мм, то в ней обязательно выполняется поперечное армирование фундаментной плиты.

Для этого вида усиления плиты чаще всего используют гладкие стержни с диаметром от 6 до 8 мм или сетка, изготовленная из плетеной или полосовой стали. Шаг между элементами не должен превышать 300 мм, а точная его величина рассчитывается в соответствии со СНиПом. Специалисты рекомендуют поперечное и вертикальное армирование фундаментной плиты выполнять в виде единого хомута, при этом продольные элементы располагают внутри единого каркаса. В этом случае реже возникают трещины в бетоне, а стержни закрепляются в нужном положении.

поддерживающие каркасы для фундамента, шаг стержней арматуры для плитного варианта

Строительство любого здания предполагает формирование фундамента, который будет воспринимать всю нагрузку на себя. Именно от этой части дома зависит его долговечность и прочность. Существует несколько видов оснований, среди которых особое внимание следует уделить монолитным плитам. Их используют на стойких почвах, где нет значительных колебаний уровня. Важным элементом такой конструкции является арматура, позволяющая увеличить прочность монолита.

Особенности

Монолитные плиты представляют собой сооружения из качественного бетона. Материал отличается высокой прочностью. Недостатком фундаментной плиты является ее низкая пластичность. Бетонные конструкции очень быстро трескаются при высоких нагрузках, что может приводить к образованию трещин и проседанию фундамента.

Решением данной проблемы является армирование плиты с помощью различных видов стальной проволоки. Технически этот процесс предполагает формирование металлического каркаса внутри самого фундамента.

Производятся все подобные операции на основе специальных СНиП, где описана основная технология армирования.

Наличие стальных каркасов позволяет увеличить пластичность плиты, так как высокие нагрузки уже воспринимаются также и металлом. Армирование позволяет решить несколько важных проблем:

  1. Увеличивается прочность материала, который уже может воспринимать высокие механические нагрузки.
  2. Снижается риск возникновения усадки сооружения, а также минимизируется вероятность возникновения трещин, возникающих на относительно нестабильных грунтах.

Следует отметить, что все технические характеристики подобных процессов регламентируются специальными стандартами. В этих документах указаны параметры монолитных сооружений и приведены основные правила их монтажа. Армирующим элементом для таких плит является металлическая сетка, которую формируют вручную. В зависимости от толщины монолита, арматура может располагаться в один или два ряда с определенным расстоянием между слоями.

Важно правильно рассчитать все эти технические характеристики, чтобы получить надежный каркас.

Схема

Армирование плит не является сложным процессом. Но существует несколько важных правил, которых нужно придерживаться при этой процедуре. Так, укладка арматуры может производиться в один или несколько слоев.

Однослойные конструкции желательно применять для плитного фундамента толщиной до 15 см. Если данное значение больше, тогда рекомендовано применять многорядное расположение арматуры.

Между собой арматурные слои соединяются с помощью вертикальных опор, которые не позволяют верхнему ряду упасть.

Основная ширина плиты должна формироваться из равномерно расположенных ячеек. Шаг между арматурной проволокой как в поперечном, так и в продольном направлении, подбирается в зависимости от толщины монолита и нагрузки на него. Для деревянных домов проволоку можно вязать между собой на расстоянии 20–30 см, образуя квадратные ячейки. Оптимальным же шагом для кирпичных зданий считается расстояние 20 см.

Если же конструкция относительно легкая, тогда подобное значение допустимо увеличивать до 40 см. Торцы каждой плиты, согласно стандартным нормам, следует армировать с помощью П-образной арматуры. Ее длина должна равняться 2 толщинам самой монолитной плиты.

Данный фактор следует учитывать при проектировании конструкций и выборе армирующих элементов.

Поддерживающие каркасы (вертикальные стержни) устанавливают с шагом, который аналогичен параметрам расположения арматуры в сетке. Но иногда это значение может увеличиваться в два раза. Но используют это для фундаментов, которые не будут поддаваться очень сильным нагрузкам.

Зоны продавливания формируются с помощью решетки с уменьшенным шагом. Эти сегменты представляют собой часть плиты, на которой в последующем будет располагаться каркас здания (несущие стены). Если основная зона закладывалась с помощью квадратов со стороной 20 см, то в этом месте шаг должен быть примерно 10 см в обе стороны.

При обустройстве зоны сопряжения фундамента и монолитных стен, следует формировать так называемые выпуски. Они представляют собой вертикальные штыри арматуры, которые с помощью вязки соединены основным армирующим каркасом. Такая форма позволяет значительно увеличить прочность и обеспечить качественное соединение опоры с вертикальными элементами. Арматуру при монтаже выпусков следует загибать в виде буквы Г. При этом горизонтальная часть должна иметь длину равную 2 высотам фундамента.

Еще одной особенностью формирования армирующих каркасов является технология соединение проволоки. Сделать это можно несколькими основными способами:

  • Сварка. Длительный процесс, который возможен только для стальной арматуры. Используют ее для небольших монолитных плит с относительно минимальным количеством работы. Альтернативным вариантом является применение уже готовых сварных конструкций, изготовленных на производстве. Это позволяет значительно ускорить процесс формирования каркаса. Недостатком подобного соединения является то, что на выходе получается жесткая конструкция.
  • Вязка. Соединение арматуры осуществляется с помощью стальной тонкой проволоки (диаметр 2–3 мм). Скрутка выполняется специальными приспособлениями, позволяющими немного ускорить процесс. Данный способ является довольно трудоемким и длительным. Но при этом арматура жестко не связывается между собой, что позволяет ей адаптироваться к определенным колебаниям или нагрузкам.

Технологию армирования фундамента можно описать следующими последовательными действиями:

  • Подготовка основания. Монолитные плиты располагаются на своеобразной подушке, которую формируют из щебня и песка. Важно получить прочное и ровное основание. Иногда перед заливкой бетона на почву стелют специальные гидроизоляционные материалы, предотвращающие проникновение влаги к бетону из грунта.
  • Формирование нижнего армирующего слоя. Арматуру последовательно располагают изначально в продольном, а затем в поперечном направлении. Связывают ее с помощью проволоки, формируя квадратные ячейки. Чтобы металл не выступал из бетона после его заливки, нужно полученную конструкцию немного приподнять. Для этого под нее подкладывают небольшие опоры (стулья) из металла, высота которых подбирается в зависимости от высоты монолитной плиты (2–3 см). Желательно, чтобы эти элементы были изготовлены из металла. Таким образом, непосредственно под сеткой образуется пространство, которое заполнится бетоном и закроет металл.
  • Обустройство вертикальных опор. Изготавливают их из той же арматуры, что и саму сетку. Проволоку изгибают таким образом, чтобы получить каркас, на который может опереться верхний ряд.
  • Формирование верхнего слоя. Сетку конструируют аналогичным образом, как это делалось для нижнего ряда. Здесь же используется тот же размер ячеек. Крепят конструкцию к вертикальным опорам одним из известных методов.
  • Заливка. Когда армирующий каркас готов, его заливают бетоном. Сверху и с боков над сеткой формируют также защитный слой. Важно, чтобы металл не проступал сквозь материал после застывания фундамента.

Как рассчитать?

Одним из важных элементов является расчет технических характеристик стержней арматуры. В большинстве случаев шаг сетки равняется 20 см. Поэтому особое внимание следует уделить вычислению других параметров. Начинается процедура с определения диаметра арматуры. Состоит этот процесс из таких последовательных шагов:

  • В первую очередь нужно определить поперечное сечение фундамента. Вычисляется она для каждой из стороны плиты. Для этого нужно толщину будущего фундамента умножить на длину. К примеру, для плиты 6 х 6 х 0,2 м этот показатель будет равняться 6 х 0,2 = 1,2 м2.
  • После этого нужно вычислить минимальную площадь арматуры, которую следует применять для определенного ряда. Она составляет 0,3 процента от поперечного сечения (0,3 х 1,2 = 0,0036 м2 или 36 см2). Этот коэффициент следует использовать при расчете каждой из сторон. Чтобы вычислить подобное значение для одного ряда следует просто разделить полученную площадь пополам (18 см2).
  • Узнав общую площадь, можно посчитать количество арматурных стержней, которые следует использовать для одного ряда. Обратите внимание, что это касается только сечения и не учитывается количество проволоки, которую укладывают в продольном направлении. Чтобы узнать количество стержней, следует вычислить площадь одного. Затем общую площадь разделить на полученное значение. Для 18 см2 применяют 16 элементов диаметром 12 мм или 12 элементов диаметром 14 мм. Узнать эти параметры можно в специальных таблицах.

Чтобы упростить подобные процедуры расчета, следует составить чертеж. Еще одним шагом является подсчет количества арматуры, которую следует приобрести для фундамента. Вычислить это довольно просто всего за несколько шагов:

  1. В первую очередь нужно узнать длину каждого ряда. При этом вычисляется это в обоих направлениях, если фундамент имеет прямоугольную форму. Обратите внимание, что длина должна быть меньше на 2–3 см с каждой стороны, чтобы фундамент мог закрыть металл.
  2. Когда вы знаете длину, можно вычислить количество стержней в одном ряду. Для этого нужно полученное значение разделить на шаг решетки и округлить в большую сторону результирующее число.
  3. Чтобы узнать общий метраж, следует провести описанные ранее операции для каждого ряда и сложить результат вместе.

Советы

Формирование монолитного фундамента может осуществляться различными способами. Чтобы получить качественную конструкцию, следует придерживаться таких простых советов:

  • Арматуру следует располагать в толщине бетона, чтобы предотвратить быстрое развитие коррозии металла. Поэтому специалисты рекомендуют «топить» проволоку с каждой стороны плиты на глубину 2–5 см в зависимости от толщины плиты.
  • Использовать для армирования фундаментов следует только арматуру класса А400. Ее поверхность покрыта специальной «елочкой», увеличивающей связь с бетоном после застывания. Не следует применять изделия более низкого класса, так как они не способны обеспечить нужную прочность конструкции.
  • При соединении проволоку следует укладывать с нахлестом около 25 см. Это позволит создать более жесткий и надежный каркас.

Армированный монолитный фундамент – это прекрасное основание для многих типов зданий. Выполняя его строительство, придерживайтесь стандартных рекомендаций, и вы получите долговечную и надежную конструкцию.

Более подробно про армирование фундаментной плиты расскажет следующее видео.

Армирование монолитной фундаментной плиты

Существует несколько видов фундаментов. Наиболее прочный и надежный из них – монолитная плита. Он может использоваться и для обычных зданий, но только он является незаменимым для пучинистых, песчаных и неустойчивых грунтов. Прочности и стойкости к трещинам ему придают пояса из арматуры.

Роль армирования

Один из самых надежных фундаментов – монолитный в виде бетонной плиты – заливается в предварительно выкопанный котлован. Его еще называют «плавающим» из-за способности повторять движения грунта без нанесения ущерба зданию. Под такую основу делают подушку из песка, гранита, укрывают ее гидроизоляцией. Следующим этапом является обязательный элемент, без которого плита попросту треснет – армирование двумя поясами (каркасами) в виде сеток из стальных прутьев в верхней и нижней ее части.

Нагрузка на монолитную цельную бетонную плиту направлена сверху вниз, она распределена равномерно по всей бетонной заливке. Без правильного армирования бетонная плита треснет, не выдержав движений грунта и веса здания.

Основное нагрузочное усилие приходится на слои арматуры. Она обеспечивает плите высокие показатели прочности на растяжения и сжатие. Правильно армированная плита будет иметь некоторый уровень эластичности и не треснет ни от движений грунта, ни от тяжести находящегося на ней строения.

Для фундамента в виде монолитной бетонной плиты рекомендуют два армированных пояса. Арматура выступает связующим звеном в любых железобетонных конструкциях. Она усиливает бетонную конструкцию, а также экономит раствор, которого требуется меньше при наличии арматурных поясов в плите.

Условия, материалы и оборудование для армирования

Для армирования нужны такие материалы и оборудование:

  • арматурные прутья. Они должны иметь ребристую поверхность. Такая поверхность надежно сцепляется с бетоном. Наиболее надежные стальные, используются также и полимерные, но они не рекомендуются для плавающего фундамента. Для армирования цельной плиты выбираются стальные штыри диаметром 10 мм и больше.
  • Важно учитывать нагрузки на почву: монолитное основание должно иметь некоторую степень эластичности. Для слабых, рыхлых грунтов с высокой степенью подвижности применяют арматурные штыри от 12 мм. Для фундамента на устойчивых грунтах подойдут стержни сечением 10 мм;
  • мягкая проволока для вязки;
  • подставки. Они приподнимают армированные пояса на необходимую высоту при заливке бетона. В плиту обычно закладывают каркас из двух поясов арматуры, но для сложных условий и толстых оснований используют усиленное армирование еще одной сеткой в верхней трети бетонной плиты.

Требования к прутьям: они должны быть цельные, ребристые, чистые не поврежденные ржавчиной, не смазанные солидолом и другими веществами. В противном случае, раствор будет отставать от них, в нем образуются трещины.

Правила армирования

Пояса создаются на равномерном расстоянии снизу и вверху внутри заливки. Используют прутки диаметром 8–14 мм при толщине основания в 150 мм. Соотношение размера сечения стержня к толщине фундамента составляет 5%. Если основание испытывает серьезные нагрузки, берут прутья диаметром в 12–16 мм.

Если плита имеет в толщину от 150 мм и больше – два армированных каркаса обязательны. Параметры ячеек не должны превышать 200х200 мм и не быть меньше 150х150 мм для обычного основания толщиной 150-200 м.

Применяются арматурные штыри одинакового сечения. Для усиления поясов иногда используют стержни длиной 400–15000 мм.

Арматурные сетки располагают строго без перекосов в середине бетонной плиты. Защитный слой раствора от опалубки до поверхности стержней должен составлять 1,5–2 см, некоторые строители рекомендуют 5 см.

В сетке прутья должны образовать цельную конструкцию без каких-либо разрывов. При недостаточности длины прутьев подвязывают дополнительные стержни с нахлестом и связывают их вязальной проволокой. Причем вязку делают в нескольких местах или сплошной по всей длине соединения. Рекомендованная длина для нахлеста — не меньше 40 диаметров самых стержней. Например, при армировании прутьями с сечением в 10 мм, соединение нахлестом делают протяжностью в 400 мм.

Стыки располагают в шахматными квадратами в разбежку. Границы верхнего и нижнего поясов соединяются П-образными усилительными прутьями, это необязательно, но рекомендовано, так как придаст цельности и прочности конструкции.

Плавающее основание держит весь спектр нагрузок на сжатие, скручивание и др. Нижняя его часть больше подвержена растягиванию, верхняя – сжатию, поэтому важнее нижняя арматурная сетка.

Расчет арматуры

Существует простая методика расчета требуемого количества прутьев арматуры. Рассмотрим ее на примере плиты 8х8. Наиболее часто используются стержни сечением в 10 мм. Обычно арматурная сетка выкладывается с шагом 200 мм. Имея указанные параметры, рассчитывают необходимое количество арматуры.

Показатель ширины будущей бетонной заливки делится на ширину шага в метрах. К получившейся цифре добавляют 1 прут: 8/0,2+1=41. Чтобы образовалась сетка штыри, укладывают также и перпендикулярно, следовательно, полученная цифра умножается на два: 41х2=82.

В плавающем фундаменте должно быть как минимум два армированных пояса, поэтому полученная цифра умножается на два и получается 164 стержня. Стандартный арматурный прут имеет длину в 6 м. Если перевести количество прутьев в метры, то получится: 164х6=984 м.

Подобным способом вычисляют количество соединительных прутьев между слоями арматуры. Такие соединяющие штыри располагаются вертикально в точках пересечения горизонтальных прутьев арматуры. Количество этих точек легко определить, если количество штырей умножить на тот же показатель: 41х41=1681.

Нижний арматурный пояс укладывают в 5 см от основания плиты. Толщина монолитной бетонной заливки составляет 200 мм. Зная эти цифры легко определить длину соединяющего стержня: она составляет 0,1 м. Исходя из указанных цифр, определяем количество материала в метрах для всех соединений: 0,1х1681=168,1 м.

Для проведения всех строительных работ по армированию плиты необходимо: 984+168,1=1152,1 м арматурных стержней.

Для расчета нагрузок иногда нужно знать и вес арматуры в фундаменте. Обычно при покупке прутьев указывается их вес. Один стержень имеет вес в среднем 0, 66 кг. Для нашего примера вес арматурных прутьев составит: 0,66х1152,1=760 кг.

Процесс армирования

Армирование монолитной плиты делается, когда уже готовый котлован, сделана подушка, уложена гидроизоляция и сооружена опалубка.

Этапы:

  1. Сначала рассчитываются параметры сетки арматуры, определяется размер ее ячеек. Далее, она собирается из прутьев уже на месте внутри подготовленного котлована. Чем массивнее здание, тем меньше размер ячеек. Наиболее часто используют ячейки с расстоянием прутьев в диапазоне 200–400 мм, но не меньше 150 мм.

Собирают сетку просто: прутья укладываются один на другой на подставки, чтобы образовался каркас с ровными ячейками.

  1. Далее, прутья связывают. Для вязки потребуются пассатижи, вязальные крючки, вязальная проволока.

Стержни в процессе вязания соединяют нахлестом друг к другу. Стык обвязывается в трех местах. Существует несколько способов вязки арматуры. Самый популярный следующий. Отрезок мягкой проволоки в 30 см складывается вдвое, так чтобы один конец образовал петлю. Проволока накладывается на перекресток из прутьев наискосок. Свободные концы протягиваются в петлю и закручиваются вязальным крючком. Узел должен быть достаточно тугим, чтобы прутья не ездили. Проволоку обматывают с трех сторон: в нижней части вертикального штыря, затем по краям (справа и слева) горизонтального стержня.

Для того чтобы узел лучше держался, используют пассатижи и крючки для вязки. Следует отметить, что слишком тугой узел также не рекомендуется: проволока может лопнуть. Существует также и автоматическое оборудование для вязки, но многие строители выбирают именно ручной способ.

Есть специальная вязальная проволока, но можно использовать также и обычную стальную проволоку диаметром 0,5—1,2 мм.

  1. После сборки первого пояса к нему прикручивают вязальной проволокой вертикальные соединители из арматурных штырей. Их готовят предварительно и они должны быть одинаковыми по высоте. Для них используют те же арматурные прутья или прутья меньше диаметром, например, сечением в 8 мм.
  1. К соединителям прикручивается проволокой вторая сетка арматуры. Делать это легче, так как не нужно выставлять размер ячеек: вторая сетка автоматически полностью повторяет параметры первой.

Армированная сетка не должна прикасаться к грунту или лежать на гидроизоляции. Ее обязательно укладывают на специальные подставки. Для этого пригодны как самодельные, так и уже готовые заводские. Одним из их видов являются специальные фиксаторы тарельчатой формы.

Слой раствора до сетки арматуры снизу делают не менее 50 мм, в некоторых случаях, 15–20 см – это зависит от толщины плиты. Собирают каркасы внутри готовой и установленной опалубки так, чтобы и по бокам от ее стенок к прутьям был зазор такой же толщины. Прутья должны полностью покрываться бетоном.

  1. Последний этап – заливка бетоном. Перед ней нужно проверить устойчивость каркаса: прутья не должны ездить и смещаться в стороны во время заливания бетона.

Армирование фундаментной плиты: технология работ, инструкции, схемы

Арматурный каркас напрямую определяет эксплуатационные характеристики фундамента

Количество арматуры и ее разновидности

Перед тем как начать работы, важно выяснить, есть ли надобность в использовании арматуры? Ведь для этого понадобятся дополнительные финансовые расходы и усилия, которые увеличат сроки строительных работ (постройка, ремонт). Стоимость прутков, используемых для таких целей, достаточно высока, и потребоваться их может много. Понять, насколько оправдано применение арматуры, помогут ее характеристики. Бетон – прочный и долговечный строительный материал. Однако бетонные основания подвергаются сильным нагрузкам, поэтому в таких случаях часто прибегают к арматурным сеткам, чтобы повысить устойчивость строений.

Арматура проволочная.

Поскольку конструкции из железобетона могут иметь разное предназначение, добавки, заполнители, то расход арматурного каркаса на 1м3 бетонного раствора отличается в том или ином случае. Следовательно, каждый раз нужно определять, сколько материала необходимо использовать на куб смеси. Особенности расхода определяются при помощи государственных стандартов. Помимо этого, существуют другие правила (ГЭСН, ФЕР). К примеру, в соответствии с ГЭСН, на пять м3 монолитной основы, при создании которой используется бетон, потребуется одна тонна металла для армирования, который нужно равномерно распределить в основании. Подробнее о расходе армирующей конструкции на куб бетонной смеси можно узнать из ФЕР. Норма гласит: для столбчатых основ (плиты и пр.) высотой до двух метров понадобится сто восемьдесят семь кг на куб. метр. В то же время для плоских конструкций из железобетона потребуется следующее количество материалов для армирования: восемьдесят один кг на м3.

По методу изготовления арматура бывает канатной, стержневой, проволочной:

  1. Стержневая. Наиболее распространенное армирование – горячекатаные арматурные каркасы. По характеристикам стройматериал обозначают А400 и т. д. Термическая обработка позволяет приблизить свойства изделия, при создании которых применяется углеродистый металл, к схожим свойствам низколегированной стали. Такую арматуру принято маркировать Ат.
  2. Проволочная. Материал изготавливают из холоднотянутой высокопрочной или прочной проволоки.

Существует для вида армирующих прутьев. Арматура бывает стальной, неметаллической. Последняя стала альтернативой обычным изделиям из металла. Результатом использования современных технологий стал композитный вид таких стройматериалов. Подобную арматуру еще называют полимерной. В качестве основы для изделий применяют стекловолокно, добавляя к нему полимеры. Стеклопластиковые прутья внешне выглядят как стержни, диаметр которых может достигать двенадцати миллиметров. Это новый материал, который нашел применение в промышленности.

Армирование и заливка бетоном

После того как плита сформирована, можно укладывать арматурную сетку. Для небольших помещений ее несложно связать самостоятельно. Прутья кладутся по длине, без промежутков. Точки пересечения прутьев, уложенных в виде сетки, связываются проволокой или крепятся с помощью сварки. Для жилого дома при толщине плиты 200 мм шаг арматуры в плите перекрытия должен быть 200 на 200. При использовании сварочного аппарата стержни брать лучше потолще, так как в процессе сваривания часть металла плавится, что может уменьшить несущие способности изделия. Вязку сетки необходимо производить специальным крючком, но здесь нужна определенная сноровка.

Поэтому при строительстве частных домов это делают с помощью пассатижей. Готовые сетки укладываются внахлест и тоже обвязываются проволокой. Иногда для большей прочности кладется еще одна металлическая решетка, но в этом случае их должен разделять слой бетонного раствора. Для приготовления раствора вручную нужно взять три части песка, пять частей гравия или щебня и 20% воды. Плиту нужно заливать быстро, поэтому здесь понадобятся помощники.

Вначале соединяются все сухие компоненты, потом наливается вода. Для перемешивания раствора выгоднее использовать бетономешалку. При заливке используется вибратор, но если его нет, можно применить молоток, которым в процессе заливки равномерно постукивать по сетке и по опалубке. Чтобы не образовывались трещины, надо регулярно по поверхности бетона разбрызгивать воду. Плита будет готова через месяц. Для проверки высыхания надо положить кусок рубероида и оставить на сутки. Если под ним будет сухо, значит, перекрытие готово для эксплуатации.

Зачем нужно производить контроль использования арматуры?

Расчет количества арматуры необходим для прочности сооружения, а также сокращения затрат на строительство.

Расход арматуры на куб бетона позволяет определить требуемое количество материала — бетонной составляющей и каркаса. Если стальных элементов будет недостаточно, то конструкция получится непрочной. Если же прутьев закладывают намного больше, чем необходимо — это понесет дополнительные затраты, причем в этом нет необходимости. Поэтому количество арматуры в 1 м³ бетона рассчитывают, согласно 3-м основным сведениям о постройке:

  • вид почвы;
  • расчет арматурных прутков;
  • нагрузка фундаментной плиты.

Расчет длины плиты перекрытия

Расчет плиты перекрытия выполняется с учетом необходимых размеров — учитывается проектная и физическая длина. То есть физический показатель в данном случае может быть любым. Что касается расчетной длины изделия, то она уже будет другой. В ее качестве выступает минимально возможное расстояние между соседними стенками, которые максимально удалены друг от друга. Физическая длина изделия практически всегда будет более длинной, чем проектная.

Делая расчет монолитного перекрытия, не стоит забывать и о его толщине. Она выбирается, исходя из самого большого допустимого значения продольного пролета (для безоблачных конструкций рекомендуется соотношение 1 к 30, но оно должно быть не меньше 15см). Если используется изделие длиной в пределах 6м, берется плита перекрытия, толщина которой по минимуму должна составлять 20 см, а выше 6м – исключительно с усиленными ребрами жесткости.

Если делать расчет монолитной плиты многопустотной из железобетона для строительства ограждающих или несущих горизонтальных конструкций, нужно брать во внимание, что сбор нагрузок осуществляется согласно с предписаниями Расчет пустотной плиты перекрытия выполняется в соответствии с «Актуализированной редакцией СНиП ».

Расчет максимального изгибающего момента

Схема расчета монолитного перекрытия.

В вышеописанном случае изделие опирается на все стены, а это означает, что рассматривать лишь поперечное сечение балки по отношению к оси х будет недостаточно, так как можно рассматривать плиту, которую отражает пример, так же как балку по отношению к оси z. Таким образом, растягивающие и сжимающие напряжения окажутся не в единой плоскости, нормальной к х, а сразу в 2-х плоскостях. Если производить расчет балки с шарнирными опорами с пролетом l1 по отношению к оси х, тогда получится, что на балку будет действовать изгибающий момент m1 = q1l12/8. При всем при этом на балку с пролетом l2 будет действовать такой же момент m2, т. к. пролеты, которые отображает пример, равны. Однако расчетная нагрузка одна: q = q1 + q2, а если плита перекрытия имеет квадратную форму, то можно допустить, что: q1 = q2 = , тогда m1 = m2 = q1l12/8 = ql12/16 = ql22/16. Это значит, что арматура, которая укладывается параллельно оси х, и арматура, укладываемая параллельно z, может быть рассчитана на идентичный изгибающий момент, при этом момент окажется в 2 раза меньше, чем для той плиты, которая опирается только на 2 стены.

Схема кровли профнастилом.

Так, уровень максимального расчета изгибающего момента окажется равен: Ма = 775 х 52/16 = кгс.м. Но такое значение может быть использовано лишь при расчете арматуры. По той причине что на поверхность бетона станет действовать сжимающие напряжения в двух взаимно перпендикулярных плоскостях, то значение изгибающего момента, применимое для бетона, следующее: Мб = (m12 + m22)0.5 = Mа√2 = = кгс.м. Так как в процессе расчета, который предполагает данный пример, необходимо какое-то одно значение момента, можно взять во внимание среднее расчетное значение между моментом для бетона и арматуры: М = (Ма + Мб)/2 = = 1472.6 кгс.м. Следует брать во внимание, что при отрицании такого предположения можно рассчитать арматуру по моменту, который действует на бетон.

Как определить расход арматуры

Нормы расхода арматурных элементов, рассчитываемые на м3 конструкций из железобетона, зависят от целого ряда факторов: назначения таких конструкций, используемых для создания бетона цемента и добавок, которые в нем присутствуют. Такие нормы, как уже говорилось выше, регулируются требованиями ГОСТов, но в частном строительстве можно ориентироваться не на этот нормативный документ, а на Государственные элементарные сметные нормы (ГЭСН) или на Федеральные единичные расценки (ФЕР).

Так, согласно ГЭСН 81-02-06-81, для армирования монолитного фундамента общего назначения, объем которого составляет 5 м3, нужно использовать 1 тонну металла. При этом металл, под которым и подразумевается арматурный каркас, должен быть равномерно распределен по всему объему бетона. В сборнике ФЕР, в отличие от ГЭСН, средний расход арматуры в расчете на 1 м3 бетона приводится для конструкций различных типов. Так, по ФЕР, для армирования 1м3 объемного фундамента (до 1 м в толщину и до 2 м в высоту), в котором имеются пазы, стаканы и подколонники, нужно 187 кг металла, а для бетонных конструкций плоского типа (например, бетонного пола) – 81 кг арматуры на 1 м3.

Расчетная масса 1 м стальной арматуры

Удобство использования ГЭСН заключается в том, что с помощью этих нормативов можно также определить точное количество раствора бетона, используя для этого коэффициенты, учитывающие трудно устранимые отходы арматуры, которая в таком растворе будет содержаться.

Однако, конечно, определить более точное количество арматуры, которое вам потребуется для бетона фундамента или перекрытия, позволяют вышеуказанные ГОСТы.

Минимальные нормативные диаметры арматуры

Параметры арматуры в зависимости от ее диаметра

Расчет плитного фундамента

С помощью нашего вы можете произвести расчеты в автоматическом режиме, от вас требуется лишь ввести начальные данные. Точность расчетов напрямую зависит от введенных вами значений, поэтому мы рекомендуем вам внимательно перепроверять все вводимые величины. Также вы должны понимать, что итоговые данные представляют собой лишь математически верный расчет, но программа не учитывает поправки реальных ситуаций, поэтому полученные значения стоит использовать только в качестве ориентировки.

Калькулятор позволяет облегчить расчет, но не предоставляет рекомендации по выбору параметров и не показывает допустимые ошибки.

Инструкция

  • Размеры фундамента. Укажите габариты закладываемого основания – высоту, длину и ширину. Более подробно, как выполнить расчет толщины плиты фундамента вручную, смотрите ниже.
  • Армирование. Введите размеры ячейки армированного каркаса, а также выберите используемый диаметр арматуры.
  • Опалубка. Для получения объема пиломатериалов, введите параметры имеющейся доски.
  • Бетонная смесь. Вы можете самостоятельно указать пропорции бетона. Например, бетон марки М300 имеет пропорции 1 : 1,9 : 3,7 при использовании цемента марки ПЦ 400 и 1 : 2,4 : 4,3 – при цементе ПЦ 500. Более подробно, в справке чуть ниже.
  • Стоимость материалов. Введите стоимость отдельных материалов, для получения итоговой стоимости фундамента под ключ.

Затем нажмите кнопку «Рассчитать».

Результат расчета

  • Площадь плиты. Это значение может потребоваться для определения объема земляных работ.
  • Объем бетона. Параметр показывает необходимое количество бетонной смеси для отливки фундамента.
  • Арматура. Количество стержней для горизонтальных и вертикальных рядов, а также общая длина и масса.
  • Опалубка. Здесь отображается площадь опалубки и эквивалентный объем пиломатериалов, который потребуется для создания контура.
  • Материалы. Блок для вывода количества и стоимости всех видов сырья.

Если вас интересует более подробная справочная информация, ознакомиться с ней вы можете чуть ниже. Всем остальным – удачных расчетов и легкого строительства!

Монтаж инвентарной опалубки

Для монтажа инвентарного стола понадобится минимальный набор ручного и измерительного инструмента — молоток, рулетка, правило/уровень, шнур, маркеры. Для обвязки периметра понадобится дрель с дюбелями БМ Ø 6 100 мм.

Внимание! Убедитесь в прочности места установки стойки стола. Просадка под одной стойкой во время подачи нагрузки на стол (укладки бетона) может стать причиной разрушения всей конструкции и травмирования рабочих.

Исходное условие для всех вариантов — кладка стен выполнена качественно, верхний ряд выложен «в горизонт» и может служить ориентиром.

Порядок работы

1. Перенести линию горизонта на уровень глаз по стенам.

2. По внутреннему периметру стен на высоте 20 мм ниже края стены закрепить доску 100х25 мм. Шаг дюбеля — 500–800 мм.

Внимание! Обвязка периметра — это не опора, а маяк, который к тому же облегчит демонтаж и не даст протечь цементному молоку.

3. Выдвинуть стойки на нужную длину и зафиксировать замком или упором при закрученной гайке домкрата. Примерная высота стойки — расстояние от пола до верха стены минус 20 мм (фанера), минус 200 мм (балка) и минус 200 мм (ригель). В нашем случае: 2700 – 420 = 2280 мм.

4. Установить стойки для ригелей вдоль каждого помещения. На одну линию ригеля — 3 стойки (с треногами и унивилками).

5. Установить инвентарные балки в унивилки по длине ригеля. Перехлёст балок на опоре — 300 мм.

6. Подать наверх поперечные балки и разложить их плашмя с шагом 400–600 мм на ригели.

7. Перенести с помощью гидроуровня отметки горизонта на неподвижную часть стойки (гильзу).

8. Вымерить нужное расстояние от отметки горизонта до нижней плоскости ригеля. Изготовить Г-образный шаблон.

9. Выставить по шаблону высоту ригелей при помощи гаек гильзы.

10. Установить балки опалубки в проектное положение (на ребро).

11. Разложить листы фанеры по балкам, фиксируя их по углам гвоздями 50–70 мм. Либо зашить плоскость доской.

Внимание! Не нужно излишне прочно крепить фанеру к балкам — вертикальные нагрузки не действуют на крепёж. В то же время избыток гвоздей существенно затруднит демонтаж. Стыки фанеры должны находиться на балке, особенно продольные.

12. Оставшиеся участки перекрыть расходным материалом.

13. Проверить целостность опалубки, при необходимости перекрыть отверстия и дыры.

14. Установить оставшиеся стойки с шагом 800 мм под ригели.

Иногда плоскость покрывают тонким слоем технического масла — это заметно облегчает демонтаж.

Внимание! При использовании масла следите, чтобы оно не попадало на арматуру.

На этом монтаж инвентарного стола опалубки перекрытия завершён и все остальные операции — армирование, отбортовка, бетонирование — совпадают с любым другим способом.

Как правильно связывать арматуру для фундамента

Процесс изготовления армокаркаса для монолитного фундамента достаточно простой. Очень важным моментом в таком процессе является скрепление прутьев арматуры между собой. Это происходит следующим образом:

  1. Изначально нарезается стальная проволока на отрезки, равные в длину 20 см.
  2. После этого прутья арматуры раскладываются по периметру всей конструкции.
  3. Далее проводится установка прутьев вдоль опалубки в вертикальном положении.
  4. Крепление арматуры начинается со связывания в нижней части вертикально стоящих прутьев с горизонтальными. Сначала это делают, используя нить. Расстояние, которое должно соблюдаться при расположении фиксации – 5-7 см относительно грунта или песчаной подушки.
  5. После того, как было проведено крепление всех прутьев, следует приступать к окончательной фиксации этих мест. Для этого используют проволоку и крюк. Накручивают проволоку не слишком плотно, в виде восьмерки. Крепление нужно провести таким образом, чтобы не было лишнего трения, но одновременно с этим, сетка оставалась прочной.
  6. Процесс финишного крепления можно проводить поочередно, либо по всей конструкции сразу.

Расчет плитного фундамента

С помощью нашего вы можете произвести расчеты в автоматическом режиме, от вас требуется лишь ввести начальные данные. Точность расчетов напрямую зависит от введенных вами значений, поэтому мы рекомендуем вам внимательно перепроверять все вводимые величины. Также вы должны понимать, что итоговые данные представляют собой лишь математически верный расчет, но программа не учитывает поправки реальных ситуаций, поэтому полученные значения стоит использовать только в качестве ориентировки.

Калькулятор позволяет облегчить расчет, но не предоставляет рекомендации по выбору параметров и не показывает допустимые ошибки.

Инструкция

  • Размеры фундамента. Укажите габариты закладываемого основания – высоту, длину и ширину. Более подробно, как выполнить расчет толщины плиты фундамента вручную, смотрите ниже.
  • Армирование. Введите размеры ячейки армированного каркаса, а также выберите используемый диаметр арматуры.
  • Опалубка. Для получения объема пиломатериалов, введите параметры имеющейся доски.
  • Бетонная смесь. Вы можете самостоятельно указать пропорции бетона. Например, бетон марки М300 имеет пропорции 1 : 1,9 : 3,7 при использовании цемента марки ПЦ 400 и 1 : 2,4 : 4,3 – при цементе ПЦ 500. Более подробно, в справке чуть ниже.
  • Стоимость материалов. Введите стоимость отдельных материалов, для получения итоговой стоимости фундамента под ключ.

Затем нажмите кнопку «Рассчитать».

Результат расчета

  • Площадь плиты. Это значение может потребоваться для определения объема земляных работ.
  • Объем бетона. Параметр показывает необходимое количество бетонной смеси для отливки фундамента.
  • Арматура. Количество стержней для горизонтальных и вертикальных рядов, а также общая длина и масса.
  • Опалубка. Здесь отображается площадь опалубки и эквивалентный объем пиломатериалов, который потребуется для создания контура.
  • Материалы. Блок для вывода количества и стоимости всех видов сырья.

Если вас интересует более подробная справочная информация, ознакомиться с ней вы можете чуть ниже. Всем остальным – удачных расчетов и легкого строительства!

Правила исчисления объемов работ

2.1. Объем железобетонных и бетонных фундаментов под здания, сооружения и оборудование должен исчисляться за вычетом объемов стаканов, ниш, проемов, колодцев и других элементов, не заполняемых бетоном (за исключением гнезд сечением до 150X150 мм для установки анкерных болтов).

2.2. Объем подколонников следует определять, считая от верхнего уступа фундаменов.

2.3. Объем колонн следует определять по их сечению, умноженному на высоту. При этом высота колонн принимается от верха фундамента (подколонника):

а) при ребристых перекрытиях – до низа плит;

б) при безбалочных перекрытиях – до низа капителей (вутов).

При наличии консолей их объем включается в объем колонн.

2. 4. Объем балок следует определять по их сечению,  умноженному на длину, при этом:

а) длина балок, опирающихся на колонны или прогоны, принимается равной расстоянию между внутренними гранями колонн или прогонов; длина балок, опирающихся на стены, определяется с учетом длины опорных частей, входящих в стены;

б) сечение балок принимается: при отдельных балках – по полному сечению, а при балках с монолитными плитами – без толщины плиты.

Объем вутов включается в объем балок.

2.5. Объем плит следует определять с учетом опорных частей, входящих в стены. При наличии в безбалочных перекрытиях вутов объем их включается в объем плит.

2.6. Объем ребристых перекрытий следует определять по суммарному объему балок и плит, а безбалочных перекрытий – по объему плит и капителей.

Объем стен и перегородок следует определять за вычетом проемов по наружному обводу коробок, объем бункеров – как сумму объемов стенок бункеров и примыкающих к ним поддерживающих балок.

2.7. Объем бетона конструкций, для которых применяются нормы с жесткой арматурой, следует определять за вычетом объемов, занимаемых жесткой арматурой (стальными сердечниками), а при замкнутых сечениях – также с учетом объемов, не заполняемых бетоном.

Объем жесткой арматуры следует исчислять делением массы металла, т, на плотность (7,85 т/м ).

2.8. Массу арматуры, устанавливаемой в конструкциях атомных электростанций, следует принимать по проектным данным без учета монтажной арматуры, предусмотренной в нормах

               

к сметным нормам

Коэффициенты к

Условия применения

№ нормативных таблиц

нормам затраттруда

заработ-ной плате

нормам эксплуатациимашин

нормам расхода материала

1

2

3

4

5

6

3. 1. При производстве работ на высоте (глубине) от поверхности земли: от 16 до 35 м

1-19

1,04

1,04

  

3.2. То же, от 36 до 55 м

1-19

1,12

1,12

  

3.3. То же, от 56 до 75 м

1-19

1,2

1,2

  

3.4. То же, от 76 до 105 м

1-19

1,3

1,3

  

3.5. При обработке и торкретировании вертикальных поверхностей высотой более 4 м

29 (гр. 1-3)

1,2

1,2

1,2

Расчёт арматуры в столбчатом фундаменте

Фундаменты такого типа армируются, в зависимости от выбранного вида конструкции, либо одним каркасом из вертикальных рабочих стержней, либо с добавлением к каркасу горизонтальной опорной сетки.

Расчёт арматуры столбчатого фундамента.

В качестве рабочей арматуры используют пруты периодического сечения класса АIII диаметром 10-12 мм., в качестве конструктивной – гладкую проволоку диаметром порядка 6 мм. Площадь подошвы столбчатого фундамента, глубина его заложения и количество столбов зависят от вида грунтов, конструктивного решения постройки и величины передаваемой на грунт нагрузки от здания.

Обычно для армирования каркаса достаточно четырёх вертикальных прутков, связанных по вертикали проволокой с шагом 200 мм. В случае же с добавлением сетки подошвы фундамента, её изготавливают из арматуры класса AIII с размером ячейки 20х20 см. Такой относительно некрупный шаг рабочей арматуры обусловлен необходимостью предотвратить продавливание подошвы фундамента его верхней столбчатой частью под воздействием нагрузок. Сетка и вертикальный каркас соединяются между собой гладкой проволокой диаметром 6-8 мм.

При монтаже каркаса в опалубку нельзя забывать о необходимости устройства защитного слоя бетона порядка 25 мм. для обеспечения долговечности конструкции.

Подсчёт необходимого объёма материала прост – количество потребной на один каркас арматуры умножают на количество столбов.

монолитной плиты

Данные длявыполнения проекта

1.

Шаг колонн в продольном направлении, м

6,00

2.

Шаг колонн в поперечном направлении, м

7,60

3.

Число пролетов в продольном направлении

6

4.

Число пролетов в поперечном направлении

4

5.

Высота этажа, м

6.

Количество этажей

6

7.

Временная нормативная нагрузка на перекрытие, кН/м2

4,0

8.

Постоянная нормативная нагрузка от массы пола, кН/м2

1.2

9.

Класс бетона монолитной конструкции и фундамента

В15

10.

Класс бетона для сборных конструкций

В30

11.

Класс арматуры монолитной конструкции и фундамента

А-III

12.

Класс арматуры сборных ненапрягаемых конструкций

A-III

13.

Класс предварительно ненапрягаемой арматуры

A-IV

14.

Способ натяжения арматуры на упоры

15.

Условия твердения бетона

16.

Тип плиты перекрытия

ребр

17.

Вид бетона для плиты

ЛЕГЕИЙ

18.

Глубина заложения фундамента, м

19.

Условное расчетное сопротивление грунта, мПа

20.

Район строительства

БРАТСК

21.

Влажность окружающей среды

90%

22.

Класс ответственности здания

II

Назначаем предварительно следующиезначения геометрических размеровэлементов перекрытий:

высота и ширина поперечного сечениявторостепенных балок:

высота и ширина поперечного сеченияглавных балок:

Толщина плиты 8 см (80мм)

1.1 Расчетные пролеты

топлита балочного типа

Рис. 1.1 Конструктивная схема монолитногоребристого перекрытия

1 – главная балка;2 – второстепенная балка; условнаяполоса шириной 1 м для расчета плиты

1.2 Сбор нагрузкок

Для расчета плиты в плане перекрытияусловно выделяем полосу шириной 1 м (рис1.1). Плита будет работать как неразрезнаябалка, опорами которой служат второстепеннаябалка и наружные кирпичные стены. Приэтом нагрузка на 1 м плиты будет равнанагрузке на 1м2перекрытия. Подсчетнагрузок на плиту дан в таблице 1.1

Таблица на 1 м2 плитымонолитного перекрытия

Вид нагрузки

Нормативная нагрузка

кН/м2

Коэффициент надежности по нагрузке

Расчетная нагрузка

кН/м2

Постоянная:

от массы плиты

(h=0,08м;q=25кН/м3)

0,08∙25=2,00

1,1

2,20

от массы пола

Итого

1,2

1,2

1,44

g=3,64

Временная

4

1,2

v=4,8

Всего

8,18

С учетом коэффициента надежности поназначению здания расчетная нагрузкана 1 м плиты:

Определим изгибающие моменты с учетомперераспределения усилий:

в средних пролетах и на средних опорах

в первом пролете и на первой промежуточнойопоре:

1.3 Характеристики бетона

бетон классаВ15,арматура класса А400

,,,

1. 4 Подбор сечения продольной арматурысеток.

в первом пролете

Как определить расход арматуры

Нормы расхода арматурных элементов, рассчитываемые на м 3 конструкций из железобетона, зависят от целого ряда факторов: назначения таких конструкций, используемых для создания бетона цемента и добавок, которые в нем присутствуют. Такие нормы, как уже говорилось выше, регулируются требованиями ГОСТов, но в частном строительстве можно ориентироваться не на этот нормативный документ, а на Государственные элементарные сметные нормы (ГЭСН) или на Федеральные единичные расценки (ФЕР).

Так, согласно ГЭСН 81-02-06-81, для армирования монолитного фундамента общего назначения, объем которого составляет 5 м 3 , нужно использовать 1 тонну металла. При этом металл, под которым и подразумевается арматурный каркас, должен быть равномерно распределен по всему объему бетона. В сборнике ФЕР, в отличие от ГЭСН, средний расход арматуры в расчете на 1 м 3 бетона приводится для конструкций различных типов. Так, по ФЕР, для армирования 1м 3 объемного фундамента (до 1 м в толщину и до 2 м в высоту), в котором имеются пазы, стаканы и подколонники, нужно 187 кг металла, а для бетонных конструкций плоского типа (например, бетонного пола) – 81 кг арматуры на 1 м 3 .

Расчетная масса 1 м стальной арматуры

Удобство использования ГЭСН заключается в том, что с помощью этих нормативов можно также определить точное количество раствора бетона, используя для этого коэффициенты, учитывающие трудно устранимые отходы арматуры, которая в таком растворе будет содержаться.

Однако, конечно, определить более точное количество арматуры, которое вам потребуется для бетона фундамента или перекрытия, позволяют вышеуказанные ГОСТы.

Минимальные нормативные диаметры арматуры

Параметры арматуры в зависимости от ее диаметра

Заливка и заземление плиты своими руками

После завершения монтажа армированного каркаса монолитной плиты необходимо провести заземление. Данная процедура предполагает установку наружного кольца из оцинкованной ленты. Данное кольцо будет выступать внешней стороной плиты, являясь ее составной частью. Заземление оснащается присоединительными шинами, к которым будут крепиться элементы дождевого слива и громоотвод. Также шины можно вывести в месте подключения электрической сети к дому, чтобы обеспечить заземлением внутреннюю электрическую проводку.

Заливка фундамента проводится после завершения всех работ, связанных с монтажом армирующего каркаса. В процессе замешивания раствора в бетон можно добавить фиброволокно, если требования СНиП предполагают дополнительное усиление бетонного основания. Процесс заливки осуществляется в непрерывном режиме до заполнения всего объема. По его окончанию смесь необходимо освободить от пузырьков воздуха посредством вибропрессования. Плита обретет необходимую прочность по истечении 4 недель.

Какие материалы для опалубки можно использовать?

Традиционно для изготовления опалубки используют строганную древесину, из которой изготавливают щитовую конструкцию. Высота деревянной окантовки обычно составляет 0,3 м, а ширина соответствует толщине стен. Крепление досок осуществляется с саморезами. Боковая окантовка доски опалубки фиксируется с помощью резьбовых шпилек или планок. Следует контролировать горизонтальность верхней плоскости опалубки с помощью уровня. Важно надежно закрепить доски и герметизировать все щели.

Кроме досок для изготовления опалубки применяют следующие материалы:

  • влагостойкую фанеру. До заливки бетона она пропитывается отработанным маслом для облегчения демонтажа;
  • экструдированный полистирол. Полистирольные листы являются составным элементом теплоизолированной опалубки.

Выбор материала для изготовления опалубочной конструкции производится индивидуально в зависимости от требований проектной документации.

Укладка арматуры в котлован

Многие владельцы предпочитают все работы по армированию проводить непосредственно в подготовленном котловане. Это конечно, целесообразно, если смотреть с точки зрения экономии времени. Так не придется переносить подготовленную конструкцию из арматуры с места работы и укладывать в фундамент.

Но такие операции часто повреждают утрамбованную подушку и гидроизоляцию самого основания, позволяя влаге из почвы постепенно разрушать весь фундамент строения.

Лучше подготовленный нижний пояс с соединенными подпорками укладывать в котлован, и там уже на месте выполнять цельный каркас, связывая верхние концы подпорок и внешний пояс армирования.

При этом перед укладкой нижнего пояса стоит стороны котлована укомплектовать опалубкой, чтобы армирование сразу выполнялось прочно. Да и металлический каркас такого фундамента не потребует дополнительных доработок в виде выравнивания или смещения.

Чем и зачем армируют перекрытие

Для армирования плит перекрытия используют стальную, так и композитную арматуру (в основном стеклопластиковую). Более распространена металлическая арматура А500С (в проектной спецификации может обозначаться S500), популярны диаметры 10 и 12 мм. Для основного армирования железобетонной конструкции используют только рифлёную арматуру, чтобы создания качественную связь арматуры с бетоном. Для изготовления дополнительных элементов, не влияющих на несущую способность будущей железобетонной конструкции, можно использовать гладкую арматуру А1. Практикуют в современном частном строительстве и комбинирование арматуры, используют для армирования монолитной плиты одновременно металлические и стеклопластиковые пруты.

Несмотря на то что какая арматура используется, играет она одну и ту же роль в бетоне — придаёт ему необходимую прочность, чтобы выдержать все будущие нагрузки на растяжение, скручивание и изгиб.

Фундаментная плита, что это такое, устройство фундаментной плиты, полезные советы.

Лучшим выбором фундамента для строительства малоэтажных домов считают фундаментную плиту, превосходящую по ряду эксплуатационных показателей ленточный фундамент.  Как разобраться в возведении и самостоятельно произвести устройство плиты фундаментной или утепленной Sweden und Deutsche plate?

Что представляет собой фундаментная плита

Среди разновидностей фундамента особое место занимает плитный фундамент, представляющий собой железобетонное изделие с монолитным покрытием.

Конструктивно фундаментную плиту можно устроить в виде:

•  сплошного основания

•  решетчатой плиты из балок

•  в виде коробчатого фундамента.

Представляя собой возводимое основание, фундаментная плита обладает выраженными преимуществами:

•  простотой монтажа и способностью сопротивления нагрузкам

•  устойчивостью конструкции к вспучиванию и смещению проблемного грунта

•  минимальным уровнем геоусадки

•  возможностью выполнять в дальнейшем функции «чернового пола».


Существенным недостатком при монтаже плиты является ее солидная стоимость бетонной заливки и трудоемкость устройства подготовки основания и песчаной подушки.

Естественно, при устройстве  плиты основным качественным показателем является толщина фундаментной плиты, которая зависит от высоты бетонной подготовки, бетонной заливки и армирования.

Вот так выглядит возведение утепленной фундаментной плиты в европейских странах.

Полезные советы

Целесообразно использование фундаментной плиты для следующих типов грунтов: водонасыщенных, насыпных и разрушаемых, а также в местах с повышенной сейсмобезопастностью.  Кроме того, если грунт на участке испытывает неравномерное сжатие на границах, то исправить положение можно устройством плиты.

Как произвести устройство монолитной плиты

Основой конструкции является монолитная ЖБ плита, которую заливают бетоном на всей площади возводимого здания. По мере заливки бетоном монолитную фундаментную плиту армируют прутками или балками, обеспечивая тем самым целостность конструкции.

Этапами устройства и возведения фундаментной плиты являются:

•  земляные работы по подготовке основания и устройству песчаной подушки

•  создание гидроизоляционного слоя

•  возведение опалубки традиционным способом

•  монтаж арматуры усиления

•  послойная заливка основания

•  утепление верхнего слоя.


Однако, для проведения комплекса мероприятий, необходимо произвести расчет фундаментной плиты, который можно осуществить в режиме Online.

Расчет фундаментной плиты

Расчет предназначен для определения количества материалов, необходимых для устройства плиты.

В результате методики расчета, регламентированной СНиП 2.03.01-84 Железобетонные конструкции и ДБН В.2.1-10-2009 Основания и фундаменты сооружений, будут получены следующие данные:

•  объем бетона для заливки и его вес

•  количество материала, необходимого для приготовления смеси бетонной (цемент, песок и щебень)

•  объем доски для возведения опалубки

•  стоимость стройматериалов по действующим расценкам.

Кроме того, будут получены такие расчетные данные:

•  площадь подошвы, боковой поверхности  и периметр плиты

•  распределенная нагрузка на площадь опоры

•  общий вес арматуры и диаметр минимальный стержней арматуры

•  размер сетки арматурного каркаса

•  толщина досок возводимой опалубки  и рекомендованный шаг опор.

На основании полученных данных производят приобретение материалов для строительства.

Полезные советы

Доверительность расчета он-лайн калькулятора высокая и проверена временем. К тому же, расчет создавали великие люди, владеющие обширной базой знаний и практикой. Для сомневающихся в правильности расчета: расчет можно произвести вручную, но для этого необходимо для начала прочитать парочку лекций студентов строительных Академий. Если вам сразу станет скучно, смелее работайте с калькулятором.

Для чего необходимо возводить песчаную подушку

При устройстве плитного фундамента необходимо учитывать толщину и ширину дренажного слоя, а также размеры песчаной подушки. Напомним, что первоначально снимают верхний плодородный слой грунта и роют котлован глубиной до 0,5 м.

Щебень по высоте котлована укладывают слоем 20 см, а песок слоем 30 см. Благодаря устройству песчаной фундаментной подушки плитный фундамент обретает характерную «плавающую» подвижность.

Таким образом, наименьшим давление на грунт будет обладать тот фундамент, толщину плиты которого рассчитывают с учетом характеристик грунта и нагрузок, а также глубины залегания. Устройство фундаментной подушки, армированной каркасом, гасит вредные нагрузки, которые создает движение грунта. Монолит плиты достаточно высок и выдерживает сезонные движения грунта.

Армирование фундаментной плиты

Армирование монолитной плиты выполняют с помощью двух арматурных сеток с ячейками 20 х 20. Основанием для соединения двух сеток будут являться пруты металлические сечением 12-16 мм, которые в вертикальном положении приваривают на одинаковой высоте к первой (нижней) сетке.

Шаг армирования может быть 200-400 мм. Для возведения плиты фундаментной используют бетон класса В15-В25.

Полезные советы

Чтобы армированный каркас не имел точек соприкосновения с грунтом, необходимо использовать фиксаторы толщиной 50 мм. Подскажем, что возведение плитного фундамента проще, чем устройство ленточного, хотя цена фундаментной плиты получается дороже.

Как возвести фундаментную плиту собственноручно,  показано в этом видео.

схема и процесс укладки арматуры

Выбор типа фундамента при строительстве газобетонных домов не столь широк, как при установке каркасников. Из-за уязвимости газобетонной кладки к подвижкам грунта, её нельзя опирать на металлический или деревянный ростверк, устанавливать такой дом на сборных малозаглублённых столбах или винтовых сваях. Наибольшей жёсткостью обладают монолитные конструкции, особенно сплошные. Рассмотрим, как выполняется армирование плиты фундамента, и какие нормативные требования при этом нужно учитывать.

Существует два основных типа нагрузок: на сжатие, и на растяжение, которые должен выдерживать фундамент, не подвергаясь разлому, крену, опрокидыванию и другим проблемам. Если бы речь шла только о сжимающих нагрузках, но с ними идеально справляется и простой бетонный монолит. На растяжение он работает хуже, поэтому в него и закладывается арматура.

Когда нагрузка становится для бетона критической, в работу включается металлический каркас. От того, насколько грамотно он смонтирован, зависит долговечность здания в целом, ведь кроме прочего на фундамент могут воздействовать ещё и силы морозного пучения. И потом, нагрузки-то неоднородные. Когда дом заведён под крышу, основное давление приходится по контуру плиты, а не в середине, так как кроме веса стен, начинают давить и конструкции кровли.

Стены и сами подвергаются неравномерным нагрузкам, так как им приходится сопротивляться идущему от стропил распору. Гасить распорные нагрузки должен железобетонный армопояс, заливаемый поверх стен, но весит он немало, и это тоже дополнительная нагрузка на фундамент. Более существенные нагрузки, воздействующие на контур плиты, стремятся отломить бетон — и это им удалось бы, если б не арматура.

Принцип армирования плиты зависит от её конструкционных особенностей. Обычная плоская плита для газобетонного дома не может иметь толщину меньше 250 мм, и должна армироваться объёмным каркасом. Он состоит из двух уровней рабочей арматуры, соединённых между собой поддерживающей арматурой в виде плоских каркасов или П-образных хомутов, арматурных подставок-лягушек.

Второй ряд сетки опирается на подставки-лягушки

Так как более высокая нагрузка приходится на контур плиты, в этой части армирование должно быть более интенсивным. Как вариант, проектировщики предусматривают для плиты дополнительный, увеличивающий статичность конструкционный элемент – рёбра жёсткости, которые могут быть направлены как вверх, так и вниз.

В обоих случаях выступы, имеющие вид ростверка или мелкозаложенного ленточного фундамента, основные нагрузки принимают на себя, для чего имеют собственный армирующий контур. Соответственно, горизонтальная часть может уменьшаться в толщине до 150 или даже 120 мм, и иметь менее интенсивное армирование.

Каркас в более тонкой горизонтальной части плиты может быть не объёмным, а плоским, в одном уровне, но он обязательно увязывается с арматурой выступающих элементов плиты. К примеру, плиты, проектируемые по шведской технологии (УШП), именно так и структурируют, что прекрасно видно на предлагаемом в качестве примера чертеже.

Чертёж плиты УШП

Сколько должно быть арматуры, и с каким шагом она должна располагаться, определяется расчётом – всё зависит от суммы нагрузок, воздействующих на фундамент. Их традиционное армирование осуществляется с помощью стальной арматуры. В зависимости от состава она бывает:

  1. Углеродистой. Основные компоненты в ней – это железо и углерод, легирующих добавок очень мало.
  2. Низколегированной. Здесь легирующих добавок, роль которых играют такие металлы, как титан, ванадий, никель, медь, намного больше. Соответственно эта сталь обладает лучшими характеристиками – в том числе и меньше поддаётся коррозии.

Производство осуществляется по разным технологиям, в соответствии с чем, сталь подразделяется на такие продукты:

  • Холоднотянутая — маркируется «В». Эта сталь должна сама по себе обладать высокой пластичностью, так как температурной обработке в процессе производства не подвергается.
  • Горячего проката — маркируется «А». Здесь, наоборот, сталь обрабатывают в условии высокой температуры. Для фундаментов малоэтажных зданий используется именно она.
  • Канат стальной арматурный, семипроволочный – маркируется «К». Представляет собой трос, свитый из проволочных жгутов. Применяют в основном при производстве предварительно напряжённых железобетонных конструкций.

Есть различия и в типе поверхности:

Тип поверхности, фото Особенности применения

Гладкий профиль

Из-за отсутствия профиля гладкая арматура плохо сцепляется с бетоном, поэтому в качестве рабочей использоваться не может. Разве что, из таких стержней могут формироваться хомуты, за счёт которых задаётся высота или ширина каркаса (в основном в ленточных и набивных свайных фундаментах).

Ребристая с кольцевым профилем (ГОСТ 57*81)

Этот вид арматуры для нашей страны можно считать традиционным, так как выпускается она по ещё советскому стандарту сорокалетней давности. В сечении стержня можно видеть два продольных выступа, соединяемых между собой спиралевидными рёбрами. Линии спирали могут быть одно- или двухзаходными, в зависимости от диаметра арматуры. В устаревшей версии маркируется АIII, в современной – А400.

Ребристая с серповидным профилем (ГОСТ 52544*2006)

Эта арматура не только имеет другую форму профиля, но и выпускается по другому стандарту. У неё тоже имеются винтовые рёбра, но они не смыкаются в кольцо, а имеют промежутки и больше напоминают конфигурацию серпа. Промежутки сделаны для удобства сварки, хотя при желании эту арматуру можно и вязать. Маркируется А500 и А 500С.

Комбинированная

Смешанный профиль введён с целью получения повышенного сцепления стержней с бетоном, и только для арматуры А500. Это, кстати, позволяет определить класс арматуры визуально.

В последние годы всё большую популярность приобретает композитная арматура. Этим термином называют материалы из термопластичных полимеров, наполненных волокнами или крошкой стекла, кварца, базальта, угля. Их главными достоинствами являются: меньший, чем у стали вес; неподверженность коррозии и высокая прочность на разрыв, в 2-3 раза превышающая аналогичный показатель металлической арматуры.

Изначально композитные материалы создавались для авиации и космонавтики, но как только появилась возможность формировать на неметаллической арматуре рельеф методом протяжки (технология пултрузии), такую арматуру стали широко использовать в гражданском и промышленном строительстве. Существует несколько видов композиционных материалов, но широкое применение в виду более низкой стоимости получили только два из них: стеклопластик и базальтопластик. Формирование рельефа у композитных стержней осуществляется по тому же принципу, что и у стальных.

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Обратите внимание: Тонна стеклопластиковой арматуры стоит дороже стальной раза в четыре, и это часто отпугивает несведущего покупателя. На самом деле получается более выгодно: у композита меньший вес, а из-за более высокой прочности на разрыв, для каркаса вместо диаметра 12 мм можно брать 8 мм. Так что, в этой тонне получается арматуры намного больше.

Многие усомнятся, что пластик может оказаться более прочным, чем металл, но это так. У стальной арматуры предел текучести составляет 400-500 мПа (отсюда и маркировка А400 или А500), а у композитных стержней этот показатель составляет минимум 1200 мПа. Единственно, в чём металл превосходит композит, так это в том, что его модуль упругости выше в 50 раз и не зависит ни от температуры окружающей среды, ни от нагрузок.

По этой причине в строительстве зданий и сооружений повышенного класса ответственности композитную арматуру не применяют. Жилые дома, в том числе многоэтажные (кроме высотных), относятся к нормальному уровню ответственности, и тех свойств, что имеет композитная арматура, для них вполне достаточно. Если нужно, чтобы фундамент выдерживал больше нагрузок, достаточно лишь увеличить диаметр применяемой арматуры или уменьшить шаг её расстановки.

Перед тем, как приступить к устройству плиты, на объекте должны быть выполнены следующие работы:

  • организована временная подъездная дорога и место стоянки спецтранспорта;
  • предусмотрен отвод поверхностной воды;
  • обозначена площадка для складирования арматуры или карт сеток, хранения монтажной оснастки;
  • выкопан котлован (если дом с подвалом) или неглубокое земляное корыто, если плита поверхностная;

Неглубокая выемка в грунте под поверхностную плиту

Засыпка песчаной подушки

Монтаж мембраны под подошвой плиты

  • завезена на объект арматура для каркаса и пиломатериал для опалубки в таком количестве, которое обеспечит бесперебойную работу минимум в двух сменах;
  • выполнена геодезическая разбивка осей плиты;
  • уложен геотекстиль и произведена засыпка противопучинистой песчаной подушки;
  • залита бетонная подготовка и выполнена наплавная гидроизоляция, или уложен слой профилированной ПВХ-мембраны, поверх которой и будет устанавливаться каркас.
Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Очерёдность установки опалубки и монтажа арматуры зависит от того, будет ли сборка каркаса укрупнённой. Когда его собирают из отдельных стержней, щиты мешают соединять торцы стержней, поэтому опалубку устанавливают уже после того, как каркас будет собран. Если же остов плиты собирается из сетчатых карт, их проще укладывать в уже готовую опалубку. Крайние элементы каркасов крепят к щитам проволокой, через отверстия, просверленные в деревянных рейках.

Примерная схема армирования плиты

На выбор схемы армирования фундамента оказывают влияние такие характеристики:

  1. Толщина плиты. Если она меньше 150 мм, в монолит закладывается всего один ряд сетки, состоящей их продольных и поперечных стержней. При большей толщине плиты уровней армирования два. В обоих случаях должен быть предусмотрен защитный слой бетона снизу 75 мм, по бокам и сверху – 35 мм. Если под плитой есть подбетонка, толщина нижней защитной оболочки может быть тоже 35 мм.
  2. Суммарная нагрузка. Состоит их общей массы дома, снеговых и полезных нагрузок.
  3. Тип грунта на участке и его несущая способность. Доподлинно выяснить это можно только с помощью проведённого исследования.
  4. Диаметр рабочих стержней. Для плит, у которых одна сторона имеет размер менее 3-х метров, можно брать стальную арматуру d10 мм. Для остальных плит арматура берётся не менее d12 мм.
  5. Шаг арматуры в сетках. Он зависит от толщины плиты: согласно требованиям СП в плитах толщиной до 150 мм шаг составляет максимум 200 мм; в более толстых плитах расстояние между осями рабочих стержней может достигать 400 мм.
Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Важно: При выборе конкретного шага нужно руководствоваться таким требованием: расстояние между стержнями не может превышать толщину плиты больше чем в 1,5 раза. В зонах, воспринимающих наибольшие нагрузки, размер ячейки в сетке должен уменьшаться вдвое.

Существует такое понятие, как процент армирования конструкции. Если он окажется ниже минимально допустимого, монолит будет работать как простой бетон. Чтобы он стал железобетоном, свою роль должна играть арматура, поэтому правильный подбор сечения стержней имеет наибольшее значение.

Согласно требованиям СНиП 2.03.01, минимальный процент арматуры в железобетоне составляет 0,05% от площади сечения монолита в растягиваемых зонах, и 0,1-0,25 % — во внецентренно сжатых. Если же арматура располагается равномерно по всему контуру сечения, этот процент должен увеличиваться вдвое. Тем не менее, слишком переусердствовать тоже нельзя, арматура ведь не должна препятствовать проникновению бетона внутрь каркаса. Поэтому существует и максимальный процент армирования – 4%.

  • Попробуем самостоятельно посчитать арматуру для плиты толщиной 250 мм под газоблочный дома размером 8*8 м. Так как 250 мм больше 150 мм, сетки должны располагаться в двух уровнях. Состоит сетка из продольных и поперечных стержней, их диаметр 12 мм, так как обе стороны фундамента длиннее 3-х метров.
  • По упомянутым выше правилам шаг между стержнями в плитах толще 150 мм может составлять до 400 мм, но за неимением профессиональных расчётов лучше всегда делать запас прочности. Поэтому возьмём шаг минимально возможный – 200 мм.
  • Дом достаточно небольшой в плане, и если сделать внутренние перегородки из гипсокартона, усиления фундамента под ними не потребуется. Таким образом, у нас будет всего 4 стены по внешнему контуру плиты. Делать более частым шаг стержней в зонах их опирания не надо, потому что мы и так взяли минимальный размер ячейки, сделав запас прочности.
  • Теперь считаем количество прутьев, необходимых для армирования. Плита у нас имеет квадратную форму, поэтому что вдоль, что поперёк получится одинаковое количество стержней. Вычитаем из размера фундамента толщину защитного слоя, и делим его на шаг ячейки: (800 см – 3,5 см х 2): 20 см = 40 стержней.
  • Учитывая одинаковые размеры сторон фундамента, умножаем итог на 2 и получаем: 80 стержней нам нужно на один ярус. На два уровня армирования, соответственно, потребуется 160 прутов.

Стандартная длина стержневой арматуры либо 6 м, либо 11,7 м. Покупать придётся более длинные пруты, а их концы, оставшиеся после резки, можно использовать для изготовления хомутов для связки торцов или плоских каркасав, обеспечивающих требуемый отступ верхней сетки от нижней.

Кроме общестроительного инструмента для разметки, отслеживания уровней, резки и гибки металла, при сборке каркаса понадобятся и несколько специальных, с помощью которых можно вязать арматуру проволокой.

  1. Крючок для вязки арматуры. Наиболее популярный инструмент, для использования которого нужно всего лишь немного набить руку. Представляет собой стальной крюк, укреплённый на деревянной или пластиковой рукоятке. Разброс цен очень большой, от 150 до 1100 руб, что зависит от размера, материала и конфигурации инструмента.
  2. Вязальный пистолет на аккумуляторе. Любой механизм всегда упрощает ручную работу, в том числе и этот. Внутри похожего на дрель пистолета уже есть катушка с проволокой, нужно только нажать на рычаг и «выстрелить». На одно соединение уходит даже меньше полминуты, поэтому данный инструмент идеален для такой работы. Жаль только цена «кусается» (70-200 тыс. руб), поэтому покупают вязальный пистолет только для профессионального использования. Мнение эксперта
    Виталий Кудряшов

    строитель, начинающий автор

    Кроме высокой стоимости есть и ещё минусы: невозможность работы в труднодоступных местах; проблема вязки стержней большого диаметра; сложность устранения ошибки. Так что крючок должен быть под рукой в любом случае.

  3. Шуруповёрт. Этот инструмент в любом случае присутствует на объекте, так как является общестроительным. Можно его использовать и для вязки арматуры, если установить самодельный крючок, сделанный из шиферного гвоздя. Удобнее всего пользоваться шуруповёртом, в котором есть функция регулировки скорости.
  4. Клещи. Многие мастера орудуют при вязке арматуры обычными клещами, делая скрутки более толстой проволокой. Этот способ позволяет экономить проволоку, но замедляет работы и быстро утомляет арматурщика. Хотя тут тоже всё зависит от навыков рабочего – если опыт есть, соединение выполняется за 4-5 секунд.
  5. Отожжённая проволока. Подбор проволоки зависит от размера арматуры — для стержней 12 мм лучше всего подходит проволока диаметром 1,2 мм.
  6. Фиксаторы. Для обеспечения заданной толщины защитной оболочки бетона, под первым рядом каркаса должны использоваться подставки-стульчики из пластика. Подставки можно использовать не заводские, а нарезать их из пластиковой водопроводной трубы диаметром 50 мм. В них нужно просверлить в них отверстия, чтобы подставку можно было привязать к арматуре. Использовать вместо пластиковых подставок обрезки арматуры или деревянные бруски запрещено.

Подставки-стульчики

Мнение эксперта
Виталий Кудряшов

строитель, начинающий автор

Отступ прутов от вертикальных бортов опалубки обеспечивается за счёт фиксаторов-звёздочек или тех же отрезков трубы, только меньшего размера.

Монтаж арматуры должен производиться в такой последовательности, которая обеспечит ей правильное положение и качественное закрепление. Перед началом работ основание размечается, чтобы видно было, как раскладывать продольные стержни, отрезанные в необходимую длину. В нашем случае это: 8 м – 0,35*2 = 7,93 м. Стержни такой длины получатся цельными, и их не надо будет наращивать.

Между прутами сразу предусматривают заданный интервал, их выкладывают на подставки и фиксируют к ним проволокой. Для связки стержней в одной точке нужен кусок проволоки длиной 30 см, сложенный пополам. Нарезать её на нужные отрезки удобнее всего болгаркой. В среднем, на каркас плиты 8х8 м уйдёт не более 3,5 кг. Уложив поперечные стержни поверх продольных, можно приступать к выполнению соединений.

При использовании в качестве инструмента вязального крючка, можно применить разные способы, но простейший выглядит так. Проволока складывается вдвое и заводится под соединение. Крючок продевается в петлю и, захватив свободный конец, протягивает его. Петля затягивается, и концы проволоки скручиваются в несколько раз — больше 5 оборотов делать не стоит, чтобы не сломать узел.

Способы вязки арматуры

Закончив сборку сеток первого уровня, на торцы стержней крепят П-образные элементы, которые свяжут нижнюю сетку с верхней в объёмную конструкцию. Чтобы исключить прогиб стержней в середине, под них с шагом 800 мм, устанавливаются арматурные подставки-лягушки.

Работа по вязке арматуры не сложная и вполне самостоятельно выполнимая, но будьте готовы к тому, что согнутая в течение длительного времени спина, и напряжённые колени, потом будут ныть несколько дней.

От того, насколько точно соблюдается технология армирования и заливки фундамента, зависит долговечность здания в целом. В сухих и прочных грунтах плита может формироваться даже без подстилающих слоёв и подбетонки, и некоторые застройщики думают, что и гидроизоляция под подошвой тоже не нужна – а это ошибочное мнение.

При заливке бетона в опалубку без барьера в виде хотя бы полиэтиленовой плёнки, бетон теряет влагу, которая впитывается в грунт. Грунт при этом только упрочняется, а вот прочность цементного камня ослабевает. К тому же, техническая плёнка или мембрана не даст впоследствии влаге, которая может легко подниматься вверх по капиллярам, впитываться в бетон. Именно в защиту арматуры предусматривается и бетонная оболочка определённой толщины.

Важно так же, чтобы элементы каркаса были правильно сопряжены и не смещались в процессе бетонирования. Если процент армирования рассчитан правильно, ваша плита без проблем простоит столько, сколько прослужит наземная часть дома.

Подбор арматуры для фундаментной плиты

МА3 = МС3 = qk32/2 = 1293.2·1.82/2 = 2095 кгс·м или 209500 кгс·см

МВ3 = q(k3 + l3)2/2 — A3l3 = 1293.2(1.8 + 6.2)2/2 — 5740·6.2 = 5794.4 кгс·м или 579440 кгс·см

Мx3 = qx32/2 — A3(x3 — k3) = 1293.2·4.442/2 — 5740(4.44 — 1.8) = -2406.8 кгс·м или -240680 кгс·см

где x3 = A3/q = 5740/1293.2 = 4.44 м (так как максимальный момент будет в той точке, где разница поперечных сил от сосредоточенной силы и распределенной нагрузки будет равна нулю).

Примечание: если при армировании плиты будут оставлены выпуски арматуры для ленточной части фундамента под стены. И эта арматура будет соответствующим образом рассчитана на возникающие нагрузки, то для расчетов можно использовать определенные ранее параметры: длину консолей k’3 = 1.7 м и длину пролетов l’3 = 6 м. Такое уменьшение параметров кажется незначительным, но вот результат будет совсем другим. Уменьшение опорной реакции составит А’3 = 6000 — 1293.2·0.4 = 5483 кг.

МА3 = МС3 = qk’32/2 = 1293.2·1.72/2 = 1868.7 кгс·м или 186870 кгс·см

МВ3 = q(k’3 + l’3)2/2 — A’3l’3 = 1293.2(1.7 + 6)2/2 — 5483·6 = 5439 кгс·м или 543900 кгс·см

Мx3 = qx32/2 — A3(x’3 — k’3) = 1293.2·4.242/2 — 5483(4.24 — 1.7) = -2302.5 кгс·м или -230250 кгс·см

где x’3 = A3/q = 5484/1293. 2 = 4.24 м .

Таким образом конструктивными мерами можно уменьшить максимальный расчетный момент почти на 7%. Тем не менее мы продолжим расчет по ранее полученным данным. При этом с целью унификации используемого сортамента арматуры армирование консолей будем производить арматурой такого же диаметра, как и в пролетах.

Согласно «Руководству по проектированию плитных фундаментов…» для плиты следует использовать бетон марки не ниже М200. Мы воспользуемся данной рекомендацией и даже для дальнейших расчетов будем использовать бетон класса В20, имеющий расчетное сопротивление сжатию Rb = 11.5 МПа или 117 кгс/см2 и арматуру класса AIII (А400), с расчетным сопротивлением растяжению Rs = 355 МПа или 3600 кгс/см2.

Теперь подобрать необходимое сечение арматуры для полосы плиты шириной bпол = 1 м можно по любой из возможных методик (по старой методике, по новому СНиПу, другим способом), результат будет приблизительно одинаковым. Но при использовании любой из методик необходимо помнить о том, что высота расположения арматуры будет разная. В данном случае для длинной арматуры, располагаемой в пролете параллельно оси х (верхняя зона сечения), можно предварительно принять h03 = 27 см, а для арматуры, располагаемой под стенами (опорные участки, нижняя зона поперечного сечения), можно предварительно принять h’03 = 21 см, так как предварительную бетонную подготовку под плиту мы пока не планируем, а соблюдать конструктивные требования СНиП 2.03.01-84 надо, так как защитный слой бетона в монолитных плитах должен составлять не менее 70 мм.

Если производить расчет по старой методике:

А0п3 = Mх3/bh203Rb = 240680/(100·272·117) = 0.028

А0В3 = MВ3/bh’203Rb = 579440/(100·212·117) = 0.112

Даже без дальнейших расчетов уже понятно (во всяком случае мне), что сжатая зона бетона будет относительно небольшой и большого диаметра арматуры не потребуется, поэтому мы можем уменьшить высоту сечения плиты сантиметров на 7 (напомню, мы собирались делать плиту высотой 30 см), что как минимум даст экономию бетона на 7·100%/30 = 23. 3%, да и нагрузка на основание при этом уменьшится, а вот на значение расчетной нагрузки это не влияет. Тогда при h0 = 20 см и при h’0 = 15 см

А0п3 = Mх3/bh203Rb = 240680/(100·202·117) = 0.0514

А0В3 = MВ3/bh’203Rb = 579440/(100·152·117) = 0.22

А0А3 = MА3/bh203Rb = 209500/(100·152·117) = 0.079

Как видим, не смотря на то, что значение момента в пролете больше, чем на опоре А, но за счет меньшей относительной высоты сечения тут может потребоваться арматура большего диаметра.

Теперь по вспомогательной таблице 1(170) методом интерполяции значений:

Таблица 170.1. Данные для расчета изгибаемых элементов прямоугольного сечения, армированных одиночной арматурой

мы можем найти все необходимые для дальнейших расчетов параметры ηп = 0. 972 и ξп = 0.057, ηВ = 0.874 и ξВ = 0.252, ηА = 0.959 и ξА = 0.082. Далее ограничимся простой проверкой, согласно таблице 220.1 граничное значение относительной высоты сжатой зоны бетона при арматуре А400 составляет ξR = 0.531 > ξB = 0.252, т.е. расчет можно продолжать, требование по относительной высоте сжатой зоны бетона нами не превышено. И тогда требуемая площадь сечения арматуры:

Faп3 = Mх3/ηh03Rs = 240680/(0.972·20·3600) = 3.44 см2.

FaА3 = MА3/ηh03Rs = 209500/(0.959·15·3600) = 4.04 см2.

FaВ3 = MВ3/ηh’03Rs = 579440/(0.874·15·3600) = 12.28 см2.

При шаге арматуры 200 мм в полосе шириной 1 м будет 5 стержней и тогда по таблице 2 (см. ниже) для армирования плиты  на опоре В следует принять арматуру диаметром не менее 18 мм (сечение 5 стержней составит 12. 7 см2). А для армирования консолей вроде бы 5 стержней диаметром 10 мм с сечением 3.93 см2 недостаточно (не хватает 2.7% до 4.04 см2). И тут мы можем вспомнить все, и то что нагрузку определяли с запасом, при этом не делали разницы между постоянной и временной нагрузкой, и то что нагрузка будет не равномерно распределенная, и то что размеры консолей и пролетов мы приняли с запасом, и то что расчетное сопротивление меньше нормативного, а потому с учетом даже одного только этого фактора допускается принимать сечение арматуры на 2-3% меньше требуемого. А можно ничего не вспоминать, а просто принять 5 стержней диаметром 12 мм, сечение стержней составит 5.65 см2. Пока продолжим расчет  для стержней диаметром 18 и 10 мм, а окончательное решение примем, когда будут известны требуемые диаметры арматуры для всех сечений.

Коэффициент армирования в районе опоры В3 при этом составит

μВ3 =100% Fa/bh0 = 100·12. 7/(100·15) = 0.85%

Это больше рекомендуемого для плит перекрытия коэффициента армирования (0.3-0.6%). Однако у нас не плита перекрытия, а фундаментная плита, и такое армирование будет только в районе опоры В. В пролетах и консолях при использовании 5 стержней диаметром 10 мм площадь сечения арматуры составит 3.93 см2, соответственно μп3 = 0.262, так что менять высоту плиты не будем.

Таблица 170.2. Площади поперечных сечений и масса арматурных стержней.

Проверка по касательным напряжениям

Сразу проверим необходимость поперечного армирования. Согласно одному из требований

Qmax ≤ 0.5Rbtbh’03 + 3h’03q (170.8.2.1)

Согласно нашей расчетной схеме Qmax — это половина опорной реакции В3 = 9466.5 кг (так как вторая половина опорной реакции действует со второй стороны опоры). Сопротивление растяжению бетона выбранного класса составляет Rbt = 0. 9 МПа или приблизительно 9 кгс/см2. Тогда

9466.5/2 = 4733.25 < 0.5·9·100·15 + 3·15·12.932 = 7331.94 кг

Это условие соблюдается, по расчету поперечная арматура не нужна, конструктивные требования также позволяют обойтись без поперечной арматуры. арматуры, в данном случае имеется в виду вертикальная поперечная арматура.

Определение длины стержней

Для арматуры периодического профиля диаметром 16 мм минимально допустимая длина анкеровки lan(16) в сжатом бетоне составляет согласно Таблице 328.1 не менее 12d = 12·18 = 216 мм, не менее 200 мм, а также не менее (0.5·3600/117 + 8)16 = 374 мм (пояснения к формуле там же, где и таблица). Для арматуры диаметром 10 мм: lan(10) = (0.5·3600/117 + 8)10 = 234 мм.

Тогда, если воспользоваться общими рекомендациями, длину стержней для армирования нижней зоны сечения плиты под опорой В3 — внутренней стеной желательно принимать не менее 0. 5l3 + b + 2lan(16) = 0.5·6 + 0.4 + 0.75 = 4.15 м. Впрочем такая длина необходима только для половины стержней, вторую половину можно просто довести до границы растянутой зоны, т.е. принять длину стержней 3.4 м.

Для армирования нижней зоны сечения плиты на крайних опорах и консолей достаточно 5 стержней диаметром 10 мм. При этом стержни следует заводить на всю длину консоли, ширину стены, зону действия момента в пролете и длину анкеровки. Если воспользоваться общими рекомендациями, то длина действия момента составит 0.25l3 = 1.5 м, тогда k3 + b + 0.25l3 + lan(10) = 1.7 + 0.4 + 1.5 + 0.23 = 3.85 м.

А для того, чтобы более точно определить зону действия момента в пролете, сначала нужно определить сечения, в которых изгибающий момент равен нулю.

Согласно уравнению моментов:

М03 = A3x3 — q3c(k3 + x3)2/2 = 5740х3 — 1293. 2(1.7 + х3)2/2 = 0

тогда

x3(1) = 0.591 м, х3(2) = 4.889 м (методика решения квадратных уравнений здесь не приводится).

Таким образом длина стержней для армирования консолей составит k3 + b + 0.59 + 0.23 = 1.8 + 0.2 + 0.59 + 0.23 = 2.82 м (округлим до 3 м). А длина стержней для армирования под средней опорой В3: 2(l3 — x3(2)) + 0.4 + 0.75 = 2(6.2 — 4.89) + 0.2 +0.75 = 3.35 м (округлим до 3.5 м)

Как видим, более точный расчет позволяет сэкономить около 20-25% арматуры.

Для армирования 1 метра ширины плиты в пролетах принимаем все те же 5 стержней арматуры диаметром 10 мм по вышеуказанным причинам. При этом как минимум половину стержней по конструктивным соображениям следует доводить до опор, тогда длина таких стержней составит как минимум 6.2-6.4 м. А длина остальных стержней должна составлять как минимум x3(2) — x3(1) + 2lan(10)= 4. 89 — 0.59 + 0.46 = 4.76 м (округлим до 5 м). Впрочем для унификации длину всех стержней можно принять одинаковой: b + x3(2) + lan(10) = 0.2 + 4.89 + 0.23 = 5.32 м (округлим до 5.5 м), но стержни при монтаже каркаса следует располагать «елочкой» — один заводится на опору А3, следующий на опору В3 и так далее.

Подбор арматуры для сечения 2-2

Снова определим значение моментов на опорах (под стенами) и в пролете. Примем при определении моментов длину консолей k2 = 1.4 м и пролет l2 = 3.8 м. А значение опорной реакции А2 уменьшим на 825.5·0.2 = 165.1 кг. Тогда опорная реакция А составит А2 = 2865 — 165.1 ≈ 2700 кг. При q2c = 825.5 кг/м

МА2 = Мс2 = qk22/2 = 825.5·1.42/2 = 809 кгс·м или 80900 кгс·см

МВ2 = q(k2 + l2)2/2 — A2l2 = 825. 5(1.4 + 3.8)2/2 — 2700·3.8 = 900.8 кгс·м или 90080 кгс·см

Мx2 = qx22/2 — A(x2 — k2) = 825.5·3.272/2 — 2700(3.27 — 1.4) = -600.4 кгс·м или -60040 кгс·см

где x2 = A2/q = 2700/825.5 = 3.27 м.

Значения моментов в данном сечении значительно меньше, чем в сечении 3-3 и это логично, так как и нагрузка, а главное, пролеты в этом сечении значительно меньше. Да и разница в значениях моментов незначительна, поэтому достаточно подобрать сечение арматуры по максимальному моменту, но при этом следует помнить, что относительная высота сечения изменится, так как у нас уже имеется арматура в сечении 3-3. При h’o2 = 13 см

А0В2 = MВ2/bh’202Rb = 90080/(100·132·117) = 0.045

Данное значение достаточно близко к полученному А0п3, потому мы без дальнейших скрупулезных расчетов примем армирование 1 погонного метра ширины плиты в данном сечении 5 стержнями диаметром 10 мм.

Согласно уравнению моментов:

М02 = A2x2 — q(k2 + x2)2/2 = 2700х2 — 825.5(1.4 + х2)2/2 = 0

тогда

x2(1) = 0.63 м, х2(2) = 3.11 м.

Таким образом длина стержней для армирования консолей составит k2 + b + 0.59 + 0.23 = 1.4 + 0.2 + 0.63 + 0.23 = 2.46 м (округлим до 2.5 м). Длина стержней для армирования под средней опорой В2: 2(l2 — x2(2)) + b + 0.46 = 2(3.8 — 3.11) + 0.2 + 0.46 = 2.04 м (с учетом того, что приняли несколько завышенное сечение арматуры и с учетом некоторого защемления арматуры в растянутом слое бетона мы можем округлить длину стрежней до 2 м). Минимальная длина стержней для армирования пролетов: 0.2 + 3.11 + 0.23 = 3.54 м (округлим до 3.5 м) при армировании «елочкой».

Подбор арматуры для сечения 1-1

В данном сечении наша плита может рассматриваться как однопролетная балка с консолями. Снова определим значение моментов на опорах (под стенами) и в пролете. Примем при определении моментов длину консолей k1 = 1.4 м и пролет l1 = 7.8 м. При q1c = 520.91 кг/м изменение опорной реакции А составит 520.91·0.2 = 104.2 кг, тогда А1 = 2865 — 104.2 = 2758 кг

МА1 = Мс1 = qk12/2 = 520.91·1.42/2 = 375 кгс·м или 37500 кгс·см

Мx1 = qx12/2 — A1(x1 — k1) = 520.91·5.32/2 — 2758(5.3 — 1.4) = -3440 кгс·м или -344000 кгс·см

где x1 = A1/q = 2758/520.91 = 5.3 м (с учетом того, что мы не учитываем ширину опор, то значение х совпадает с серединой плиты, как это впрочем и должно быть).

При ho1 = 18 см

А0п = Mх/bh201Rb = 344000/(100·182·117) = 0. 091

тогда при ηп1 = 0.952

Faп1 = Mх1/ηh01Rs = 344000/(0.952·18·3600) = 5.57 см2.

Данному требованию удовлетворяют 5 стержней диаметром 12 мм, площадью сечения 5.65 см2.

Согласно уравнению моментов:

М01 = A1x1 — q(k1 + x1)2/2 = 2758х1 — 520.91(1.4 + х1)2/2 = 0

тогда

x1(1) = 0.26 м, х1(2) = 7.54 м.

При таких параметрах проще завести все стержни за грань опор. А армирование консолей из тех же соображений унификации принимаем такое же как и в сечении 2-2.

Вывод: для армирования плиты потребуется арматура 3 различных диаметров. С целью унификации и повышения надежности можно принять арматуру 2 диаметров 18 мм и 12 мм. В итоге схема армирования плиты при использовании арматуры 3 диаметров будет выглядеть примерно так:

Рисунок 397. 1

Конструктивная арматура, необходимая для поддержания рабочей арматуры верхнего слоя на схемах не показана. А между тем в нашей плите большая часть арматуры находится сверху, а не как у плиты перекрытия — снизу. Поэтому для поддержания рабочей арматуры верхнего слоя в проектном положении при ходьбе и при заливке бетонной смесью и при вибрировании бетонной смеси желательно уложить стержни диаметром 8-12 мм (это может быть и гладкая арматура) с шагом не более 500 мм, тогда появляется возможность приварить поперечную арматуру для поддержания арматуры верхнего слоя. расстояние между стержнями поперечной арматуры как правило также не должно превышать 500 мм. В нашем случае для упрощения монтажа мы можем половину консольных стержней уложить по всей длине плиты, тогда сетка конструктивной арматуры составит 400х400 мм, а в узлах конструктивной сетки приварить поперечную арматуру. Кроме того для общей устойчивости арматурного каркаса желательно приварить несколько наклонных стержней.

После этого составляется спецификация арматуры, необходимой для армирования фундаментной плиты. Выглядит такая спецификация примерно так (с учетом конструктивной арматуры):

Поз.

Обозначение

Наименование

Кол.

Масса ед./всего, кг

Примечания

1

 

 Ø12А400 l = 3000

56

2.66/149

 

1′

 

 Ø10А400 l = 6600

56

4. 07/228

расчетно-конструктивная

2

 

 Ø18А400 l = 3500

56

7/392

 

3

 

 Ø10А400 l = 5500

112

3.39/380.1

 

4

 

 Ø10А400 l = 2500

82

1.54/126.5

 

4′

 

 Ø10А400 l = 6700

82

4. 1/339

расчетно-конструктивная

5

 

 

 

 

набирается из расчетно-конструктивной

6

 

 Ø10А400 l = 3500

74

2.16/159.8

 

7

 

 Ø12А400 l = 8400

45

7.46/335.7

 

8

 

 Ø12А400 l = 200

2360

0. 1776/419.1

поперечная конструктивная

 

 

 бетон класса В20

 

 

43.5 м3

 

Таким образом для армирования фундаментой плиты потребуется примерно 2529.2 кг арматуры, из них около 700 кг на чисто конструктивную арматуру, и 43.5 м

3 бетона. При стоимости 1 тонны арматуры около 700-800$ и кубометра бетона около 50$ фундаментная плита обойдется примерно в 4000$ (и это без учета стоимости работ).

И тут возникает вопрос: так как дом относительно небольшой и сравнительно легкий, а пролеты между стенами не малые, то может имеет смысл использовать для дома ленточный фундамент? Вопрос хороший, но ответ на него дается отдельно.

И еще одна маленькая, но очень важная деталь: плиту желательно бетонировать сразу, а это больше 40 м3 бетона. В связи с этим более целесообразно сначала выполнить бетонную подготовку из бетона класса В5 — В7.5 (если есть такая возможность) толщиной не менее 100 мм (во всяком случае так рекомендуется «Руководством по проектированию плитных фундаментов каркасных зданий…» , да и возможные неровности основания это сгладит и упростит монтаж арматуры. Кроме того по бетонной подготовке можно выполнить качественную гидроизоляцию, если есть такая необходимость. Тогда минимальная толщина защитного слоя для нижней арматуры должна быть не менее 35 мм и соответственно высоту плиты можно уменьшить еще на 35 мм и расход бетона более высокого класса на 6.6 м3, но тогда придется пересчитать сечение арматуры верхнего слоя.

Тут могут возникнуть и другие вопросы: например, как рассчитать плиту если план дома не симметричный? В этом случае для упрощения расчетов можно по-прежнему рассматривать плиту как симметричную с той разницей, что длина пролетов будет равна большему значению из имеющихся, что приведет к повышенному запасу прочности, а значит и завышению стоимости дома. Или заказать расчет у специалиста, что также приведет к дополнительной трате средств.

Проблемы с арматурой в бетонных фундаментах, плитах и ​​стенах

Ржавчина и оголенная арматура могут снизить структурную прочность бетона. Это может привести к трещинам и ослаблению фундаментов и плит, а также протечкам в стенах подвала.

Хотя бетон является очень прочным материалом и отлично подходит для поддержки огромного веса; это не очень хорошо для прочности на растяжение, если в нем нет армирования, такого как арматура.

Проблемы с трещинами и арматурой

 

Проблема №1. Ржавая арматура теряет структурную прочность

По мере того, как арматура ржавеет, она медленно теряет свою прочность и изнашивается.По мере ржавления он увеличивается в объеме, и это оказывает огромное давление на бетон, покрывающий арматуру.

Ржавеющий арматурный стержень может расширяться до 4 раз в диаметре, что приводит к растрескиванию и повреждению бетона

По мере того, как арматура ржавеет, прочность связи между арматурой и бетоном ухудшается, что в конечном итоге приводит к снижению прочности бетона. Кроме того, коррозия и точечная коррозия способствуют структурной усталости.

Проблема № 2 – Растрескивание: отламываются куски бетона

Растрескивание или отслоение кусков бетона обычно происходит из-за:

  • Механические повреждения – i.е. бетон, ударяемый твердым металлическим предметом с большой силой.
  • Силы ржавой арматуры, давящей на бетон –  Как мы уже отмечали, ржавая арматура оказывает огромное давление на бетон, что может вызвать трещины или отрыв кусков бетона.

Проблема №3 – Усадочные трещины, которые позволяют влаге достигать арматуры

Усадочные трещины, вероятно, являются наиболее распространенным типом трещин в бетоне. Когда бетон сначала смешивают и заливают, в нем содержится избыток воды, а в процессе затвердевания бетон теряет избыток воды, что вызывает усадочные трещины.

Если было добавлено слишком много воды, могут возникнуть проблемы с растрескиванием. Во-первых, бетон будет слабее, а во-вторых, усадочные трещины могут увеличиться и позволить влаге попасть на арматуру.

Проблема №4 – Недостаточное бетонное покрытие арматуры

Строительные нормы и правила предъявляют требования к тому, насколько близко арматурный стержень может находиться к земле (почве), а также насколько близко он может быть к бетонным формам. Расстояние варьируется в зависимости от расположения и размера арматурного стержня.

Обычные размеры арматуры, используемые в жилищном строительстве для домов, обычно имеют размеры от арматуры № 3 до арматуры № 6.Арматурный стержень № 4 имеет диаметр 1/2 дюйма (4/8 дюйма), а арматурный стержень № 5 имеет диаметр 5/8 дюйма.

Зазоры и покрытие на арматуре

Арматурный стержень

, как правило, должен быть заключен в оболочку или покрыт бетоном, и в большинстве случаев существуют нормативные требования, устанавливающие руководящие принципы. Иногда арматура может смещаться во время заливки бетона, и поэтому она не получает надлежащего покрытия.

Как правило, арматура в жилищном строительстве должна иметь 3-дюймовое бетонное покрытие или отделение от грунта, когда бетон для фундаментов и подкладок заливается на почву, а при заливке на опалубку — 1½ дюйма.Если формованный бетон не подвергается воздействию земли или погодных условий, как в плитах и ​​стенах, то требуется ¾ дюйма. Обратите внимание, что существует много требований к условиям и зазорам.

Пятна ржавчины или узор трещин

Если на бетонной стене или полу рядом с трещинами есть пятна ржавчины, обычно арматура ржавеет. Когда это условие наблюдается, было бы разумно определить источник влаги и провести техническое обслуживание и ремонт.

Если на трещинах есть рисунок (т.е. прямоугольник или квадрат), то арматура может оказаться слишком близко к поверхности бетона. Опять же, обслуживание и ремонт мудры.

В принципе, если нет покрытия или оно неправильное, то арматура может подвергаться воздействию чрезмерной влаги и ржавчины.

Проблема № 5. Скальные карманы могут подвергать арматуру воздействию влаги

Бетон, который не был уложен или провибрирован должным образом, может иметь каменные карманы и оголенную арматуру. Часто эта проблема возникает, когда бетон был залит слишком сухим из-за недостаточного количества воды, добавленной в бетон при его замешивании.Это может привести к коррозии арматуры и повреждению бетона.

На фото бетон был залит слишком сухим и не провибрирован должным образом.

Проблема № 6. Если в бетоне нет арматуры, то одна сторона трещины может возвышаться над другой стороной: например, в полу гаража

Если в бетонном полу гаража нет арматуры, то одна сторона трещины может быть выше другой. Без арматуры трещины имеют тенденцию к увеличению.

Дома, построенные до или в 1950-х и 1960-х годах

Во многих районах страны дома, построенные в 50-х и 60-х годах или ранее, могут не иметь арматуры в бетонных плитах.В этих домах могут быть трещины, проходящие через несколько напольных плиток, отражающие трещины в бетоне под плитками.

В таких домах нередки случаи, когда приподнимают ковровое покрытие или другие напольные покрытия и находят трещины, а часто и многочисленные трещины. Эти трещины можно залатать или отремонтировать, но, вероятно, появятся и другие трещины, особенно на участках с экспансивным грунтом или ползучестью склонов.

Трещины без арматуры с большей вероятностью станут причиной падения

Как указывалось ранее, отсутствие арматуры в плите с большей вероятностью приведет к тому, что одна сторона трещины возвысится над другой стороной.Это условие часто создает опасность поездки. Инспекторы часто считают разницу в высоте в 1/4 дюйма или более опасной для безопасности.

Споткнуться об опасности можно на полу в гараже, на полу дома, на дорожках, во внутреннем дворике и на подъездной дорожке.

Почему арматура ржавеет или подвергается коррозии?

  1. Когда пассивный защитный слой на арматуре разрушается, т. е. цементирующие материалы выходят за пределы окружающей арматуры, химические вещества, карбонизация и хлориды начинают процесс коррозии.
  2. Различные загрязняющие вещества в воздухе, замерзание и оттаивание, влага в воздухе (особенно в прибрежных районах), соли и противогололедные составы, агрессивные грунты также могут привести к коррозии и ржавлению арматуры.
  3. Воздействие чрезмерной влаги и различных химических соединений может привести к повреждению бетона и арматуры при ряде обстоятельств.

Почему арматуру закладывают в бетон?

Две основные причины:

  • Уменьшение растрескивания бетона
  • Добавление конструкционной прочности, особенно прочности на растяжение

Другие основания для арматуры в бетоне

  • Помогает предотвратить подъем одной стороны трещины над другой стороной
  • Можно связать две отдельные секции или куски бетона вместе (т.е. при холодных соединениях)
  • Возможность уменьшения толщины бетона. При использовании арматуры в плите или стене может потребоваться меньше бетона, и толщина бетона может быть меньше
  • Может помочь распределить вес или нагрузку на бетон на большую площадь
  • Помогает удерживать бетон вместе, когда он расширяется и сжимается

Почему на арматуре есть ребра

Небольшие ребра на арматуре служат нескольким целям.

  1. Они увеличивают площадь поверхности арматурного стержня, что дает пасте в бетоне большую площадь поверхности для склеивания.
  2. Ребра обеспечивают более прочную механическую анкеровку к бетону.
  3. Ребра помогают удерживать на месте различные куски арматуры при заливке бетона, чтобы они не соскользнули со своего места, даже если они связаны друг с другом.

Неправильно установленная арматура или арматура, подвергающаяся воздействию влаги, может заржаветь, что может ослабить или повредить бетон. Иногда это может привести к значительным повреждениям, и ремонт может быть дорогостоящим.

Домовладельцы, у которых проржавела или оголилась арматура, должны выполнить техническое обслуживание и ремонт.Иногда может потребоваться консультация инженера, если есть значительная ржавчина, отслоение или повреждение бетона. К счастью, в большинстве случаев требуется только техническое обслуживание.


Усиление слабого фундамента | JLC Онлайн

В своей статье «Частичная модернизация фундамента» (19 июня) я упомянул два места, требующие внимания в фундаменте этого клиента. В этой статье я сосредоточился на том, где существующий фундамент потерял всю структурную целостность и нуждался в полной замене.Здесь я обращаюсь ко второму месту, где инженер посчитал, что существующий фундамент, хотя и слабый, просто требует усиления.

Эта область существующего фундамента была слабой, но все же конструктивно прочной. В ходе расследования команда обнаружила, что под первоначальным фундаментом не было опоры, и обратилась за решением к инженеру.

Решение заключалось в заливке того, что мы называем «уступной стеной», которая в основном представляет собой усиленную подпорную стену, залитую и привязанную к первоначальной фундаментной стене. Прежде чем начать, мы проверили место, где плита сломалась, и обнаружили, что под первоначальной стеной не было опоры. Ответ инженера состоял в том, чтобы раскопать под первоначальным фундаментом чередующиеся 2-футовые секции, поддерживая старую стену, позволяя новому бетонному основанию проникать в пустоты под стеной.

Бригада разрезала плиту и вырыла траншею для фундамента шириной 1 фут и глубиной 1 фут. Под стеной они вырыли пустоты шириной 2 фута на расстоянии 2 фута друг от друга, которые должны были быть заполнены бетоном как часть нового фундамента. Специальный инструмент изгибает арматуру в нужные формы.

После заливки стены скамейки поверх нового фундамента мы построили плотно прилегающую стену 2х4 между балками пола и верхней частью бетона.Эта стена помогла выдержать нагрузку на внешнюю стену и нагрузку на пол, а также помогла только что залитой стене сопротивляться горизонтальному изгибу.

Арматура была необходима для привязки новой стены скамейки к существующему фундаменту. Член бригады начал с бурения отверстий в верхней части соседних стен фундамента. Затем бригада использовала высокопрочную эпоксидную смолу, чтобы прикрепить два отрезка арматуры к одному концу стены.Короткие отрезки арматуры, просверленные и залитые эпоксидной смолой в стену фундамента, обеспечивают поддержку арматуры по всей ее длине. Другой конец арматурного стержня был согнут и залит эпоксидной смолой в существующую стену. Концы вертикальных и горизонтальных отрезков были связаны вместе для заливки. В траншее для фундамента отрезки арматуры были установлены на стульях, прикрепленных к основанию фундамента.На переднем плане видна одна из 2-футовых пустот, выкопанных под существующим фундаментом через каждые 2 фута. Бетон для основания расширялся в пустоты под существующей стеной, чтобы поддерживать ее. Бригада замешивала и заливала бетон для основания из мешков, затирая поверхность для получения гладкой поверхности. Шпоночный паз, отлитый в основание, помог зафиксировать стенку скамейки на месте, а лазерная линия использовалась для направления размещения формы.Прикрепив фанеру формы к соседней стене, бригада построила раму для формы. 2×4, прикрепленный к плите, удерживал дно формы на месте. Чтобы форма не сдвинулась и не выгнулась во время заливки, посередине бригада прикрепила горизонтальную опору.Диагональные 2-by, закрепленные спиной к полу, обеспечивали дополнительную поддержку. Уложив бетон и дав ему застыть в течение нескольких дней, бригада сняла опалубку и плотно обрамила стену 2×4 между стеной скамейки и балками наверху. В дополнение к тому, что стена помогает выдерживать нагрузку на пол и внешнюю стену, давление на стену повышает поперечную устойчивость стены скамейки.

Фотографии Джейка Левандовски

Армирование стены бетонного фундамента | БРАНЗ Сборка

АРМАТУРА ДЛЯ БЕТОННЫХ ФУНДАМЕНТОВ Стены и фундаменты, как правило, представляют собой деформированные арматурные стержни диаметром 12 мм (D12).Использование деформированных стержней – стержней с неровной поверхностью – создает прочную связь между арматурой и бетоном.

Стены фундамента из монолитного бетона и бетонной кладки

Требования к армированию стен фундамента из монолитного бетона и бетонной кладки, поддерживающих подвесные каркасные полы и легкую облицовку, описаны в NZS 3604:2011, рисунки 6.13, 6.14 и 6.15. Расположение арматурных стержней, как по горизонтали, так и по вертикали, зависит от:

  • высоты стены
  • от того, является ли фундаментная стена монолитным бетоном или бетонной кладкой
  • от того, будет ли стена поддерживать одноэтажное или двухэтажное здание конструкция или представляет собой консольную фундаментную стену.

Подробнее см. в таблице 1 и на рисунках 1 и 2.

Вернуться к началу

Фундаментные стены к бетонной плите на первых этажах

Армирование для комбинированных фундаментных стен/бетонных плит перекрытий, поддерживающих легкие конструкции, описано в NZS 3604:2011, рисунки 7.13(B), 7.14(B) и 7.14(C). ).

Если комбинированная плита фундамента/перекрытия поддерживает каменную облицовку, армирование описано в NZS 3604:2011, рисунки 7.15(B), 7.16(B) и 7.16(C).

Детали армирования для комбинированных фундаментных стен/бетонных плит перекрытий, не поддерживающих каменную облицовку, приведены в таблице 2 и на рисунках 3 и 4. Детали конструкции из бетонной кладки приведены в NZS 4229:2013 Здания из бетонной кладки, не требующие специального инженерного проектирования .

Рис. 1 Армирование монолитной стены фундамента (неконсольной) одноэтажного дома.

B1/AS1, поправка 11, удалены несвязанные детали плиты/фундамента, показанные на рис. 7.13(А), 7,14(А), 7,15(А) и 7,16(А). Теперь все бетонные плиты на цокольных этажах должны быть усилены, а арматура плиты привязана к арматуре стены фундамента (см. Бетонные плиты и контрольные швы, Сборка 138 , стр. 24–25).

Вернуться к началу

Перехлесты и связи

Перехлесты должны быть не менее 500 мм там, где горизонтальные арматурные стержни требуют нахлеста и где арматура меняет направление. На углах стены фундамента нахлесты должны составлять 500 мм в каждом направлении, как показано в NZS 3604:2011, рисунок 6.15(А).

Арматура внахлест должна быть связана черной отожженной стальной проволокой диаметром 1,6 мм через равные промежутки и на каждом конце нахлеста. Черная отожженная стальная проволока мягкая и легко гнется.

Рисунок 2 Армирование консольной бетонной кладки фундаментной стены 1 или 2 этажей.

Вернуться к началу

Усиливающиеся для фундаментных стен (обрамленные подвесные этажи)

in situ бетон Одноэтажный 1 / D12 * (см. Рисунок 1) D12 @ 450 мм CRS для стен> 1 м Высокий D12 @ 600 мм CRS
2-х этажный 2 / D12 D12 @ 450 мм CRS для стен >1 м высотой D12 @ 500 мм crs
  Консольный D12 @ 400 crs в обе стороны D12 @ 400 мм crs макс. D12 @ 400 мм CRS
4 Одноэтажный Одноэтажный 1 / D12 * D12 @ на средней высоте для стен> 1 м Высокий

9

D12 @ 800 мм CRS
2-х этажный 2 / D12 D12 D12 @ на середине высоты для стен> 1 м Высокий

9

D12 @ 800 мм CRS
9022 D12 @ 400 CRS оба пути (см. Рисунок 2) D12 в соединительных балках @ 800 мм crs макс. D12 @ 400 мм crs

* 2/D12, если стена поддерживает кирпичную кладку.

Для бетонных плит требуются пары горизонтальных арматурных стержней в фундаментных стенах. Они должны быть связаны хомутами, образованными из арматурного стержня R10, установленными с шагом 400 мм и обвязанными стальной проволокой в ​​местах соединения арматуры и хомутов.

Изгибы в арматуре для образования крюка или прямого угла должны иметь диаметр не менее пятикратного диаметра стержня – минимальный диаметр изгиба деформированного арматурного стержня диаметром 12 мм должен быть не менее 60 мм.

Вернуться к началу

Другие требования к армированию

Существует несколько других требований к армированию фундаментных стен и фундаментов:

  • Ступенчатые фундаменты должны иметь дополнительное армирование в соответствии с NZS 3604:2011, рис. 6.12 (см. рис. 5).
  • Там, где бетон или бетонная кладка упираются в землю, армирование должно иметь минимальный слой бетона 75 мм.
  • Проемы размером более 300 мм в любом направлении должны иметь по одной обрезной планке D12 с каждой стороны проема, которая должна выступать не менее чем на 600 мм за каждый угол проема. Если перемычка имеет глубину менее 650 мм, стержни для обрезки косяка должны быть согнуты более чем на 60 мм от верха бетона.
Рис. 3 Армирование монолитного бетона на краю фундамента для 1 или 2 этажей. Рис. 4 Армирование кромки фундамента из бетонной кладки для 1 или 2 этажей. Это альтернативное изолированное решение.
Таблица 2 Усиление для стены фундамента к бетонной полам плиты
Foundation Edge Detail (см. Рисунки 3 и 4) Усиление
in situ (1 или 2 этажа) 2/D12 1/D12 R10 @ 600 мм crs (на крюке вокруг горизонтальной арматуры) 400 мм
Монолитный бетон ) 2/D12 (горизонтальная) 1/D12 R10 @ 600 мм крс (зацепляется за горизонтальную арматуру) 400 мм
2-эт. кирпичная кладка) 2/D12 (укладываются горизонтально рядом друг с другом или штабелируются вертикально) 1/D12 R10 @ 600 мм crs (зацепляется за горизонтальную арматуру в основании в чередующемся прямом ионов) 400 мм
Бетонная кладка (1 или 2-этажная опорная кирпичная кладка) 2/D12 (горизонтальная) 1/D12 R10 армирование вокруг 6 мм переменное направление) 400 мм
Рисунок 5 Армирование ступенчатых фундаментов.

Наверх

Скачать PDF

Алиде Элкинк

Внештатный технический писатель, Веллингтон

Посмотреть все статьи Алиде Элкинк

Статьи верны на момент публикации, но с тех пор могут устареть.

Бетонная плита, сварная сетка, фундамент и армирование дороги

Сетка для бетонных плит также называется армированной сварной сеткой, которая изготавливается из оцинкованной проволоки из нержавеющей стали. Обладая высокой прочностью, высокой жесткостью и устойчивостью к коррозии, ржавчине, он широко используется для армирования фундаментов и армирования дорог для улучшения сцепления с бетоном, предотвращения появления трещин в бетоне и увеличения несущей массы и так далее.

Технические характеристики сетки для бетонных плит

  • Материал: нержавеющая сталь .
  • Обработка поверхности: горячее цинкование погружением или гальваническое цинкование.
  • Разновидность: арматурная сетка для ферм или арматурная сетка для лестниц.
  • Прочность на растяжение: 510 МПа.
  • Минимальная ударная вязкость: 485 МПа.
Таблица 1: Спецификация сетки из бетонной плиты Длина 6000 мм × Ширина 2400 мм
Товар Диаметр проволоки (мм) Размер ячеек (мм) Вес листа (кг)
WCSM01 6.3 200 × 200 33
WCSM02 7,1 200 × 200 41
WCSM03 8 100 × 100 105
WCSM04 8 200 × 200 52
WCSM05 9 200 × 200 62
WCSM06 10 200 × 200 80

CSM-01: Сетка из бетонной плиты, поддерживаемая стальным стулом на строительной площадке.

Особенности сетки из бетонных плит

  • Высокая прочность и жесткость, не ломается.
  • Улучшает сцепление с бетоном.
  • Увеличить вес подшипника.
  • Предотвращает появление трещин в бетоне.
  • Устойчив к коррозии и ржавчине.
  • Сокращение времени установки.
  • Сокращение обрезков и потерь.
  • Прочный и долговечный.

Применение сетки из бетонных плит

  • Армирование фундаментов.
  • Укрепление дорог.
  • Армирование стен зданий.
  • Усиление настила бассейна.
  • Армирование террас.

CSM-02: Сетка для бетонных плит, используемая для армирования фундамента.

CSM-03: Сетка для бетонных плит, используемая для армирования дорожного покрытия.

Запрос на наш продукт

При обращении к нам укажите свои подробные требования. Это поможет нам дать вам действительное предложение.

Армирование в бетоне — зачем это делать и как это делать и когда это необходимо О стальной арматуре в бетоне

Иногда в бетон добавляют стальную арматуру, чтобы укрепить его, помочь скрепить бетон и ограничить растрескивание.

Во многих случаях для более крупных бетонных работ, требующих арматурной стали, обычно также требуется какое-либо разрешение на строительство, и в этом случае требования к арматурной стали документируются в планах.Бетон, несущий большие нагрузки (например, фундаменты, фундаментные стены и колонны), почти всегда требует армирующей стали.

Однако не все бетонные работы требуют армирования. Бетонные проекты, такие как дорожки, некоторые подъездные пути и полы небольших сараев или игровых домиков, как правило, вообще не требуют стального армирования.

Однако стоит отметить, что, хотя для некоторых более крупных работ (таких как подъездные пути с интенсивным движением, полы для навесов и большие навесы) разрешение может не требоваться, было бы неплохо включить стальную арматуру.А иногда и небольшие работы также выигрывают от армирующей стали, особенно если основание менее прочное, чем должно быть, или есть карманы губчатого основания. На самом деле, даже для пола сарая меньшего размера не помешает бросить стальной стержень (арматурный стержень) по периметру пола, чтобы придать большую дополнительную прочность.

Средний армированный пол обычно состоит из сплошного основания (траншеи, заполненной бетоном) по периметру, а остальная часть бетонной плиты имеет толщину 100 мм (4 дюйма).Арматурные стальные стержни проходят вокруг фундамента, а сварная сетка входит в основную плиту. Сетка должна располагаться в верхней половине толщины (чуть выше середины) бетонной плиты. Там, где стержни арматуры соединяются, они должны перекрываться и связываться стяжной проволокой.

Арматура (сокращение от арматурный стержень) представляет собой стержень из мягкой стали различной толщины. Арматура обычно изготавливается с деформациями, т.е. ребристая. Это означает, что он не гладкий и, следовательно, будет лучше держаться.Наиболее распространенной толщиной является арматурный стержень №3 толщиной 10 мм (3/8 дюйма) и арматурный стержень №4 толщиной 12 мм (1/2 дюйма).

Сварная сетка представляет собой стальную проволоку, сваренную в виде плоского листа с квадратной сеткой. Обычный размер сетки составляет 150 мм x 150 мм (6″x6″), а толщина обычной стальной проволоки составляет 4 мм (1/8″).

Несмотря на то, что арматура изготовлена ​​из «мягкой» стали, она не ржавеет внутри бетона. Это связано с тем, что для ржавчины стали нужен кислород, а после затвердевания бетона сталь испытывает кислородное голодание.Вот почему особенно важно обеспечить достаточное количество бетона, окружающего арматурную сталь.

Железобетонная плита – обзор

10.4.1.3 Структурный анализ и проектирование железобетонной плиты перекрытия

Структурный анализ был выполнен с помощью программного обеспечения TOWER 7 на основе конечных элементов (Radimpex Software, 2012).

Критерии проектирования для бетонных смесей NAC и RAC были приняты в соответствии с Еврокодом 2 – Часть 1 и EN 1992-1-2 (CEN/TC250, 2004b). В дальнейшем EN 1992-1-2 упоминается как Еврокод 2 – Часть 2.

Расчетные значения предельного момента и сопротивления сдвигу больше или, по крайней мере, равны расчетным значениям изгибающего момента и усилия сдвига соответственно.

Ограничивающая ценность ширины трещины:

Wmax = 0,4 ммФозCC1

Wmax = 0.3MMFOXC3

Ограничение величины отклонений для квазиподальной нагрузки:

vmax = l250

, где l – пролет плиты;

Расчетный срок службы принят равным 50 годам («обычный» надзор во время выполнения и «обычный» осмотр и техническое обслуживание во время использования).

Стандарт огнестойкости REI 60 был принят в связи с ограниченными размерами здания; поэтому согласно Еврокоду 2 – Часть 2 для непрерывных массивных плит:

hs,min=80мм

amin=10мм

где h s — толщина плиты, а a — ось армирования. стали до ближайшей открытой поверхности.

Все свойства и уравнения, использованные при расчете плит перекрытий, приведены в таблице 10.5. Обозначения и значения параметров в таблице 10. 5 полностью соответствуют обозначениям и уравнениям, используемым в Еврокоде 2 – части 1 и 2.

Таблица 10.5. Положения EUROCODE, используемые в дизайне RC этаж плиты

Eqs. 9029 90 мм
NAC RAC
недвижимости FC CK, 28 дней FCK = FCM-8.0 (MPA)
f ctm, 28 дней 0,3·fck2/3 (МПа)
E см, 28 дней

90(f)13 (ГПа)
экв. (10.7), Lye et al. (2016)
φ ( t , t 0 ) Приложение B, Еврокод 2 – Часть 1 (10.8) и (10.9), Lye et al. (2016)
Уравнения расчета Прочность Изгиб:
MEd≤MRd=0,810·b·x·fcd·z; z=d−0,416·x
As=(0,810·b·x·fcd)/fyd
Сдвиг (без поперечной арматуры):
VEd≤·VRd,c=CRd ·(100·ρl·fck)1/3·b·d
VRd,c,min=0. 035·k3/2·fck1/2·b·d
Работоспособность Ширина трещины:
wd≤wmax=0,3(0,4)мм
wd=
sr,max=k3·c+k1·k2·k4·ϕ/ρp,eff
εsm−εcm=((σs−kt(fct,eff/ρp,eff)(1+αe· ρp,eff))/Es)
Прогибы:
vd(t)≤vmax(t)=l/250=570/250=2,28 см φ(t,t0)
ζ=1−β(Mcr/(Mcr·Mmax))2
vd(t)=(1−ζ)·vI,d(t)+ζ·vII ,d(t)
Долговечность Расчетный срок службы 50 лет, плита ⇒ Класс конструкции S3:
cnom=cmin+Δcdev; cmin=max{cmin,b;cmin,dur}; ΔCDEV = 10 мм
4
Топ Топ Door Top 9 Bond: Bond: Bond: Bond:
CMIN, B = φ = 10 мм CMIN, B = φ = 10 мм CMIN, B = φ = 10 мм CMIN, B = φ = 10 мм
долговечность: Долговечность (XC1 и XC3):
XC1 :cmin,dur=10мм cmin,dur=cmin,dur,NAC(fcm,NAC/fcm,RAC)2. 7
XC3:cmin,dur=20мм
Огнестойкость hs≥hs,мин; cnom=cmin+∆cdev;cmin≥a−ϕ/2; Δcdev=10 мм
REI 60 ⇒ hs,min=80 мм; a=10 мм, Еврокод 2 – Часть 2

NAC , Бетон на природном заполнителе; RAC , Бетон из переработанного заполнителя.

Прочность бетона, измеренная в ходе выбранных испытаний, рассматривалась как средняя прочность бетона на сжатие f см .Для NAC Mixes, 28-дневной характерной прочности сжимания F CK , прочность на растяжение F CTM CTM , модуль упругости E см и коэффициент ползучести φ , T , T 0 ) были рассчитаны в соответствии с положениями Еврокода 2, часть 1, таблица 10.5. Для смесей RAC также были рассчитаны 28-дневная характеристическая прочность на сжатие f ck и прочность на растяжение f ctm в соответствии с положениями Еврокода 2 – Часть 1. В предыдущих обширных исследованиях было показано, что взаимосвязь между прочностью на сжатие и прочностью на растяжение, приведенная в этом стандарте, действительна с тем же уровнем достоверности для смесей RAC (Silva et al., 2015).

Однако в настоящее время хорошо известно, что смеси RAC имеют более низкий модуль упругости и демонстрируют большую ползучесть по сравнению с сопутствующими смесями NAC. Различные предложения по моделям прогнозирования были опубликованы в литературе, а модели прогнозирования представлены в Lye et al. (2016) для модуля упругости RAC и для коэффициента ползучести RAC были выбраны в этой работе.Так, для модуля упругости получено следующее соотношение (Lye et al. 2016):

(10,7)Ecm,RAC1,2=0,82Ecm,NAC1,2

, а для коэффициента ползучести (Lye et al., 2016):

(10,8)φ(∝,28)RAC1=1,37φ(∝,28)NAC1

(10,9)φ(∝,28)RAC2=1,39φ(∝,28)NAC2

где E см , NAC1, 2 и φ (∞,28) NAC1, 2 – модуль упругости и коэффициент ползучести смесей NAC с одинаковой характеристической 28-суточной кубической прочностью соответственно.

На основе статистического анализа обширной базы данных прочности на изгиб и сдвиг балок RAC и сопутствующих балок NAC (Tošić et al., 2016) был сделан вывод, что прочность на изгиб и сдвиг (без хомутов) балок RAC можно рассчитать с помощью действующие положения Еврокода 2 – Часть 1 без каких-либо изменений. То же предположение было принято для расчета плит RAC в этой работе, таблица 10.5.

Для расчета ширины трещины и долговременной деформации положения Еврокода 2, часть 1, использовались как для смесей NAC, так и для смесей RAC с учетом их различных свойств, таблица 10.5. Другими словами, предполагалось, что могут быть использованы одни и те же модели прогнозирования, то есть разное поведение NAC и RAC плиты при эксплуатации было вызвано только разными свойствами бетона, а не разным поведением конструкции. Это предположение было подтверждено опубликованными в литературе экспериментальными результатами по прочности сцепления и жесткости при растяжении смесей ВКЦ. Большинство исследований, проведенных по прочности связи РСК, показали, что относительная прочность связи (соотношение прочности связи и прочности на сжатие) РАС со 100% ходом РСА была больше или, по крайней мере, очень похожа на NAC (Xiao and Falkner, 2007; Malešev). и другие., 2010; Ким и Юн, 2013 г.; Принц и Сингх, 2013 г.). Однако были также исследования, в которых сообщалось о более низкой относительной силе связи RAC, как, например, в Butler et al. (2011). Недавние экспериментальные исследования поведения жесткости при растяжении RAC, несмотря на 50% RCA, показали, что использование RCA не повлияло на конечные характеристики бетона, результирующие характеристики растяжения и взаимодействие стали с бетоном (Rangel et al., 2017).

Что касается долговечности, были проанализированы два XC для бетона внутри зданий: XC1 и XC3.Плиты 1–4-го этажей рассчитаны на класс ХС1 (жилые помещения, низкая влажность воздуха), а плита первого этажа — на класс ХС3 (умеренная или повышенная влажность воздуха, так как парковочное место находится под цокольным этажом). ). Оба XC связаны с коррозией арматуры, вызванной карбонизацией.

Устойчивость RAC к карбонизации широко изучалась. Результаты исследований (Silva et al., 2015) показали, что можно связать стойкость к карбонизации с прочностью на сжатие и что на эту взаимосвязь незначительно влияют уровень замены, тип и размер переработанных заполнителей. Соотношение между глубиной карбонизации RAC и NAC с аналогичным составом смеси можно рассчитать с помощью следующего уравнения (Silva et al., 2016):

(10,10)xc,RACxc,NAC=(fcm,NACfcm,RAC)2,7

, где x c, RAC и x c, NAC — глубины карбонизации RAC и NAC соответственно. Отношения [уравнение. (10.10)] справедливо только для бетонных смесей с цементом ЦЕМ I, что и имело место в данной работе. Это соотношение использовалось для сопоставления требуемой глубины покрытия RAC и смеси NAC, чтобы обеспечить одинаковую долговечность, таблица 10.5.

Что касается огнестойкости, предыдущие исследования показали, что бетон с заполнителем, как полностью, так и частично замененным крупнозернистым RCA, показал хорошие характеристики при повышенных температурах и механические свойства и долговечность после пожара, которые были сравнимы или даже лучше, чем характеристики обычного бетона. (Виейра и др., 2011; Сархат и Шервуд, 2013; Сяо и др. , 2013; Коу и др., 2014). Следовательно, не должно быть различий в расчете структурного пожара между смесями RAC и NAC, и к обеим бетонным смесям применялись одни и те же требования Еврокода 2, часть 2, таблица 10.5.

При определении толщины защитного слоя бетона предполагалось, что коэффициент скорости карбонизации ( k -коэффициент) равен 0 на верхней поверхности плиты, согласно рекомендациям CEN/TC229/WG5-N012. (2016) для элементов внутри зданий в сухом климате и покрытых плиткой, паркетом и ламинатом. Таким образом, минимальное верхнее покрытие было определено таким образом, чтобы удовлетворять требованиям к связке ( c min,b ) и огнестойкости, которые предполагались одинаковыми как для NAC, так и для RAC.Предполагалось, что нижняя поверхность плиты не имеет дополнительного покрытия, поэтому минимальный нижний защитный слой был определен для удовлетворения требований к прочности ( c min,b ), долговечности ( c min,dur ) и огнестойкости. требования, см. Таблицу 10.5. Значение c мин, для RAC было рассчитано на основе c мин, для NAC в соответствии с требованиями Еврокода 2 – часть 1 и уравнением [уравнение. (10.10)]. Во всех случаях минимальное покрытие было увеличено, чтобы учесть отклонение со значением Δ c dev = 10 мм.

В соответствии с Еврокодом 2, часть 1, минимальная 28-дневная характеристическая прочность на сжатие для классов XC1 и XC3 составляет 25 и 30 МПа соответственно. Требование для XC3 не было выполнено в случаях NAC1 и RAC2. Считалось, что несколько более низкая характеристическая прочность (менее 10%) в этих случаях оказывает незначительное влияние.

Результаты расчетных значений представлены в таблице 10.6, где обозначение конкретной плиты (S) включает тип бетонной смеси и качество заполнителя (NAC или RAC; 1 для высокого качества RCA и 2 для низкого качества RCA) и XC (ХС1 или ХС3).Все плиты, независимо от того, изготовлены ли они из NA, высококачественного или низкокачественного RCA и подвергались ли воздействию XC1 или XC3, соответствуют требованиям Еврокодов по прочности, удобству эксплуатации, долговечности и огнестойкости. Таким образом, была достигнута полная функциональная эквивалентность. Количества материалов компонентов в Таблице 10.6 представляют эталонные потоки и исходные данные для сравнительного ОЖЦ.

Таблица 10.6. Расчетные значения железобетонной плиты перекрытия для различных параметров

72 9 дюйм бот B 3 9023
Высота c низ c
1 верх
Усил. верх Усил. Total W D 5 5 B мм мм мм см 2 / м см 2 / M кг / м 3 / м 3 мм мм
S_nac1_xc1 150 20 20 4. 85 6,23 69,58 0,147 21,13
S_RAC1_XC1 160 20 20 4,30 5,84 59,70 0,151 21,22
S_NAC2_XC1 150 20 20 20 3 3.43 61.10 61.10 0.162 0.162 21.54
S_RAC2_XC1 170 30 20 4.00 5,59 53,14 0,208 21,34
S_NAC1_XC3 160 30 20 5,04 6,08 65,47 0,213 20,01
S_RAC1_XC3 170 30 20 20 4 430 5.74 55.63 55.63 0.76 19.76
160 30 20 3. 63 6,35 58,76 0,196 19,94
S_RAC2_XC3 180 45 20 4,85 5,52 54,27 0,254 19,97

НСС , Бетон на природном заполнителе; RAC , Бетон из переработанного заполнителя; XC , Класс воздействия.

Все, что вам нужно знать [плюс 8 основных типов]

Бетон используется во всем мире как один из самых распространенных строительных материалов.Так и должно быть – оно прочное, неприхотливое в обслуживании, огнестойкое и простое в использовании.

Но у бетона есть потенциально фатальный изъян. Если к бетону приложить определенную силу, он быстро сломается.

К счастью, есть способ избавиться от этого фатального недостатка.

С помощью армирования.

В этой статье мы узнаем все об армировании бетона с помощью арматуры.

Начнем!

Почему для бетона нужна арматура?

Большинство бетонов требует армирования.

Почему?

Чтобы понять почему, мы должны понимать различные напряжения, которые могут воздействовать на объекты.

Во-первых, напряжение сжатия . Сжимающее напряжение — это сила, приложенная к объекту, которая укорачивает или сжимает объект. Например, если слон наступит вам на палец ноги, вы испытаете сжимающее напряжение.

Второе напряжение сдвига . Касательное напряжение возникает, когда силы приложены перпендикулярно друг другу.Если вы соедините пальцы вместе и потянете на себя, вы испытываете напряжение сдвига.

Наконец, существует растягивающее напряжение. Растягивающее напряжение — это сила, действующая на объект, которая удлиняет или растягивает этот объект. Когда вы прыгаете в яму для плавания, используя качели на веревке, вы оказываете растягивающее напряжение на веревку.

Бетон хорошо выдерживает сжимающие напряжения и напряжения сдвига, но плохо справляется с прочностью на растяжение. На самом деле, прочность на растяжение бетона составляет всего около 10-15% от его прочности на сжатие.

Здесь на помощь приходит арматура.

Арматура в основном используется для повышения прочности бетона на растяжение.

Что такое бетонная арматура?

Арматура (сокращение от арматурный стержень) представляет собой стальной стержень, который используется для укрепления бетона.

Стержни бывают разной длины и толщины и обычно имеют гребни или выступы, поэтому они хорошо сцепляются с бетоном.

Арматура изготавливается из стали, потому что сталь очень прочная, а сталь расширяется и сжимается почти с той же скоростью, что и бетон, в жаркую и холодную погоду.

Что делает арматура для бетона?

Как мы уже упоминали, бетон хорошо выдерживает нагрузку на сжатие, но плохо выдерживает нагрузку на растяжение.

Это проблема, потому что почти на каждую конструкцию действует более одной силы.

Возьмем, к примеру, классическую балку.

Когда балка испытывает сжимающее напряжение в верхней части, она изгибается. Подумайте об этом — когда балка изгибается от сжимающего напряжения в верхней части, нижняя часть балки растягивается.

Это означает, что нижняя часть балки испытывает растягивающее напряжение.

Таким образом, бетон сам по себе не является хорошим конструкционным материалом.

Но когда мы добавляем арматуру, происходят две вещи.

1 — Когда арматура помещается в бетон, они объединяются, образуя композитный материал. Бетон защищает от напряжения сжатия, а арматура защищает от напряжения растяжения. Этот композитный материал чрезвычайно прочен.

Фактически, предел прочности бетона с арматурой почти в два раза выше, чем у бетона без арматуры.

2 — При размещении арматуры в бетоне перед разрушением бетона выдается предупреждение. Бетон, не содержащий арматуры, считается хрупким.

По мере увеличения давления на бетон без арматуры он внезапно ломается без предупреждения.

С другой стороны, бетон, содержащий арматуру, считается пластичным. Это означает, что по мере увеличения давления в бетоне могут образовываться небольшие трещины.

Это положительно по двум причинам:

Когда необходима арматура?

Нужна ли арматура для каждой бетонной работы?

Не обязательно.

Бетонные поверхности, необходимые для поддержки больших грузовиков, тяжелой техники или постоянного движения, нуждаются в армировании бетонной арматурой. Любой конструкционный бетон, такой как тот, который используется в стенах, обязательно должен включать арматуру.

Если вы заливаете бетонную подъездную дорожку, которая обычно не вмещает больше, чем семейный минивэн, вам может не понадобиться арматура.

Но если есть сомнения, используйте арматуру. Независимо от того, насколько велика или мала заливка бетона, арматура сделает ваш бетон прочнее.По крайней мере, арматура резко уменьшает количество трещин в бетоне.

Вот небольшой бонусный совет: если вы делаете небольшой жилой бетонный стержень, а стержни из стальной арматуры кажутся излишними, вы можете использовать сварную проволочную сетку . Сетка тоньше арматурной арматуры, поэтому она не такая прочная, но стоит дешевле.

8 основных типов арматуры

Мы только что говорили о сварной проволочной сетке как о типе арматуры, которая может быть идеальной для определенных применений.

Возможно, вам интересно: существуют ли другие типы арматуры, идеально подходящие для конкретных ситуаций?

Да, есть!

Арматура из углеродистой стали: Это наиболее распространенный тип арматуры, который иногда называют «черным стержнем». Он невероятно универсален, но подвержен коррозии легче, чем другие типы, что делает его менее чем идеальным для помещений с высокой влажностью или в конструкциях, часто подвергающихся воздействию воды.

Сварная проволочная сетка: Сварная проволочная сетка (WWF) изготавливается из ряда стальных проволок, расположенных под прямым углом и электрически сваренных на всех пересечениях стальных проволок.

Используется при укладке плит на грунт, когда грунт хорошо уплотнен. Более тяжелая сварная проволочная ткань может использоваться в стенах и конструкционных плитах перекрытий. Это обычно используется в дорожном покрытии, водопропускных трубах, дренажных сооружениях и небольших бетонных каналах.

Арматурные стержни с эпоксидным покрытием: Арматурные стержни с эпоксидным покрытием — это просто арматурные стержни, покрытые тонким слоем эпоксидной смолы. Это делает их в 1700 раз более устойчивыми к коррозии, чем стандартные арматурные стержни из углеродистой стали.В результате они часто используются в местах, контактирующих с соленой водой, или там, где неизбежна проблема коррозии.

Единственная проблема заключается в том, что покрытие может быть очень хрупким, поэтому стержни следует заказывать у надежного поставщика.

Особое беспокойство по поводу арматурных стержней с эпоксидным покрытием заключается в том, что они могут подвергаться сильной коррозии в местах повреждения эпоксидной смолы, поскольку вся коррозия сосредоточена в одном месте.

Оцинкованная арматура: Оцинкованная арматура в 40 раз более устойчива к коррозии, чем арматура из углеродистой стали, и ее гораздо труднее повредить, чем арматуру с эпоксидным покрытием.

Это делает его отличной альтернативой арматуре с эпоксидным покрытием, если вам нужно что-то менее подверженное коррозии.

К сожалению, оцинкованная арматура примерно на 40% дороже, чем арматура с эпоксидным покрытием.

Армирующие стержни из листового металла: Армирующие листы обычно используются в плитах перекрытий, лестницах и конструкциях крыш. Армирование из листового металла состоит из отожженных кусков листовой стали, согнутых в гофры глубиной около одной шестнадцатой дюйма с отверстиями, пробитыми через равные промежутки.

Евроарматура: Преимуществом евроарматуры является ее низкая стоимость. Европейская арматура изготавливается в основном из марганца, что делает ее дешевой и легко гнется.

Такая гибкость позволяет легко работать с европейской арматурой в полевых условиях, но, как правило, ее не рекомендуется использовать в районах, подверженных землетрясениям, а также для проектов, требующих существенной структурной целостности арматуры.

Арматура из нержавеющей стали: Арматура из нержавеющей стали довольно дорогая — примерно в восемь раз дороже арматуры с эпоксидным покрытием.

Это также лучшая арматура, доступная для большинства проектов. Однако использование нержавеющей стали во всех случаях, кроме самых уникальных, часто является излишним.

Но для тех, у кого есть причина его использовать, арматурные стержни из нержавеющей стали в 1500 раз более устойчивы к коррозии, чем черные стержни. Арматуру из нержавеющей стали также можно гнуть в полевых условиях, что очень удобно.

Арматура из полимера, армированного стекловолокном (GFRP): Как и углеродное волокно, арматура GFRP не подвержена коррозии — никогда и ни при каких условиях.Однако вы дорого заплатите за это. Эти арматурные стержни могут работать в десять раз дороже, чем арматурные стержни с эпоксидным покрытием.

Если вы прочитали этот список типов арматуры и все еще не знаете, какой из них лучше для вас, это нормально. Хороший вариант — обратиться к производителю арматуры или местному поставщику бетона , чтобы получить совет о том, какой тип арматуры вам следует использовать.

Выбор правильного размера арматуры

Существуют не только разные типы арматуры, но и разные размеры арматуры!

Размер арматурного стержня, используемого в конкретной работе, зависит от необходимой прочности.Как вы можете догадаться, когда требуется большая прочность, используется арматура большего размера.

В США арматурный стержень классифицируется по номеру, отражающему диаметр арматурного стержня в твердом теле. Цифры варьируются от № 3 (самый маленький) до № 18 (самый большой).

Например, размер стержня № 3 соответствует диаметру сплошной секции 3/8 дюйма, размер стержня № 4 соответствует диаметру сплошной секции 4/8 дюйма, а размер стержня № 5 соответствует диаметру сплошной секции 5/8 дюйма. раздел.

Существует три разных размера арматуры, которые необходимы для домашних проектов: обычно № 3, № 4 и № 5.

Размер арматуры №3 используется для подъездных путей и патио. Для стен и колонн следует использовать арматуру №4, так как они требуют большей прочности. Для нижних колонтитулов и фундаментов лучше использовать размер арматуры №5.

Как разместить арматуру в бетоне

Возможно, вы уже точно знаете, какой тип и размер арматуры вам нужен. Если да, то это здорово!

А как насчет размещения арматуры в бетоне?

Должны ли вы бросить его и оставить лежать, как он приземлится? Должен ли он пересекаться? Насколько глубоко в бетоне он должен быть?

Для размещения арматуры не существует формулы.

Многие переменные влияют на то, сколько арматурных стержней необходимо размещать в конкретном приложении и как именно их нужно размещать. Например, какая сила будет действовать на бетон? Будет ли бетон замерзать и оттаивать в зависимости от времени года?

Если вы выполняете простую заливку вокруг дома, ваш местный подрядчик по бетону знает, как разместить арматуру.

Когда речь идет о крупных коммерческих заливках, спецификации арматуры должны быть подробно описаны в чертежах.Инженер тщательно рассчитал, сколько именно арматуры необходимо и на каком расстоянии она должна располагаться, поэтому внимательно следуйте инструкциям.

Суть в том, что если не продумать и не позаботиться о том, как разместить арматуру, структурная целостность бетона может быть нарушена.

Например, если инженер требует, чтобы арматурные стержни располагались через каждые 4 дюйма, необходимо разместить три стержня на каждые 12 дюймов опалубки.

Если стальная россыпь немного неаккуратна и размещает стержни с интервалом 5 дюймов, а не 4 дюйма, прочность продукта снизится на 20%.Да, структурная целостность бетона может быть легко нарушена!

Гибка и резка арматуры

Вы можете точно знать, на каком расстоянии друг от друга размещать арматуру, но что, если ваши стержни слишком длинные? Или что, если конструкция, которую вы создаете, требует изгибов арматуры?

Некоторые арматурные стержни уже согнуты, но в целом вам нужно быть готовым разрезать и сгибать арматурные стержни, чтобы правильно разместить их.

Если у вас есть нужные инструменты, процесс прост.

Для резки арматуры можно использовать несколько инструментов.

Ножовка или болторез — хороший вариант, если арматура достаточно тонкая и вы не режете ее в большом количестве. Если вы выполняете работу значительного размера, угловая фреза с отрезным кругом отлично справится с этой задачей.

При наличии всех перечисленных инструментов важно отметить, что вам не нужно прорезать арматурный стержень целиком. Вам нужно только разрезать его наполовину, и вы можете легко сломать его пополам. Используйте этот небольшой лайфхак, и вы сэкономите себе много времени.

Изгиб арматуры обычно довольно прост. Если вы можете получить достаточный рычаг, вы можете согнуть более тонкие куски арматуры вручную.

Если вы используете более толстую арматуру или у вас нет достаточного рычага, вы можете приобрести устройство для гибки арматуры . Доступно множество вариантов, но пока ваша работа невелика по размеру, более дешевые модели будут отлично работать.

Иногда необходимо связать арматуру. Это целая тема сама по себе, но если вы хотите узнать больше о , связывающем арматурный стержень , обратитесь к местному подрядчику по бетонным работам.

Заключение

Бетон является важным материалом в строительстве. Но без арматуры он теряет большую часть своей ценности.

К счастью, вам не нужно быть инженером-экспертом, чтобы понимать и использовать арматуру. В следующий раз, когда вы захотите залить бетон, вы можете быть уверены в правильности выбора типа и размера арматуры. Вы даже можете чувствовать себя хорошо об установке арматуры.

Если вы ищете арматуру или поставщика готовой бетонной смеси в Северной Индиане, , свяжитесь с нами по номеру в Gra-Rock, чтобы получить нужный вам бетонный стержень .

Чтобы узнать больше из блога, читайте другие наши статьи!

У нас более 15 лет опыта работы с бетоном, и мы хотим помочь вам с любым проектом, над которым вы работаете.

Добавить комментарий

Ваш адрес email не будет опубликован.