Рекомендуемая толщина стен из газобетона: Какой толщины должна быть стена из газобетона

Какой толщины должна быть стена из газобетона

Газобетон является самым популярным строительным материалом, благодаря своим теплотехническим характеристикам, низкой стоимости и высокой скорости возведения стен.

Одним из самых главных вопросов при строительстве дома является следующий – «какой толщины должна быть стена из газобетона». Ведь вопрос об экономии денег на отопление актуален как никогда. Если ответить быстро, то чем стена толще, тем она прочнее, и тем лучше сохраняет тепло. Но не все так просто, важна экономическая целесообразность.

На теплотехнику стены, помимо ее толщины, влияет еще и плотность газобетона. Чем плотность ниже, тем лучше сохраняется тепло. Скорее всего, вы бы хотели просто узнать, какой толщины должна быть газобетонная стена, но помимо всего перечисленного, на выбор толщины стены влияет еще и регион, в котором вы проживаете, так как разница в температурах Сибири и Сочи огромная.

Для средней полосы России считается, что сопротивление стены теплопередаче (по СНИП) должна быть около 3,2 Вт/м•С°.

Для более холодных регионов страны, этот показатель должен быть выше. Отметим, что для частного строительства, соблюдать данные нормы не обязательно.

Такую теплозащиту (3,2 м2 С°/Вт) обеспечивают следующие варианты однослойных газобетонных стен.

  • D300 – 300 мм.
  • D400 – 400 мм.
  • D500 – 500 мм.

Стоит отметить, что на общую тепловую эффективность здания влияют не только стены, но и утепление пола, крыши, перекрытий, армопоясов, перемычек, и окон. Из этого следует, что тепловые потери здания через стены составляют от 30 до 40%. То есть, делать слишком толстые стены не рационально. Нужен некоторый баланс между затратами на толщину стены, и на отопление дома.

Если речь идет о доме постоянного проживания, то при текущих затратах на отопление, оптимальная толщина однослойной стены из газобетона составляет: D400 – 400мм, D500 – 500 мм.

Для дачного дома, который посещают довольно редко, будет достаточно стены толщиной 250-300 мм из газобетона D400.

Толщина газобетона с утеплителем

Теперь что касается многослойных стен, то есть, утепленных. В качестве утеплителей обычно применяют каменную вату, пенопласт и газобетон низкой плотности.

Применяя утеплитель, толщину несущих стен можно уменьшить, добиваясь определенного значения теплового сопротивления. То есть, затраты на газобетон уменьшаться, а на утеплитель повысятся. Таким образом, нужно искать баланс между толщиной газобетона и стоимостью материалов на утепление.

Чтобы вам было проще определиться с толщиной газобетона и утеплителем, мы нашли таблицы по теплотехническим параметрам стеновых материалов.

Сопротивление теплопередаче (R0) газобетона в зависимости от толщины кладки.

Чем значение выше, тем лучше.

Таблица (коэффициент теплопроводности газобетона)

Чем значение ниже, тем лучше.

Для большей наглядности произведем расчеты.

К примеру, вы хотите построить дом в Московской области. Требуемое значение по тепловому сопротивлению в Москве R=3. 28. Дом у вас из автоклавного газобетона D500 толщиной 300 мм, и вам нужно определиться с толщиной утеплителя.  

Толщину газобетонной стены (0.3 м) делим на коэффициент теплопроводности газобетона D500 (0.14).  

Тепловая сопротивляемость стены R = 0.3/0.14=2.14 м2·°C/Вт.

Далее от требуемого значения R(3.28) отнимаем полученное тепловое сопротивление R (2.14). 

3.28-2.14=1.14.

Значит тепловая сопротивляемость утеплителя должен быть 1.14 м2·°C/Вт.

Коэффициент теплопроводности минваты = 0.04.

Умножаем 1.14 на 0.04 = 0.0456 метра, то есть 45 мм.

То есть, нужная толщина утеплителя у нас получилась 50 мм.

Таким образом, вы можете рассчитать требуемое утепление для любой стены.

Нужно ли утеплять газобетон?

Пример расчета затрат на отопление дома

  • Дом 10 x 10 метров из газобетона D400, толщиной 400 мм.
  • Высота потолков – 2.5 м.
  • Площадь стен – 230 м2.
  • Площадь пола, потолков и окон — 220 м2.
  • На улице -20, в доме + 20.
  • Разница температур составляет 40 градусов.
  • Тепловое сопротивление газобетонных стен – 3.4 м2·°C/Вт
  • Среднее тепловое сопротивление пола, потолков и окон – 3 м2·°C/Вт.
  • 230/3.4 * 40 = 2700 Вт/час.
  • 220/3*40 = 3000 Вт/час.
  • То есть за один час, на отопление дома будет потребляться почти 6 Квт энергии.
  • За сутки – 144 кВт. 
  • 1 Квт энергии стоит в среднем 3 рубля.
  • За месяц на отопление уйдет 144*30= 4320 кВт. 
  • Месячные зимние расходы на электрическое отопление примерно 10-15 т.р.

Но это, если температура будет постоянно стабильной, в реальности же, температура постоянно меняется. Весной и осенью затраты на отопление сократятся в несколько раз. В любом случае, такие расчеты покажут вам примерную картину по стоимости отопления дома электричеством.

Выбор толщины стен из газобетона

Выбор толщины стен и перегородок из газобетона является одним из ключевых моментов при строительстве загородного дома.

Для начала перечислим основные пункты, на которые стоит обратить внимание при выборе толщины стен из газобетона, а в конце подведем итоги и дадим полезные рекомендации:

Поэтому при выборе толщины наружных стен из газобетона стоит учесть тот факт, что помимо собственного веса наружным стенам и некоторым из внутренних перегородок придется также нести дополнительные нагрузки от вышележащих конструкций дома.

К ним относятся перекрытия между первым и вторым этажами, покрытие второго этажа, а также нести тяжесть всей стропильной системы и кровли.

Потому такие стены — труженики и называются несущими.

Все прочие стены и перегородки из газобетона в вашем доме называются самонесущими, поскольку несут нагрузку исключительно от своего собственного веса.

«Наружные стены должны держать тепло

Означает, что Вы должны тратить тепловую энергию и, как следствие, Ваши деньги на обогрев исключительно внутреннего пространства дома, а не отапливать улицу.

Для этого толщина наружных стен из газобетона должна удовлетворять нормативным теплотехническим требованиям, предъявляемым для региона строительства.

«Хорошая звукоизоляция — это хорошо!

Данный параметр особенно важен для выбора толщины внутренних перегородок из газобетона.

Зачастую все внимание уделяется наружным и внутренним несущим стенам, а для межкомнатных перегородок выбираются либо самые тонкие блоки, либо и вовсе, ради экономии, устраиваются гипсокартонные сооружения.

Да, несущие стены из газобетона это важно, конструктив и всякое такое, но!! Вам же жить в этом доме!

Так зачем ради незначительной разовой экономии лишать себя таких приятных мелочей, как: не слышать лишних звуков из туалета; не думать, что за стеной могут проснуться дети от включенного телевизора, да и мало ли еще чего.

А всего-то нужно выбрать для внутренних перегородок из газобетона блок, толщиной, к примеру, 200мм.

Можно возразить: Толстые перегородки съедают площадь дома. Но, друзья, вы строите себе дом!

Мало площади – расширьте немного фундамент, это пустяковое разовое вмешательство в проект. А вот приятные мелочи – это на всю жизнь.

«Теплотехнический расчет стен из газобетона

Идеальным решение при выборе толщины стен и перегородок из газобетона будет для вас заказать Теплотехнический расчет ограждающих конструкций.

Если Вы уже приобрели проект своего будущего дома, то обратите внимание на то, чтобы данный расчет в нем присутствовал.

Если вдруг его в проекте не окажется – смело требуйте его у проектировщиков, поскольку он является обязательным при разработке конструктивной части проекта дома.

Если вы строите свой дом без разработанного проекта — не стоит беспокоиться! Теплотехнический расчет ограждающих конструкций из газобетона вам сделают в любой проектной организации.

И для этого даже не придется заказывать полностью проект дома. Достаточно будет назвать основные размеры дома (толщину и высоту), вид отделки наружных и внутренних несущих стен из газобетона, тип перекрытий и вид выбранной Вами кровли.

Результатом этой не хитрой работы будет являться Отчет, в котором Вам будут даны подробные рекомендации по конструктивно-необходимому выбору толщины стен и перегородок из газобетона.

«Рекомендации по выбору толщины стен из газобетона

Если же вам по ряду причин некогда или неудобно заказывать теплотехнический расчет, тогда вам стоит знать следующие рекомендации:

В тех климатических условиях, в которых раскинулся славный город Санкт-Петербург и окружающая его Ленинградская область рекомендуемая толщина наружных стен из газобетона без дополнительного утепления составляет 375мм.

Блок из газобетона с такой толщиной не требует дополнительного утепления и выдерживает любые, даже самые тяжелые типы перекрытий и кровли, включая кровлю из натуральной керамической черепицы.

Наружную стену из газобетона с толщиной блока 300мм рекомендуется утеплять с наружной или внутренней стороны любым типом утеплителя, толщиной 50мм.

Наружную стену из газобетона с толщиной блока 250мм рекомендуется покрывать слоем утеплителя, толщиной не менее 100мм. Можно разделить толщину утеплителя и сделать 50мм с наружной стороны стены и 50мм с внутренней.

Наружную стену из газобетона с толщиной блока 200мм производители рекомендуют утеплять слоем, не менее 150 мм с любой из сторон стены.

Важно! Производители не рекомендуют использовать для несущих наружных и внутренних стен из газобетона блоки, толщиной менее 200мм!

Несоблюдение данной рекомендации может повлечь за собой неприятные последствия, когда конструкция тонкой несущей стены не выдерживает нагрузки от кровли, допустим, зимой, под толстым слоем снега и попросту обрушивается.

Несущие стены из минимально допустимых газобетонных блоков толщиной 200 мм рекомендуется использовать на одноэтажных постройках, гаражах, хозяйственных блоков и подобных «неответственных» сооружениях.

«Нужная заметка

Каким бы ни было Ваше решение при выборе толщины стен и перегородок из газобетона – важно помнить, что любые стены стоят на фундаменте.

И именно этому, самому важному конструктивному элементу дома предстоит долгие и долгие годы бережно держать на себе весь Ваш дом.

Кстати, забегая вперед, откроем еще одну тайну: именно на грамотном выборе фундамента можно сэкономить целую кучу Ваших денег.

Подробно о том, как важно правильно сделать выбор фундамента для дома из газобетона читайте здесь.

«Желаем Вам удачи в строительстве!

Несущие стены из газобетона: размеры перегородок и толщина

В последнее время газобетон резко набрал популярность в России. При строительстве стен и перегородок частных домов люди в большинстве случаев отдадут предпочтение этому материалу.

Оглавление:

  1. Характеристики и классификация
  2. Толщина стен
  3. Стоимость

Состав

Газобетон — это близкий родственник ячеистого бетона, с той лишь разницей, что в него добавляют алюминиевую пудру, а также используют в качестве заполнителей кварцевый песок и известь. Свое название получил из-за своей пористой структуры, которая образуется при застывании пузырьков в бетонной смеси, а они появляются благодаря реакции алюминиевой пудры с щелочным раствором.

Наличие пор позволяет достигать хорошего соотношения массы/прочности/теплоизоляции, однако снижая звукоизоляцию (35 – 37 дб). Небольшой вес и идеальная геометрическая форма способствует возведению дома в короткие сроки, снижая стоимость услуг строителей. В зависимости от класса его прочность на сжатие колеблется в диапазоне 1,5-3,5 кг/см2 со средним коэффициентом теплопроводности 0,12 Вт/м°С. Стены могут похвастаться также и отличной огнеупорностью: I и II степень пожаробезопасности.

Виды блоков

Главную роль при выборе играет назначение помещения. С повышением толщины и плотности увеличивается уровень звукоизоляции, снижается теплопроводность и пропорционально возрастает стоимость. Размеры газобетонных блоков для несущих стен должны быть не меньше 440 мм (толщина), обладать прочностью не ниже марки B2,5 и плотностью не ниже 500.

В зависимости от прочности газобетон делится на множество классов от B0,5 до B15 (больше — лучше). Низкий показатель (до B2) означает, что стена не может быть частью несущей конструкции, а высокий (например, 10) позволит выдерживать до 10 этажей при правильно подобранной толщине. Регламенту прочности соответствует положение СТ СЭВ 1406.

Также стоит обратить внимание на следующие показатели:

  1. D – плотность (от 300 до 1200 и выше). Несущие конструкции сооружают из конструкционного газобетона: D от 1000. Внутренние стены — из теплоизоляционного: D до 500. Визуально определить высокую плотность можно по размеру пор (чем они меньше — тем плотнее).
  2. М — альтернативная марка мерила прочности (без учета СТ СЭВ 1406). Для возведения несущих перегородок используется М100-200.
  3. F — стойкость к перепадам температур. Число возле F (например, F15) указывает на примерное количество циклов замораживания и оттаивания, которые способен перенести блок без потери качества и разрушения. Морозостойкость — является одной из слабых сторон элементов любых размеров.

Отдельный параметр — способ твердения: он бывает автоклавным и неавтоклавным. В автоклаве происходят реакции гидроксида кальция с оксидом кремния с образованием двухосновным гидросиликатов. На деле это означает в несколько раз более быстрое застывание бетона. Если убрать этап с химическими реакциями — получится неавтоклавный газобетон. Он более быстр и лёгок в производстве, однако его время застывания может достигать нескольких недель.

Как определиться с толщиной блока стены?

В частном доме все зависит от назначения помещения. Чем выше плотность газоблока, тем лучше теплопроводность и несущие характеристики и выше цена. Оптимальная конфигурация для частного дома выглядит следующим образом:

  1. Для гаража, летней кухни, дачи, которым сохранять тепло не критично, можно выбирать элементы, только опираясь на прочность: от D300 и выше и B до 2,0. На толщине экономить не стоит: она должна быть не меньше 200 мм даже для здания в теплом климате. Лучше сделать перегородки из легкого газобетона, а внешние стены — из плотного.
  2. Несущий каркас малоэтажного сооружения рекомендуется выполнить из конструкционно-теплоизоляционного газобетона: марки от D500 до D900 и B от 2 до 4. Второй параметр зависит от количества этажей. С повышением плотности (D) возрастает теплопроводность — лучше выбирать более низкий из возможных показатель D (например, 500). Рекомендуемая толщина равняется 300 мм.
  3. Межкомнатные стены лучше выполнять из газобетона с низкой плотностью (D до 300) и прочностью (B до 1). Толщина подойдет минимальная: до 150 мм.

При возведении легких одноэтажных зданий для экономии можно закупать блоки толщиной 100 мм, но учтите, что в таком случае температура внутри помещения практически не будет отличаться от той, что за окном.

Обратите внимание: официальный российский стандарт толщины несущей стены — 440 мм. Этот показатель высчитан из теплотехнического, изоляционного и конструкторского расчета и является универсальным для большинства случаев малоэтажного строительства. Для перегородок лучше выбрать толщину в несколько раз меньше (например, 100 м).

Особое внимание стоит уделить фундаменту здания. Рекомендуется отдать предпочтение ленточному монолитному типу, дабы защитить дом от усадки, а стены и перегородки — от деформации и появления трещин.

Стоимость газоблока в Москве

Цены, представленные в таблице, могут сильно варьироваться, зависимо от производителя и отдельных характеристик товара.

Рассмотрим расценки на популярный газоблок автоклавного твердения D400 (M10):

Поставщик, производительРазмер блока (ширина, длина, высота), ммСтоимость за 1 м3, руб
ВЕНДОР, YTONG200, 250, 6254 740
Брик Парк, YTONG200, 250, 6254 750
СтройПартнер, Bonolit200, 300, 6253 250
ВЕНДОР, YTONG250, 375, 6254 890
СтройПартнер, CUBI200, 375, 6252 700
Брик Парк, еЗСМ200, 300, 6253 600
СтройПартнер, PORITEP150, 250, 6253 080
Хебель-Блок, YTONG250, 300, 6254 750
Хебель-Блок, YTONG200, 250, 6254 600

Выгоднее делать заказы массово оптом и покупать блоки меньшего размера — так можно достичь экономии до 30% денежных средств. Этот материал также на 20% экономнее кирпича и шлакоблока. Рассмотренный выше блок автоклавного твердения D400 подходит для любых целей малоэтажного строительства — от возведения перегородок до несущего каркаса.


 

Толщина стен из газобетона: нормативы, технология блочной кладки

То, какой толщины должна быть стена из газобетона, зависит от нескольких параметров и в первую очередь, это требования, которые предъявляются проектом к теплоизоляционным характеристикам здания, а также от размеров самих блоков. Кроме того, стена может быть несущей, самонесущей или просто перегородкой, от чего тоже зависит толщина, кроме того, есть способ укладки или геометрическое положение, в котором будет находиться блок при возведении конструкции. Обо всём этом речь пойдёт ниже, а в качестве дополнительного материала вы посмотрите видео в этой статье по данной теме.

Газобетонные блоки

Газобетонные блоки

Примечание. Газобетонные блоки представляют собой разновидность искусственного камня из лёгкого ячеистого бетона, в массе которого равномерно распределены поры диаметром 1-3 мм.
Хотя материал и является одним из видов каменной пены, его нельзя путать с пенобетоном, так как тот имеет другие технические характеристики.

Технические характеристики и область применения

Самый популярный стеновой блок 600x200x100 мм

  • По сложности обработки газобетонные блоки можно сравнить с деревом — его легко пилить сверлить и гвоздить.
  • По сравнению с пенобетоном, он имеет более высокую теплоизоляцию и прочность, к тому же, для его изготовления расходуется меньше цемента.
РазмерыКоличество на поддоне (штук)Объём блока (м3)Объём поддона (м3)Масса блока (кг)Масса поддона (кг)
600x200x1001500,0121,86,2-7,8940-1170
600x200x1501000,0181,89,4-11,7940-1170
600x200x200700,0241,68125-15,6880-1090
600x250x200600,031,815,6-19,5940-1170
600x300x200500,0361,818,7-23,4940-1170
600x375x200400,0451,823,4-29,3940-1170
600x499x200400,0481,9224,9-31,2995-1250

Таблица размеров и объёмов газобетонных блоков UDK

Блоки AEROC (CLASSIC)

РазмерыСредняя плотность (кг/м3)Минимальный класс прочностиМорозостойкость (минимальное количество циклов)Теплопроводность (Вт/м2*t⁰C)Объём (м3)Масса (кг)
600x200x75500В2,5F1000,120,0095,9
600x200x100500В2,5F1000,120,0127,9
600x200x200500В2,5F1000,120,02415,9
600x200x250500В2,5F1000,120,0319,9
600x200x300500В2,5F1000,120,03623,9
600x200x375500В2,5F1000,120,04529,8
600x200x400500В2,5F1000,120,04831,9
600x250x75500В2,5F1000,120,0117,3
600x250x100500В2,5F1000,120,0159,9
600x250x200500В2,5F1000,120,0319,9
600x250x240500В2,5F1000,120,03623,9
600x250x300500В2,5F1000,120,04529,9
600x250x365500В2,5F1000,120,05536,6
600x250x375500В2,5F1000,120,05637,2
600x250x400500В2,5F1000,120,0639,9

Таблица параметров газобетонных блоков AEROC (CLASSIC)

  • Для изготовления газобетонных блоков используют кварцевый песок, специальные определённым газообразователи и, конечно же, цемент, а кроме того, туда могут быть добавлены известь или гипс, а также промышленные отходы в виде золы и шлака доменных печей. Пузырьки газа возникают в результате взаимодействия мелкодисперсного металлического алюминия с известковым раствором или высокощелочным цементом с газообразователем — это приводит к образованию газообразного водорода, вспенивающего всю массу. В производстве, как правило, применяются алюминиевые пасты и суспензии, потому что пылевидный алюминий непрактичен для создания раствора — сильно пылит.
  • Примечательно, что естественная радиоактивность газобетона гораздо ниже, нежели у обычных тяжёлых бетонов — это объясняется тем, что в его составе отсутствуют щебень и слюда — и одно и другое является составной частью природного гранита, имеющего повышенную природную радиоактивность.
  • Популярность такого материала настолько высока, что по статистическим данным на 2014 год его производством занимались 50 стран на 240 заводах и произвели его в общем 60 000000 м3.

Нормативы по толщине

Стена из блоков

В настоящее время ячеистый бетон набрал большую популярность, и толщина несущих стен из газобетона в один блок позволяет совершать строительство, как одноэтажных, так и малоэтажных (до 5 этажей) зданий. Но при определении высоты конструкции следует обращать внимание на класс прочности бетона, так как от высоты здания будет зависеть нагрузка, которую придётся выдерживать блокам. Также большую роль при этом играет потребность в теплоизоляции и, естественно, чем толще стены, тем они теплее.

Количество этажейНеобходимые марки бетона для несущих и самонесущих стен
Прочность на сжатие для автоклавных блоковРаствор для кладки (самая низкая марка)Морозостойкость автоклавных блоков
1-2 этажаВ2,0М50F25*
До 3 стажейВ2,5М75F25
До 5 этажей (до 20м для несущих и до 30м для самонесущих стен)В3,5М100F25

*

Пояснение. Значение числа после буквы F обозначает количество циклов замерзания/оттаивания материала.
Согласно СНиП II-22-81значения F25 достаточно на 50 лет для эксплуатации зданий с повышенной влажностью, а если в помещениях нормальная влажность, то инструкция указывает на то, что минимальный срок их эксплуатации -100 лет.

Таблица, которая расположена вверху, всего лишь список цифр, понятных в большинстве случаев лишь проектировщикам, а вот на практике это будет выглядеть примерно так: минимальная толщина стены из газобетона для несущих стен и колонн 600 мм, а для самонесущих — 300 мм.

При этом подразумевается, что будут использоваться блоки толщиной от 200 мм и более. Но в данном случае рассматривается только лишь механические требования и речь вовсе не идёт о жилых зданиях, где от стены требуются определённые теплоизоляционные свойства.

А вот то, какая толщина стены из газобетона для жилого здания — определяет СНиП 23-02-2003 — здесь в расчёт уже берётся тепловая защита. К тому же, в таких случаях применимо снижение нормируемого теплового сопротивление конструкции, в зависимости от климатического положения региона и удельному расходу топлива внутри здания. Например, для Москвы и Московской области значение теплопередачи наружных стен должно быть Rreq=3,13 м2t°C/Вт, но в то же время его можно понизить до Rmin=1,97 м2t°C/Вт (Rmin=0,63*Rreq=0,63*3,13 м2t°C/Вт=1,97 м2t°C/Вт), но это лишь в том случае, если здание достаточно отапливается, то есть, соблюдаются нормы температурного перепада между наружным состоянием температуры и внутренней поверхностью стен (п. 5, 13 СП 23-02-2013).

Технология блочной кладки

Монтаж отсечной гидроизоляции с утеплителем на цоколь перед кладкой

Кладка газобетонных блоков обычно предусматривается на цоколь ленточного фундамента, на плитное основание, а также на ростверк столбчатого или свайного фундамента — в любом случае основой должна служить лента, ширина которой не менее толщины возводимой на ней стены. Перед укладкой предусматривается монтаж отсечной гидроизоляции (иногда с утеплением, как на фото вверху) для того чтобы свести к минимуму влияние влажностных и температурных характеристик грунта на здание.

Но такая предосторожность необходима лишь в тех случаях, когда не производилась гидроизоляция и утепление самого фундамента, впрочем, некоторые дублируют такую процедуру и это не может быть лишним.

В качестве отсечной гидроизоляции можно использовать обычный рубероид, укладывая его на слой раствора, либо более современные материалы, такие как гидроизол или рубемаст, а также плотную упаковочную целлофановую плёнку.

В качестве утеплителя используют минеральную вату (не более 20 мм толщиной, чтобы подушка не оказалась слишком мягкой) и её опять перекрывают гидроизоляцией — только не следует использовать шлаковую вату, так как она содержит частички железной руды, которая ржавеет при взаимодействии влаги с кислородом.

Монтаж первого блока

Первый ряд обычно кладут не на клей, а на цементно-песочный раствор толщиной не менее 20 мм — это позволяет нивелировать общий уровень в случае погрешности на цоколе или скрыть перепады гидроизоляционного слоя. Первый блок ложится на угол и от него в две стороны начинается кладка, но не по всему периметру, а всего на несколько блоков вверх и в стороны, чтобы создать замковое соединение.

Все последующие ряды лучше всего класть на специальный раствор типа «YTONG» или обычный плиточный клей — тогда толщина шва при кладке газобетона получится не более 5 мм.

Растяжение кладки а) неперевязанное сечение; б) перевязанное сечение; в) изгиб перевязанного сечения

Вне зависимости от того, какая на данный момент толщина стены, ГОСТ 5781-82 и ГОСТ 10884-94 рекомендуют производить поперечное армирование кладки для обеспечения всей конструкции необходимой прочности на растяжение разрыв и излом.

Для максимальной защиты здания на сопротивление подобным механическим нагрузкам, армирование осуществляется в первом, а затем, в каждом четвёртом ряду возводимой стены, но в обязательном порядке в нижней и верхней части оконных и дверных проёмов. При строительстве одноэтажных зданий высотой до 3м, армирование следует производить, как минимум, на двух уровнях возводимой стены, если в ней отсутствуют какие-либо проёмы.

Армирование кладки

При строительстве несущих стен лучше всего использовать лотковые (П-образные) блоки — там уже есть готовая трасса для укладки арматуры — такой камень у нас продаётся от производителя AEROC. Но в тех случаях, когда вы укладываете обычный блок типа UDK, то такие канавки вам придётся проштробить своими руками — сделать это достаточно легко, так как ячеистый бетон хорошо поддаётся обработке.

Изгиб штроб на углах здания

Для армирования обычно используют прут типа AIII сечением 8-10 мм или проволоку-катанку, но в любом случае её толщина не должна быть менее 6 мм. На углах здания (замках) лучше всего делать плавные изгибы канавок, как это показано на верхней фотографии — так вы сможете увеличить конструкционную прочность коробки.

Величина штробы должна несколько превышать сечение арматуры, чтобы в канавку вместился также клеевой раствор, и в зоне металла не оставалось кислородных пазух — это предотвратит ржавление материала.

Утепление газобетона

Если при строительстве дома у вас выдержана рекомендуемая толщина газобетона, то это ещё не означает, что вам там будет тепло, особенно, если вы живёте в северных регионах России — ведь 60 см, это всего лишь параметр прочности для несущей стены. Следовательно, вам придётся утеплять здание снаружи или изнутри, хотя первый вариант значительно лучше и удобнее с технической точки зрения.

Для термоизоляции обычно используется три вида материалов — это минеральная вата, пенопласт или экструдированный пенополистирол.

Крепление утеплителя ударным грибком-дюбелем

Обычно любой тип утеплителя фиксируют ударными грибками-дюбелями из расчёта 4-5 штук на метр квадратный, но если это пенопласт или экструдированный пенополистирол под декоративную штукатурку, то его дополнительно закрепляют плиточным клеем, намазывая его по периметру и центру панели.

К тому же термоизоляция может укладываться, как непосредственно на стену, так и между профилей обрешётки — всё зависит от типа облицовочного материала, которым вы будете отделывать здание. Например, если это будет сайдинг, то утеплитель можно попросту наколоть на кронштейны для профилей каркаса и лишь в некоторых местах для надёжности зафиксировать дюбелями.

Блок режется ножовкой с крупными зубьями

Примечание. Следует отметить, что резка железобетона алмазными кругами и алмазное бурение отверстий в бетоне не имеют с газобетоном ничего общего, так как последний с лёгкостью обрабатывается обычными инструментами.

Заключение

В заключение следует сказать, что, несмотря на то, что цена газобетона достаточно умеренна, всё равно не следует делать кладку такой толщины, чтобы полностью обеспечить потребности термоизоляции помещения. Гораздо проще и эффективнее прибегнуть к монтажу дополнительного утепления здания с последующей облицовкой.

оптимальная и рекомендуемая, какой должна быть, видео-инструкция по монтажу своими руками, фото


Строительство загородного дома всегда несет за собой множество растрат, усилий и расчетов, которые, однако, не в силах выполнить все желающие. Ведь мало хотеть построить дом из пенобетонных материалов, необходимо знать особенности и тонкости рабочего процесса. В данной статье мы рассмотрим, какая толщина стен из пеноблоков требуется для жилого дома, а также возведем ее самостоятельно, по всем правилам и стандартам.

Обычно пенобетон в «соло» не используется, практически всегда его отделывают кирпичом

Характеристики материала

Прежде чем определиться, какой толщины должна быть стена из пеноблоков, давайте ознакомимся с преимуществами данного материала:


Полезная таблица сравнения характеристик современных строительных материалов

  • Высокая прочность на сжатие – допустимые показатели от 3,5 до 5 Мпа. Все это говорит о том, что из пеноблоков можно строить двух, а то и трехэтажные дома.
  • При столь легком весе, пенобетонный блок имеет низкую плотность (в зависимости от качества материала – от 400 до 1600 кг/м), в 2-3 раза ниже, чем у керамзита.
  • Пеноблок может сравниться с древесиной своей теплопроводностью, а в сравнении с керамическим кирпичом, он даже имеет преимущество. Стена из глиняных блоков толщиной в 60 см сохраняет тепло так же, как и пенобетонная кладка в 200 мм.
  • Стоит отметить и звукоизоляционные свойства данного материала, вам не потребуется дополнительная защита от шума, если блоки будут качественно уложены.
  • Ну и, конечно же, цена пеноблоков не сравнится ни с чем. Данное изделие, даже с учетом транспортных услуг, обойдется вам дешевле всех других строительных материалов.

Напоследок можно указать на доступность кладки материала, то есть, вы своими руками, без специально подготовки, сможете возвести дом из пенобетонных блоков.


Изделия отличаются между собой не только плотностью и габаритами, но и способом фиксации

Примечание! Не забывайте, что слишком заниженная стоимость пеноблоков не является знаком качества, скорее всего, это второсортные продукты, которые были изготовлены из отходов качественного сырья. Поэтому старайтесь экономить с умом.


По внешнему виду материала можно сказать о его качестве

  • Размеры пеноблоков для перегородок
  • Размер пеноблока

Достаточно ли 40 см стены пенобетона и нужен ли утеплитель?

Это вечный вопрос и тема для баталий на форумах. Я собирал информацию касательно газобетона. По тепловым свойствам он идентичен пенобетону. Вот что насобирал я:

  1. Есть люди, которые построили себе дома из газобетона 40см и живут без утепления и не жалуются
  2. Есть те, кто построил 30см и жалуется
  3. 40см пористого бетона D400-500 это не супертёплый термос. Но это и не холодный дом. По пятибальной это твёрдая 4.
  4. По СНИПам 40см – достаточная толщина
  5. Ньюанс. Скажу о газобетоне. О пенобетоне не знаю, но предполагаю, что так же. Газобетон становится заданной влажности через 2 сезона. Это слова Глеба Грина — специалиста номер 1 в России по газобетону. А он знает что говорит. То есть нам нужно две зимы, чтобы стена высохла и имела такую же теплопроводность, как указано в таблице. До этого периода дом без утепления будет холодный. Возможно этим объясняется часть реплик на форуме в стиле «построил 40см без утепления – холодно».

Толщина стен – вопрос с подвохом

В поисках того, какую выбрать толщину для стены из пеноблоков, вы можете наткнуться на множество различных доводов и суждений, большинство из которых окажется недостоверной информацией.

Чтобы обезопасить себя и найти верное решение, мы опишем несколько особенностей, от которых следует отталкиваться:

  • Во-первых, важно понять, насколько низко опускается в зимнее время температура. В районах, где зима очень суровая, безусловно, требуются утолщенные стены с дополнительной теплоизоляцией.
  • Во-вторых, определиться с утеплителем – будете ли вы его монтировать или обойдетесь обычной штукатуркой. К примеру, для домов, где толщина стены из пеноблока 300 мм, лучше добавить теплоизоляционный материал толщиной 50-100 мм.
  • В-третьих, утеплитель действует не только как материал, который сдерживает тепло, но он также препятствует воздействию ультрафиолетовых лучей на пеноблок.

К сведению! На выбор пенобетонных изделий должна повлиять и их плотность, которая различается, чем выше плотность, тем дороже материал.

Плюсы

  1. Долговечность однослойной конструкции. Никаких разрушающихся с годами пенопластов, сползающей и мокнущей ваты, поедаемых мышами утеплителях. Стена и только.
  2. Ощущение надёжности. Не знаю как вам, но меня терзают странные чувства, когда я стою перед окном в каркаснике или сипе со стеной в 15 см толщины. Тонкое чувство ненадёжности остаётся даже если понимаешь, что это очень крепкая конструкция. Поэтому наличие подоконника и привычной толщины стены — это, при прочих равных, всё же хорошо.
  3. Экономия на утеплителе (работа + материал). О том сколько стоит навесной фасад с утеплением подробнее можете поискать сами.

Определяем толщину

Теперь давайте сделаем вывод из вышесказанного, рекомендуемая толщина наружных стен из пеноблоков для районов с умеренной зимой – 300 мм с плотностью D600 и слоем теплоизоляции.

  • Это, так сказать, и есть золотая середина, которая подходит практически для всех регионов России. Дополнительная теплоизоляция снаружи дома позволяет переживать зиму, не ощущая холода в жилом помещении.
  • Что касается прочности, то даже если дом планируется двухэтажный, то максимальная нагрузка на стены первого этажа не превысит 20 тонн (вместе с кровлей, плитами перекрытия и обстановкой). А из технических характеристик нам известно, что каждые 100 мм пеноблока способны выдержать нагрузку до 10 тонн.

Важно! Единственное, на что стоит обратить внимание – прочность и устойчивость к физическим воздействиям. 300 мм это достаточно мало, такую стену легко пробить кувалдой, а вот 400 мм блоки уже более плотные и прочные.

С другой стороны, можно наглядно на примере выяснить какая толщина стены из пеноблоков должна быть.

Расчеты по теплопроводности

Вы должны знать, что сопротивление внешней стены теплопередачи (со всеми отделочными материалами) должно превышать 3,5 градуса на м2/Вт.

Чтобы определить толщину, давайте на основе различных плотностей пенобетона рассмотрим этот процесс более внимательно:

  • Из технических характеристик можно узнать, что блоки D600 и D800 имеют коэффициенты 0,14 и 0,21 град*м2/Вт соответственно.
  • В качестве отделочных материалов используется облицовочный кирпич (0,56 град*м2/Вт) и декоративная штукатурка (0,58 град*м2/Вт).

Приступаем к расчету:

  • Для начала определимся с толщиной кирпичной кладки и штукатурки, обычно (для фасадов без теплоизоляционных материалов) кирпич укладывается в два ряда, то есть – 120 мм.
  • Теперь переведем это в метры и разделим на коэффициент теплопроводности облицовочного материала, получается сопротивление равное 0,21.
  • То же самое проделываем со штукатуркой и в результате сопротивление равно 0,03.

Теперь осталось подставить все наши числа в простую формулу:

  • Пенобетон с плотностью 600 = 3,5 (суммарное сопротивление теплопередачи) – 0,21 (кирпич) – 0,03 (штукатурка) и все это умножается на 0,14 (коэффициент пеноблока). В результате получаем около 450 мм (не забудьте перевести из метров). Именно такой толщины должна быть стена с вышеописанными материалами.
  • Пенобетон с плотностью 800 – (3,5 – 0,21 – 0,03) * 0,21 = около 680 мм.

Как видите, во втором случае потребуется стена более толстая, значит, и расходов будет больше. С другой стороны, добавьте сюда пенополистирол (самый обычный утеплитель) и толщина фасада значительно сократиться.

Важно! Оптимальная толщина стен дома из шлакоблока высчитывается аналогичным образом, с одним но – необходимо учитывать и влагозащитный материал, так как без него данный материал потеряют прочность. В среднем стены сооружений из шлакоблока, в районах с возможными похолоданиями до – 30 градусов, возводят толщиной в 70-80 см.


Шлакоблоки не отличаются приятным внешним видом, но они обладают хорошими теплоизоляционными свойствами

Минусы 40см стены

  • Риски, что по итогу дом окажется не таким тёплым как хотелось бы.
  • Толстые стены отнимают площадь. Давайте посчитаем сколько площади мы потеряем пятно застройки 8х10 метров. Периметр 8 + 8 + 10 + 10 = 36м. Толщина 0,4м х 36м = 14,4м2. Если совсем точно, то ещё нужно отнять углы, которые мы посчитали по два раза. Это минус 3 угла х (0,4 х 0,4) = 0,48м2. Каркасник или сип в таком случае отнимут лишь 5м2. Итого на 80 м2 площади застройки у нас на внешние стены уходит 14м2. На 10м2 больше каркасника и сипа. Грубо говоря – минус одна комната.
  • Больше материала – больше затраты на него. На наружные стены одноэтажного дома 10х10м нужно около 50 кубометров бетона. Однако это не такой важный аргумент. Доля затрат на материал наружных стен в доме не более 15%. Подробнее об этом есть на нашем сайте.

Строительный процесс – возводим стены

А теперь, как и обещали, инструкция возведения наружных стен с учетом всех факторов, воздействующих на материал:

  • Для начала необходимо подготовить фундамент к работам: очистить от пыли и грязи, выровнять, если существуют неровности.
  • После, подсчитать необходимое количество материалов: пеноблоков и клеевого раствора. Чтобы вам было проще ориентироваться, в одном кубическом метре около 30 блоков размерами 200х300х600 мм (мы их выбрали, чтобы толщина стен была 300 мм). Расчет клея можно брать примерным – около 30 кг на 1 м3 стены, поэтому главное – узнать общую площадь возводимых стен.

Примечание! Определиться с количеством материалов лучше на стадии проектирования, чтобы избежать лишних затрат, учесть все моменты, вплоть до оконных проемов и внутренних перегородок.


Над проемами обязательно устанавливаются крупногабаритные железобетонные блоки

  • Когда все материалы и инструменты на месте, можно начинать заготавливать раствор, если вы, конечно, не купили готовую смесь.
  • Первоначально клей наносится на поверхность пеноблока, который кладется на фундамент или плиту перекрытия.
  • Перед тем, как ляжет соседний блок, хорошенько клеем промазывается торец, чтобы между изделиями не было пустотных щелей.


Используйте зубчатый шпатель, как показано на фото

  • Чтобы устранить лишний клей из-под пенобетона, следует по нему постучать киянкой.
  • Второй ряд выкладывается со сдвигом материалов, чтобы вертикальные стыки не совпадали, для этого необходимо распилить один блок пополам и начать укладку с половинки.


Есть блоки, у которых на горизонтальной поверхности есть выемка для раствора – повышается сцепление, либо такую выему можно сделать самому

Так как пенобетонные изделия легко обрабатываются, никаких проблем с проделыванием отверстий для оконных и дверных проемов у вас не должно возникнуть.

Теперь осталось отделать и утеплить фасад пеноблочного дома:

  • Для отделки кирпичом следует в пенобетонной стене, между блоками, закрепить несколько прутьев тонкой арматуры, это необходимо для того, чтобы соединить внутреннюю стену с кирпичной кладкой. Однако прежде требуется при помощи тарельчатых гвоздей установить пенополистирольные плиты.
  • Если же вы используете только штукатурку, то первоначально, поверх готовой стены, следует закрепить армирующую сетку. Потом необходимо нанести толстый слой теплоизоляционной штукатурки, чтобы она скрыла под собой сетку. Финишный слой – декоративная отделка, защищающая внутренний слой от ультрафиолета и влажности.


Первый слой штукатурки необязательно выравнивать в ноль

Советы специалистов

Рекомендации

  • если кладка ведется на цементный раствор, то его готовят небольшими порциями;
  • использовать клей можно не позже 10-15 минут, после его нанесения на блок;
  • работу необходимо выполнять при температуре воздуха от 5 до 25 градусов тепла, если она выше, то надо обязательно увлажнять блоки;
  • для получения более ровных и тонких швов, клей наносится при помощи зубчатого шпателя;
  • клей наносят как на горизонтальную, так и на боковую поверхность пеноблоков;
  • после укладки блока, его надо хорошо прижать и выровнять по вертикали и горизонтали;
  • отклонения по вертикали проверяют после каждого третьего ряда;
  • каждый 3-4 ряд необходимо армировать;
  • все неровности перед укладкой следующего ряда зачищаются теркой и пыль убирается;
  • кладку надо проводить с перевязкой.

Ошибки

  1. неправильная укладка первого ряда приводит к отклонениям вертикальности стен;
  2. нельзя проводить кладку во время дождя или при отрицательной температуре воздуха;
  3. не полностью заполняют швы, что негативно влияет на прочность здания, его тепло и звукоизоляционные характеристики;
  4. не проводят обеспыливание блоков, что ухудшает качество их соединения, от чего могут появляться трещины;
  5. без армирования, прочность здания снижается;
  6. проводят укладку перекрытия прямо на блоки, что может вызвать их разрушение.

Особенности работы с пенобетоном

Помимо всего вышеописанного, вам следует уяснить несколько важных моментов, касающихся непосредственно пеноблоков:

  • Расчет толщины стены следует осуществлять по правилам в том случае, если вы уверены в качестве строительного материала. Не забывайте, что плотность – основной критерий, по которому отбирается продукт.
  • Для пеноблоков лучше использовать специальные клеевые растворы, нежели обычную цементно-песчаную смесь. Если вы не уверены, что сможете соблюсти правильные пропорции, лучше приобретите готовую продукцию, которую можно использовать непосредственно после открывания упаковки.
  • Хотелось бы также уточнить, что пенобетон не обладает повышенной устойчивостью к воде, поэтому необходимо использовать дополнительные гидрофобные материалы. Небольшое вложение в защиту стен и вы продлите их эксплуатационный срок на несколько лет.


Вот так может выглядеть пеноблок, который подвергался воздействию воды

  • Для межкомнатных перегородок достаточно использовать пеноблоки толщиной в 200 мм, а некоторые домостроители вообще возводят внутренние стены толщиной в 100 мм. На самом деле этого достаточно, но не забывайте, что чем тоньше материал, тем ниже звукоизоляция. Поэтому с такими перегородками обычно устанавливают шумоизоляционные пленки.


Толщина в 100 мм практична в небольших домах, где каждый метр жилой площади на вес золота

Как выбрать пенобетонные блоки

Какая должна быть в идеале толщина стены? Однозначно ответить на этот вопрос может только представитель проектной организации, который будет проектировать ваше жилище.

Если вы приняли решение сооружать жилье своими руками, не вдаваясь в научные расчеты, внимательно посмотрите видео в этой статье и проанализируйте, представленные ниже, характеристики пенобетонных блоков.

Блоки из пенобетона по своему назначению делятся на три основных категории:

  • теплоизоляционные, служащие исключительно в целях изоляции;
  • конструкционно – теплоизоляционные;
  • конструкционные.
НазначениеМарка по плотностиРазмерВес блока, кг
ТеплоизоляционныеD300200 х 300 х 60011,7
D40015,6
D50019,4
Конструкционно –теплоизоляционныеD600200 х 300 х 60023,3
D70027,2
D80031,7
D90035,6
КонструкционныеD1000200 х 300 х 60039,6
D110043,6
D120047,5

Вывод

Как видите, факторов влияющих на то, какой будет толщина стены из шлакоблока и на определение данного параметра – не так уж и много. В основном это погодные условия и, конечно, наличие второго этажа или мансардного помещения.

В любом случае, необходимо подстраиваться именно под то, что у вас есть, ориентируясь при этом на свои финансовые возможности. Стараясь угадать толщину несущих стен, определитесь с ней заранее, если используете в качестве основания ленточный фундамент.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Что такое пенобетон как строительный материал?

Основные обобщенные характеристики пенобетона изложены в «Правилах проектирования и строительства» – СТО НААГ-2013. Он был разработан на основе ГОСТов 31359-2007 и 31360-2007 на ячеистые бетоны.

По первому документу ячеистые бетоны делятся на:

  • пенобетоны – порообразователь в виде белковых или синтетических пенообразователей замешивается при изготовлении в бетонную смесь;
  • газобетоны – порообразователь вырабатывает газ прямо в замешанной смеси, например, при добавлении в состав замеса алюминиевой пасты или пудры;
  • газопенобетоны – комбинация пенообразователя и алюминиевой пудры, вносимая в смесь.

К ячеистым бетонам ГОСТ 31359 относит:

  • автоклавный газобетон – за сутки набирает 70% номинальной прочности прогревом в автоклаве;
  • пенозолобетон теплоизоляционный – наполнителем является зола угольных электростанций;
  • автоклавный конструкционно-теплоизоляционный пенобетон – может использоваться в несущих конструкциях и перегородках до 3-х этажей и т. д.

Оптимальная толщина стеновой кладки для обеспечения несущей способности конструкции

В среднем, слой штукатурки, нанесенный на стену из пеноблоков, имеет толщину 20 мм. Логично, что при использовании пенобетона толщиной 400 мм, вы получаете общую толщину несущей стены в 420-440 мм. При использовании облицовочного кирпича, имеющего толщину 120 мм, общая толщина стены уже будет больше – 520 мм. Ну, а если использовать облицовочный кирпич и материалы вентилируемого фасада, то общая толщина несущей стены будет в пределах от 550 до 700 мм.

В том случае, если вы хотите возвести стену небольшой толщины, но при этом желаете чтобы ее теплопроводность не была выше допустимых значений, советуем использовать блоки D-600 или D-800.

В заключение можно сказать, что выбор конструкции несущей стены, а также применяемого материала является весьма серьезным вопросом, от правильного решения которого зависит долговечность жилища и ваша комфортность пребывания в нем. А выбрав качественный сертифицированный товар, вы навсегда избавите себя от риторического вопроса «что делать» в том случае, если ваш дом неожиданно начнет… «разваливаться». Толщина стены из пеноблока для дома — важный момент, на который следует обратить внимание.

Посмотрите видео и узнайте, какую толщину стен из пеноблока выбрать, чтобы минимизировать теплопотери:

Толщина стен из газосиликатных блоков – какая должна быть?

  1. Главная
  2. /
  3. Статьи
  4. /
  5. Толщина стен из газосиликатных блоков – какая должна быть?

При строительстве частного дома, необходимо не только продумать строительство прочного фундамента, но и толщину стен. При этом, не стоит опираться на домыслы, советы и логику. Если вы будете строить свой дом из газосиликатных блоков, необходимо использовать техническую документацию, с помощью которой можно рассчитать оптимальную толщину стены из газосиликата. Также, рассчитывая толщину стен из газосиликатных блоков, следует учитывать предполагаемую нагрузку на стены и их предназначение (несущие, перегородочные).

 

В нашей климатической зоне, для строительства домов и построек хозяйственного назначения, чаще всего используют газосиликатные блоки толщиной 300 – 500 мм. Рассмотрим кратко каждый из типов.

Если вы хотите приобрести недорого качественные газосиликатные блоки — загляните в наш каталог газосиликатных блоков. У нас в наличии на складе имеются блоки производства Красносельскстройматериалы, Забудова и МКСИ.

Заказать блоки вы можете по любому из указанных телефонов. Мы осуществляем продажу блоков с доставкой в любую точку Беларуси.

Газосиликатные блоки – 300 мм

Данный тип блоков используется, в основном, при постройке дачных домиков, а также хозяйственных построек, не требующих утепления.

Однако, если требуется построить дом для постоянного проживания, необходимо тщательно рассчитать нагрузку на стены, чтобы в дальнейшем избежать проблем: проседаний, растрескиваний и тд. Также, в данном случае, обязательно необходимо дополнительное утепление стен.

Газосиликатные блоки — 400 мм

Данный тип – самый распространенный вариант для постройки частных домов. Он прочен, легко выдерживает нагрузку при строительстве одноэтажного дома. А также, не требует обязательного дополнительного утепления. 

Газосиликатные блоки – 500 мм

Данный тип блоков наиболее всего подходит для строительства частного дома. Однако, не следует забывать, что для данных газосиликатных блоков необходимо сразу продумать ширину фундамента. Так как провисание блока более чем на 5 см отрицательно скажется на качестве постройки.

Также, следует учесть, что большая ширина блока (толщина стен) «съест» внутреннее пространство постройки, что немаловажно при строительстве небольшого дома.

Следует отметить, газосиликатные блоки обладают хорошими тепловыми характеристиками. Поэтому, если вы соблюдали правила расчета толщины стен, то, обычно, дополнительное утепление не требуется. Однако, оно никогда не бывает лишним. При этом, не забывайте, что, если стены были хорошо утеплены, а двери, окна, пол или потолок будут тонкие и пропускают холодный воздух – эффект использования теплоизоляционных материалов будет наименьшим.  

Вследствие чего, для достижения наибольшего эффекта, к утеплению дома необходимо подходить комплексно.

Дата публикации: 30.09.2019

Коэффициент теплопроводности газосиликатных блоков


Стены из газобетона благодаря пористой структуре блоков обладают высокими теплоизоляционными свойствами. При определенной толщине их можно возводить даже без дополнительного утепления. Но какой должна быть ширина кладки, зависит от многих факторов.

Выбор толщины для несущих стен

Есть три основных параметра, которые следует «увязать» между собой, чтобы определить оптимальные параметры:

  • прочностные характеристики;
  • сопротивляемость теплопотерям;
  • экономическая целесообразность.

То есть, очень мощные газобетонные стенки будут прочными и теплыми, но неоправданно дорогими. А более дешевая кладка в полблока сможет выдержать разве что небольшую крышу холодного гаража, но в жилом доме не сохранит тепло. Но если газобетон проходит по прочности, толщину конструкций можно не увеличивать, а просто подобрать доступный по цене утеплитель под отделку.

Оптимальные размеры кладки нужно просчитывать несколько раз, выбирая наиболее подходящее сочетание все трех параметров.

Газобетонный блок – что это

Стеновые бетонные кирпичи получают путём отливки вспененного бетонного раствора в специальных формах. Сырьевая масса включает в себя кварцевый песок (силикат), цемент, известь и воду. Чтобы получить вспученную затвердевшую массу, в раствор засыпают алюминиевый порошок. Известь вступает в бурную химическую реакцию с алюминиевым порошком. В результате происходит активное выделение кислорода и водорода (гидролиз воды).

Кислород образует в вязкой массе раствора большое количество пузырьков. Застывшая смесь образует ячеистую массу, которая напоминает структуру поролона. Такой материал носит название газобетона или газосиликата.

Толщина перегородочных стен

Этот параметр выбирается с учетом определенных факторов, при этом рассчитывается несущая возможность и учитывается высота перегородки.

Выбирая блоки для таких стен, следует обратить пристальное внимание на значение высоты:

  • если она не переваливает за трехметровую отметку, то оптимальная толщина стен – 10 см;
  • при увеличении высотного значения до пяти метров, рекомендуется применять блоки, толщина которых равна 20 см.

Если возникнет необходимость получить точные сведения без выполнения расчетов, можно воспользоваться стандартными значениями, в которых учтены сопряжения с верхними перекрытиями и значения длины возводимых стен. Особое внимание уделяется следующим советам:

  • при определении эксплуатационной нагрузки на внутреннюю стену появляется возможность выбора оптимальных материалов;
  • для перегородок несущего типа рекомендуется использовать блоки D 500 либо D 600, длина которых достигает 62.5 см, ширина – варьируется от 7.5 до 20 см;
  • устройство обычных перегородок подразумевает использование блоков с показателем плотности D 350 – 400, позволяющих улучшить стандартные параметры звукоизоляции;
  • показатель звукоизоляции в полной мере зависит от толщины блока и его плотности. Чем она выше, тем лучшими шумоизоляционными свойствами обладает материал.

Статья по теме: Чем утеплить стены снаружи из газосиликатных блоков

Если длина перегородки равна восьми метрам и более, и высота ее от четырех метров, то с целью увеличения прочности всей конструкции каркасная основа усиливается железобетонным армирующим поясом. Кроме того, нужной прочности перегородки можно достичь клеевым составом, с помощью которого ведется кладка.

Размеры газобетонных блоков

Большинство предприятий выпускают газосиликатные кирпичи, у которых одинаковая длина (600 мм) и высота (200 мм). Меняется только толщина изделия.

Готовую продукцию перевозят на специальных поддонах – паллетах. В таблице приведены толщины блоков и транспортная загрузка.

Толщина блокаКол-во блоков на паллете, шт
1100150
2150100
325060
430050

Перевозят стеновой материал, уложенный на паллетах высотой 180 см. Чтобы во время перевозки изделия не напитались влагой, их укрывают полиэтиленовой плёнкой.


Газосиликатные блоки с профильными торцами
Газосиликатные блоки могут быть с гладкими и профильными торцами. Профильный рельеф торцов исполняет роль замковой системы – «шип-паз». По словам специалистов, наличие замковой системы существенно не влияет на прочность кладки.

Требования

Для использования всех видов стройматериалов существуют определенные нормативные требования. Перед строителями выдвигаются следующие условия:

  1. Прежде всего, следует произвести точный расчет и определить максимально допустимую высоту стен.
  2. Максимальная высота постройки из ячеистых блоков ограничена. Для стройки несущих стен допускается высота до 20 метров (5 этажей), самонесущих конструкций не более 30 метров (9 этажей), для несущих стен постройки до 10 метров используют пеноблоки.
  3. Непосредственно от высоты зависит прочность используемых блоков. Для внутренних и наружных стен постройки до 20 м используется газоблок только класса «В3,5», для зданий до 10 м – «В2,5», для зданий в один или два этажа – «В2,0». Следует также учесть, что для возведения самонесущих стен строения до 10 м требуется использование газобетона класса «В2,0», для зданий выше 10 м – «В2,5».

Статья по теме: Как сшить штору в детскую комнату самостоятельно — самый быстрый способ

Ячеистый бетон является эффективным материалом со стороны теплоизоляции, но не следует забывать, что он менее прочный, чем обычный бетон или кирпич. Исходя из этого, при расчете толщины стен дома из газобетона должен учитываться еще один важный момент – способность выдерживать нагрузки. Также следует учесть следующий факт: прочность и теплоизоляционный уровень газоблока имеют обратную зависимость.

Большая плотность вспененного бетона гарантирует высокую прочность, но сопротивляемость потерям тепла пропорционально становится ниже. Поэтому, если вы делаете упор на прочность, используйте марку D 1200, если хотите сделать помещение более теплым – D 400. Оптимальным со всех сторон будет использование марки D 600. Подумайте над термоизоляцией фундамента, окон, кровли; подберите оптимальные параметры кладки и размеры помещений, чтоб обойтись без использования утеплителя и других материалов.

Преимущества и недостатки газобетонных изделий

Газобетонные стены обладают определёнными преимуществами и недостатками. Наиболее яркие представители данных категорий представлены несколько ниже.

Преимущества:

  • возведение стен из газоблоков приносит экономию до 30% по сравнению со строительством наружных ограждений здания из кирпича или железобетона;
  • изделия из ячеистого бетона надёжно сохраняют тепло внутри дома; внешние несущие стены не нуждаются в дополнительном утеплении;
  • стены дома обладают высокой звукоизоляцией и огнестойкостью;
  • экологичность и паронепроницаемость материала позволяют стенам дышать; газобетонные стены не впитывают в себя влагу;
  • показатели экологичности материала приравнивают к свойствам деревянных строительных конструкций;
  • высокая геометрическая точность поверхностей блоков позволяет строителям возводить стены с идеально ровной плоскостью.

Недостатки:

  • слабая прочность материала;
  • какой бы ни была толщина стен из газобетонных блоков для дома, высота строения ограничена 3-мя этажами.

2-х этажный дом из газоблоков

Как рассчитать толщину: расчет по формуле

Толщина несущих стен из газобетона вычисляется следующим образом: T=Rreg*λ, где первое — величина сопротивления теплопередаче стеновых поверхностей, второе — коэффициент теплопроводности строительных блоков, подбирается по схемам значений газобетона или на основании производственных испытаний материала. Rreg=0,00035xDd+1,4, где Dd — градусо-сутки отопительного сезона, значение представляет собой разницу температур в помещении и уличной в течение отопительного периода, умноженную на количество дней сезона отопления. Величины Dd приводятся в «Строительной климатологии», в нормах СНиПа 23—01—99.

Посмотреть «СНиП 23-01-99» или

Плотность газобетона

Плотность газосиликата определяется его удельным весом. Показатель плотности обозначается латинской буквой D. Если материалу присвоена марка D 500, то это значит, что 1 м3 бетона весит 500 кг.

Помимо этого число в маркировке блоков может соответствовать ширине изделия. Так, например, толщина стены для дома из газобетона марки D 400 будет примерно равняться 40 см.

Кладку несущих стен осуществляют из блоков марки D 300, 400 и 500. Марки D от 600 до 900 применяют для ограждений специального применения. Если меньше число марки бетона, то тогда больше его пористость. Следовательно, меньше и прочность самого материала.

D 400

Выбирать кирпичи этой марки нужно для строительства домов не больше 2 этажей. При высокой теплоизоляции материал достаточно хрупок для строительства зданий большей этажности. Большинство частных домов и дачных построек строятся в основном высотой в 2 этажа. Именно это обстоятельство склоняет потребителя выбрать стеновой материал марки D 400.

Кладка несущих ограждений из этого материала выдерживает только лёгкие перекрытия, уложенные на деревянные балки. Под перекрытия из железобетонных плит кладут блоки марки 500, 600.

D 500

Марку D 500 применяют при строительстве 3-х этажных зданий. Увеличенная плотность бетона значительно повышает несущую способность кладки. Правда при этом понижается уровень теплоизоляции стен.

Применение марки D 500 позволяет укладывать перекрытия из железобетона небольшой толщины.

D 600

Изделия этой категории самые дорогие, но они морозоустойчивые, обладают высокой прочностью. Они позволяют возводить фасадные стены в 3-х этажных домах с устройством перекрытий из железобетонных плит.

Марки D 50, 100, 250 имеют наименьшую плотность, поэтому их применяют для кладки внутренних стен без нагрузок.

Размер блоков из газобетона для кладки несущих конструкций

По своим характеристикам газобетон подходит как для кладки несущих конструкций, так и возведения изоляционных перегородок. При выборе конкретной марки и размеров изделия отталкиваются от назначения и условий эксплуатации объекта строительства. Толщину стен, разделяющих разные температурные зоны, определяет теплотехнический расчет. Но главным требованием является обеспечение соответствующей несущей способности, а именно выдержки весовой и механической нагрузки. Нормы, зависящие от типа перегородки или перекрытия, являются минимально допустимыми, уменьшать их нельзя.

Виды газобетонных блоков

В зависимости от формата и типа поверхности различают обычные прямоугольные варианты с гладкими стенками, аналогичные с системами захвата или «шип-паз», Т-образные для монтажа перекрытий, U-образные для закладки армопояса, дверных или оконных проемов. Прочностные характеристики газобетона определяются его плотностью и пористостью, как и теплоизоляционные свойства. Выделяют следующие марки:

1. От D350 до D500 – теплоизоляционные, оптимальные для возведения газобетонных перегородок или внутренней утепляющей прослойки. Выделяются высокой пористостью и имеют самый низкий коэффициент теплопроводности из всех разновидностей.

2. D500-D900 – конструкционно-теплоизоляционные, востребованные в частном строительстве, в том числе для кладки наружных стен и несущих перегородок. На практике для легких построек используют газоблоки от М400, но лишь при условии их качественной автоклавной обработки и надежной защиты от внешней влаги.

3. D900-D1200 – конструкционные, с повышенной прочностью.

Типовой размер газобетонного блока для несущей стены: 600 мм по длине (у некоторых производителей – 625), в пределах 200-300 по высоте, и от 75 до 500 по ширине. Данные значения приведены для прямых и пазогребневых изделий, к стеновым обычно относят превышающие 300 мм в ширину, остальные – к перегородочным, хотя встречаются и исключения. Самыми востребованными считаются 600×300×200 и 625×300×250 мм, вес варьируется в пределах 17-40 кг, одна штука замещает не менее 17 кирпичей.

Выбор газоблоков для кладки несущих стен

Рекомендуемый минимум:

Назначение конструкции, дополнительные условияОптимальная марка газоблоковТолщина стены из газобетона, мм
Несущие наружные стены и внутренние перегородки в частных домахD600300
Нежилые помещения: хозпостройки, гаражи, летние кухниD400 и D500200
Несущие наружные в домах без внешнего утепленияD500360
Цокольные этажи и подвалы, при условии обязательной и качественной гидроизоляцииD600300-400
(меньше – для внутренних подвальных ненесущих стен)
Межквартирные перегородкиD500 и D600200-300
Утепляющие прослойкиD300От 300
Внутренние ненесущие перегородки, возводимые с целью разделения жилых зон и звукоизоляции100-150

Требуемый класс (и, соответственно, марка) газобетона также зависит от этажности. Допустимый минимум для одноэтажных легких построек составляет В2,0, в пределах 3-х этажей – В2,5, В3,5. Чем выше здание, тем жестче нормативы к прочности блоков, при строительстве частного дома выше двух армирование (закладка монолитной ленты по всему периметру) в верхней части стены из газобетона обязательно. Самонесущие перегородки разрешается строить из В2,0. В целях экономии их обычно выкладывают толщиной в пределах 100-150 мм. Рост ширины перегородки возможен в двух случаях: при повышенных требованиях к шумозащите и при планировании размещения на них подвесных конструкций: полок, мебели, пролетов или тяжелой техники. Допустимый минимальный предел – 200 мм.

Дополнительные учитываемые факторы при выборе толщины стен из газобетона

Указанные размеры актуальны исключительно при использовании материла автоклавной обработки, изготовленного в заводских условиях. Их качество можно и нужно проверять визуально и на ощупь: правильные изделия имеют гладкие стенки без сколов и внешних дефектов, они ни в коем случае не раскрашиваются. Блоки, не прошедшие пропаривание под давлением, уступают в прочности и не обеспечат требуемую несущую способность. Также по умолчанию они используются при строительстве домов в средней полосе, для конструкций, эксплуатируемых при нормальной влажности. При необходимости возведения в бассейнах, ванных, банях, подвалах применяются усиленные меры гидроизоляции.

Для исключения ошибок на стадии составления проекта следует провести прочностной и теплотехнический расчет размеров несущих конструкций с учетом их ожидаемой нагрузки и климатических условий. Коэффициент теплопроводности газобетона зависит от марки: от 0,072 Вт/м·°C у блоков D300, до 0,12 и выше у D600.

Взаимосвязь очевидна: чем плотнее и прочнее изделия, тем хуже их изоляционные способности. При равной средней температуре окружающего воздуха зимой разница между требуемым минимумом толщины стен, способных обеспечить нужное сопротивление потерям тепла, у марок с отличием в удельном весе от 100 кг/м3 достигает 1/3.

Требования к несущим конструкциям повышаются при строительстве домов в оконными проемами с большой площадью, эксплуатируемыми кровлями, высокой этажностью. В этом случае возможны несколько вариантов: использование конструктивных блоков с повышенной прочностью (более дорогих, что не всегда выгодно) или вертикальное армирование. Задействование монолитного ж/б каркаса с закладкой менее прочных, но хорошо держащих тепло элементов, считается разумной альтернативой. Но такие проекты требуют привлечения специалистов, они более сложны в реализации.

Толщина стен из газобетонных блоков

По сравнению с железобетоном газосиликатные конструкции обладают низкой прочностью. Оптимальная толщина газобетонных стен определяется двумя критериями: несущей способностью и теплопроводностью.

По специальной методике расчётов определяют, какая должна быть толщина стен из газосиликатных блоков. При проектировании небольших сооружений (подсобных строений, гаражей, дачных домиков) можно вполне обойтись без специальных расчётов толщины стен. Если для строительства этих объектов владелец хозяйства выберет стеновой материал шириной 200 – 300 мм, то он не ошибётся.

Планируя строительство 2 и 3 этажных домов, лучше обратиться к специалистам по проектированию зданий и сооружений.

Учитывая нагрузки и местные климатические условия, проектная организация на основе расчётов, определит – какой толщины должны быть стены дома.

Определение толщины газобетонной кладки:

В районах с холодным климатом нужно подбирать ширину блоков размером 600 мм. Особого смысла делать стены толще, нет. Это может принести только лишние затраты. При толщине стены более 600 мм теплоизоляция ограждающих конструкций не изменится. Что касается перегородок, то их толщина может быть от 100 до 250 мм.

От того, какими будут перегородки по толщине, зависит насколько тяжёлое навесное оборудование можно устанавливать (антресоли, микроволновая печь, телевизор и прочее).

Способы кладки

Выкладывая наружные стены из газобетонных блоков, рекомендовано создание одного или нескольких слоев ограждающей конструкции. Подробно об этом в таблице:

Способ оформленияОписание
ОднослойноеДекоративная штукатурка с армированием стекловолокном
ДвухслойноеУтеплитель из ваты базальтовой полужесткой с последующим оштукатуриванием
Двухслойное без утепленияВентиляционная прокладка и кирпич
ТрехслойноеФасад с вентиляцией и утеплителем либо кирпич с утеплением между стенами

Для скрепления газобетонных блоков целесообразно использование сухого клея с содержанием полимерных модификаторов и минеральных добавок. Толщина клеящего шва — 3 мм, позволяет избежать теплопотерь. При использовании раствора цемента с песком в качестве клея толщина шва увеличивается и приводит к образованию «мостиков холода».

Материальный дизайн из пенобетона — оптимальная эксплуатационная конструкция

Nous предлагает ici une étude заботиться об оптимальной производственной концепции Béton Cellulaire Autoclavé (BCA), основанной на этюде десктопов, зарегистрированных на курсах антивозрастных.

Монолитное использование BCA для внешних воздействий на простую композицию и важное значение для сокращения. Cependant, l’amélioration de l’isolation thermique и réduisant la densité apparente склонен к несовместимости с целевым звуком изоляции.Néanmoins, les demandes de réduction de poids sont souvent несовместимые, avec les améliorations des propriétés mécaniques. Все факторы присутствуют на всех выступлениях.

Avec la densité apparente représentant en principe la «propriété. «T» pour l’épaisseur du mur.

Pour atteindre la performance optimale, l’analyse de la régression des propriétés du BCA: сопротивление на сжатие, сопротивление на сгибание, модуль E , теплопроводность и степень критики насыщения для сопротивления на геле в раппорте la densité apparente d , sont d’abord représentés Com des équations expérimentales. Ensuite, les exigences de performance pour les comportements acoustiques, thermiques и mécaniques du mur extérieur sont classées sous forme d’inégalités pour d et T.

Комбинация экспериментальных условий с постоянными эксплуатационными характеристиками с учетом требований, предъявляемых к рабочим характеристикам, с учетом всех требований, предъявляемых к проверке с учетом пределов устойчивости к сжатию и долговечности. Графическое представление требуемых характеристик для жилищ, в которых содержится количественное определение взаимопонимания между предприятиями и условиями, климатическими условиями. Заливка области Tokio, раппорт d = 500 (кг / м 3 ) и T = 0,12 (м) — это рекомендуются другие варианты для разных регионов, а также для связи d = 400 и T = 0,18 — рекомендовано. .

Патент США на метод строительства стен с использованием впрыскиваемой уретановой пены между стеной и автоклавными бетонными блоками (AAC) Патент (Патент № 9745739, выдан 29 августа 2017 г.)

ПРЕТЕНЗИЯ НА ПРИОРИТЕТ

В данной заявке на патент делается ссылка на предварительную заявку на патент США сер. № 61/966 518, поданной 25 февраля 2014 г. Вышеупомянутая заявка настоящим полностью включена в настоящий документ посредством ссылки.

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение обеспечивает новые системы и материалы для строительства стен для жилого и коммерческого строительства, которые включают в себя элементы из легких строительных материалов с пазами (например,g., блоки, панели и т.п.), множество соединительных устройств, рельсовую систему и (впрыскиваемый) пенополиуретан. Система стеновых конструкций содержит блоки строительного материала, соединенные с каркасом здания с множеством соединительных устройств (например, зажимов), удерживаемых с возможностью скольжения в системе направляющих, которая прикреплена к структурному (например, несущему) каркасу здания. Компоненты стройматериала соединяются между собой подходящим вяжущим. В полость между каркасом и блоками стройматериала залита изоляционная структурная полиуретановая пена.Снаружи стены отделаны водонепроницаемой отделкой, например, цементной штукатуркой. Внутренняя часть стены поддается стандартным вариантам отделки.

УРОВЕНЬ ТЕХНИКИ

Существует множество традиционных строительных систем, используемых для проектов жилых и легких коммерческих зданий, в которых применяется обшивка деревянных и / или легких стальных каркасов в сочетании с изоляцией и компонентами внешней облицовки. Как правило, эти строительные системы, хотя и широко используются, известны своими различными ограничениями, в том числе возможностью проникновения влаги, тепловыми мостами, проникновением воздуха, подверженностью гниению, появлению плесени и грибка, заражению, уязвимости к пожару и / или трудоемкости. трудоемкие или дорогие методы строительства.В дополнение ко многим обычным системам строительства, упомянутым выше, в других строительных технологиях используются внешние стены, состоящие из бетона или варианта легкого бетона, известного как автоклавный газобетон (AAC). В то время как существующие методы строительства AAC могут смягчить некоторые из этих ограничений, наблюдаемых в обычных строительных материалах и методах строительства, в области строительства, как правило, все еще ищут ответы на ряд постоянных ограничений.

Например, Патент США.№ 6,510,667, Cottier et al. раскрывают процесс строительства стены, который включает в себя этапы возведения жесткого каркаса и прикрепления армированных волокном цементных листов к передней и задней сторонам каркаса для образования между ними пустоты. Эта пустота затем заполняется жидким цементным раствором из легкого заполнителя и дает возможность затвердеть. Легкая суспензия заполнителя для заполнения пустоты, образованной между листами, может иметь обычный состав и может включать измельченный обрезок вспененного полистирола («крошку») или гранулы пенополистирола.Вяжущие листы могут содержать отвержденный в автоклаве продукт реакции метакаолина, портландцемента, кристаллического кремнеземистого материала и воды. Патент США В US 6,532,710, Terry, описана сплошная монолитная бетонная изолированная стеновая система, включающая 100% бетонную конструкцию на внутренних и внешних стенах зданий. Строительные материалы состоят из обычного бетона, который заливается внутри полости между двумя стойками, формируя стены по всему периметру здания.Легкий и высокопористый материал из кварцита, извести и воды, известный как автоклавный газобетон (AAC), используется в качестве системы формирования внешних и внутренних стен, «оставаясь на месте». Две стены AAC проходят по всему периметру соответствующего здания. Две стены предназначены для образования полости, в которую заливается бетон. Анкерные болты, которые глубоко ввинчиваются в каждую сторону стен, висят в полости. В целях изоляции два листа фольгированной изоляции прикрепляются к внутренней стороне внешней стены анкерными болтами.Патент США В US 7,204,060, выданном Ханту, описана система для изготовления конструкций с использованием AAC. Первым шагом является строительство стеновой системы, которая включает первый ряд удлиненных блоков основания AAC для размещения на предварительно построенном фундаменте. Патент США В US 3943676, выданном Ickes, описан модульный строительный стеновой блок, содержащий слой твердого пенопласта и слой бетона, тесно связанные друг с другом вдоль границы раздела между слоями. Армирующий мат из проволочной сетки заделан в слой твердого вспененного материала и заходит с помощью анкерных элементов в бетонный слой, который может также включать в себя дополнительный мат из проволочной сетки.Опубликованная заявка на патент США № 2008/0016803, Bathon et al. раскрывают древесно-бетонную композитную систему, которая включает деревянную конструкцию, промежуточный слой и бетонную конструкцию. Одиночный промежуточный слой состоит, например, из пластиковой пленки, пропитанной бумаги, битумного картона, пластикового изоляционного слоя, минерального изоляционного слоя, органического изоляционного материала, регенерирующего изоляционного материала и залитых и / или нанесенных материалов. , которые связываются и / или затвердевают позднее, e.г., деготь, клей, пластичные смеси. Ассортимент типов бетона, подходящих для бетонной конструкции, включает пенобетон. Опубликованная патентная заявка США № 2007/0062151, выданная Смиту, раскрывает композитную строительную панель, которая включает в себя каркас и бетонную плиту, изготовленные из пенобетона. К элементам рамы прикреплен армирующий слой. Каркас ориентирован на внутреннюю сторону конструкции, а бетонная плита — на внешнюю сторону конструкции.В открытой раме предусмотрены полости для установки сантехники, электропроводки и изоляции. Опубликованная патентная заявка США № 2008/0010920, выданная Андерсену, раскрывает способ строительства здания, в котором блоки и панели, изготовленные из автоклавного газобетона, используются в качестве структурных элементов, включая изолированные панели с жесткой сердцевиной из полиуретана / полиискоцианурата, прикрепленные к элементам конструкции. с помощью металлических анкерных зажимов. Опубликованная заявка на патент США № 2005/0284100, Ashuah et al.раскрывают секцию стены, имеющую многослойную структуру, которая включает внешнюю вертикальную панель и внутреннюю вертикальную панель, разнесенные параллельно друг другу, дополнительно включающую в себя вертикальный изолирующий слой. Внешняя панель может быть построена из строительных блоков из бетона или AAC. Внутренняя панель может быть изготовлена ​​из дерева. Между панелями есть пространство, «ядро», которое включает в себя вертикальный слой бетона. Наружная поверхность внешней панели покрыта слоем покрытия, состоящим из материалов, выбранных из группы, состоящей из камня, мрамора, строительного раствора, дерева, алюминия, стекла, фарфора и керамики.Опубликованная патентная заявка США № 2001/0045070, выданная Ханту, раскрывает панели из газобетона в автоклаве, а также способ изготовления и использования таких панелей, в частности, для строительства жилых домов. Патент США В US 8,240,103, выданном Riepe, описана композитная строительная система и способ возведения стены, которая включает блоки AAC, соединенные с каркасом здания с множеством соединительных устройств. Блоки AAC соединяются друг с другом с помощью тонкослойного раствора. В полость между рамой и блоками AAC вводится структурная изоляционная пена, так что слой (или заполнение) пены образуется на месте после расширения и отверждения.А внешняя сторона стен AAC отделана водостойкой цементной штукатуркой. Рипе описывает множество соединительных устройств, имеющих выступы (то есть штыри), которые входят в пазы в верхней и нижней части блоков AAC. Отдельные соединительные устройства прикрепляются непосредственно и без скольжения (например, с помощью винтов) к внешней поверхности каркаса здания горизонтально ориентированными рядами, соответствующими пазам в верхней и нижней части блоков AAC. Каждый элемент каркаса здания может иметь от 1, 2, 3, 5, 10, 20, 50 или более соединительных устройств, жестко прикрепленных к нему.Патент США. Патент №8,240,103 полностью включен в данное описание посредством ссылки.

В области строительных материалов и строительных систем был достигнут ряд достижений, о чем свидетельствует использование блоков AAC и соединительных устройств, описанных в патенте США No. Патент № 8,240,103. Тем не менее, необходимы системы и материалы для строительства стен, подходящие для жилых, коммерческих и других строительных проектов, которые существенно улучшают, по крайней мере, некоторые из недостатков существующих традиционных методов строительства и / или строительных технологий, таких как снижение трудозатрат во время строительства и / или другие требования к установке.Предполагается, что экономия рабочей силы во время строительства и монтажа снизит общие затраты и позволит добиться большей эффективности здания.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение обеспечивает новые системы и материалы для строительства стен для жилищного и коммерческого строительства, которые включают в себя элементы из легких строительных материалов с пазами (например, блоки, панели и т.п.), множество соединительных устройств, направляющую. система и (инжектированный) пенополиуретан конструкционный.Система стеновых конструкций содержит блоки строительного материала, соединенные с каркасом здания с множеством соединительных устройств (например, зажимов), удерживаемых с возможностью скольжения в системе направляющих, которая прикреплена к структурному (например, несущему) каркасу здания. Компоненты стройматериала соединяются между собой подходящим вяжущим. В полость между каркасом и блоками стройматериала залита изоляционная структурная полиуретановая пена. Снаружи стены отделаны водонепроницаемой отделкой, например, цементной штукатуркой.Внутренняя часть стены поддается стандартным вариантам отделки.

В особенно предпочтительных вариантах осуществления строительные системы и способы по настоящему изобретению включают и используют блоки из легкого строительного материала, содержащие блоки из автоклавного газобетона (AAC). AAC не горит, и 4 ″ материала блока AAC получили 4-часовой рейтинг огнестойкости. Единицы материала AAC могут быть в форме блоков, панелей или любого подходящего готового размерного продукта AAC.

AAC — конструкционный продукт, состоящий из смеси цемента, извести, воды, песка и алюминиевого порошка.Для производства AAC цемент смешивают с известью, кварцевым песком, водой и алюминиевым порошком и заливают в форму. Другие материалы могут быть добавлены или заменены в смесь AAC, включая, но не ограничиваясь, пылевидную топливную золу. Реакция между алюминием и цементом вызывает образование микроскопических пузырьков водорода, расширяющих цемент примерно в пять раз по сравнению с его первоначальным объемом, чтобы заполнить предварительно выбранную форму. После испарения водорода газобетон разрезают на размер и выдерживают в автоклаве паром.Готовые изделия можно разрезать и обрабатывать на детали с точными размерами, просверливать сквозные отверстия или нарезать канавки в соответствии с требованиями. На строительной площадке блоки AAC (например, блоки или панели) можно соединять с помощью тонкослойного раствора.

В качестве интегрированной строительной системы настоящее изобретение, включающее стены, построенные из блоков AAC, обеспечивает множество преимуществ для жилых и коммерческих зданий, включая, помимо прочего, высокое тепловое сопротивление, предотвращение тепловых мостов, обеспечение повышенной защиты от повреждения водой, паром повреждение, пожар, гниение, повреждение плесенью или плесенью, повреждение от мороза и повреждение насекомыми, будучи ударопрочным, уменьшая потребность в покраске или обслуживании; отсутствие каких-либо токсичных соединений; обеспечивает более высокий акустический барьер и более высокую прочность на сдвиг.Кроме того, строительная система легка для транспортировки и строительства и совместима с существующей сантехникой, электропроводкой, кровлей, фасадной штукатуркой и обычно используемой внутренней отделкой.

Хотя в некоторых предпочтительных вариантах осуществления настоящие строительные системы оптимизированы для возведения стен из блоков AAC, зажимные крепежи, направляющая система и компоненты уголков полок настоящего изобретения не ограничиваются применимостью только к строительным материалам AAC. Например, в некоторых других вариантах осуществления дополнительные и / или заменяющие элементы из легкого строительного материала с подходящими свойствами для использования с настоящим изобретением специально предусмотрены для использования в строительстве стен (например,g., глиняные сотовые блоки, биокомпозитные блоки, содержащие переработанные или экологически чистые вспомогательные материалы, такие как конопля, древесная щепа, летучая зола, переработанный заполнитель и т.п.). В других вариантах осуществления предусмотрены бетонные блоки с различными добавками и / или наполнителями и т.п., которые в противном случае обладают одним или несколькими желательными свойствами, упомянутыми для строительных материалов AAC.

Настоящее изобретение обеспечивает определенные улучшения по сравнению с существующими системами и компонентами стеновых конструкций AAC.Примечательно, что недавний патент США No. В US 8240103 описана композитная строительная система и способ возведения стен, которые включают блоки AAC, соединенные с каркасом здания с множеством соединительных устройств. Патент США. В патенте США № 8240103 был достигнут прогресс в области строительства, введя описанную здесь систему фиксированных зажимов. Настоящее изобретение описывает усовершенствование по сравнению с патентом США No. № 8,240,103, обеспечивая систему направляющих, которая удерживает множество соединительных устройств с возможностью скольжения.Системы и способы по настоящему изобретению требуют сравнительно меньше труда и времени на установку, чем существующие строительные системы AAC, и обеспечивают большую гибкость при сборке стен.

В одном предпочтительном варианте осуществления настоящее изобретение предлагает новые строительные материалы и способы возведения стен, которые включают в себя множество уложенных друг на друга блоков AAC, которые прикреплены к каркасу здания (например, деревянные стойки, металлические стойки, бетон и т.п.) с помощью множество соединительных устройств (например,g., зажимы), которые входят в одну или несколько канавок на поверхности блоков. Предпочтительно блоки AAC имеют одну или несколько непрерывных канавок либо на их верхней, либо на нижней поверхностях; однако также предусмотрены прерывисто расположенные канавки на любой / обеих этих поверхностях. Канавки в блоках AAC могут быть центрированы или смещены по центру на определенной поверхности. В предпочтительных вариантах осуществления канавка на одной поверхности (например, верхней поверхности) блока AAC имеет соответствующую канавку в той же транзакционной плоскости на противоположной поверхности блока (например,г., нижняя поверхность). Легкие строительные блоки, используемые в композициях и способах по настоящему изобретению, могут содержать одну или несколько канавок в 1-2-3-4-5 или 6 поверхностях (ах) соответствующего элемента.

В другом варианте осуществления изобретения верхняя и нижняя канавки элементов из легкого строительного материала (например, блоков AAC) составляют пространство глубиной примерно ½ дюйма, шириной примерно дюйма и, более предпочтительно, шириной примерно дюйма.

В предпочтительном варианте соединительные устройства содержат зажимы.Множество зажимов удерживаются с возможностью скольжения в системе рельсов, которая прикреплена горизонтально к внешней поверхности (лицевой стороне) несущего каркаса здания (например, деревянных или металлических шпилек и т.п.). К внешней поверхности каркаса здания прикреплено множество рельсов. Секции направляющих размещаются встык последовательно, так что соответствующие секции образуют непрерывную интегрированную дорожку желаемой длины на внешней поверхности каркаса здания (например, на уровне фундамента здания).Однако следует отметить, что способы возведения стен, включающие зажимные крепления и секции путевой системы по настоящему изобретению, в равной степени применимы к конструкции внутренних стен, где участки пути дополнительно или вместо них прикреплены к внутренней части. поверхность каркаса здания.

Направляющие оптимизированы в поперечном сечении для скольжения, удерживая несколько зажимов по их длине. После того, как зажимы расположены в секции дорожки, они ортогонально располагаются между дорожкой и блоками AAC.Блоки AAC отделяются от каркаса здания за счет общей длины зажимов и направляющих секций системы. Это образует первую пустоту между внутренней поверхностью блоков AAC и внешней поверхностью каркаса здания. Вторая пустота образуется из-за ширины несущих элементов каркаса здания (например, размерных деревянных стоек 2 ″ × 4 ″ или 2 ″ × 6 ″ и т.п., и / или металлических стоек), измеренной от от внутренней поверхности элементов каркаса здания до внешней поверхности элементов.Первая и вторая пустоты, соответственно, образуют полость, в которую вводится конструкционная изоляционная пена. Последовательные ряды (т. Е. Ряды) блоков AAC соединяются тонкослойным раствором. Последовательные ряды блоков ACC образуют поверхность стены, внешняя сторона которой предпочтительно покрыта водонепроницаемой отделкой, такой как отделка цементной штукатуркой. В предпочтительном варианте осуществления нижний ряд блоков AAC имеет канавки на нижней поверхности, и эта канавка входит в зацепление с помощью уголка полки, установленного на основании стены.

В предпочтительных вариантах осуществления изобретение включает композитную конструкционную систему, соединяющую раму и блоки AAC, причем система содержит: несущую раму и, по меньшей мере, один промежуточный слой инжектированной полиуретановой пены, блок блока AAC, в котором одна сторона блок обращен к несущей раме (например, к внутренней поверхности блока ACC), и, кроме того, по крайней мере, один промежуточный слой пенополиуретана расположен между несущей рамой и блоками AAC, чтобы соединить несущую кадр и блоки AAC; и множество соединительных устройств (зажимов), удерживаемых с возможностью скольжения на рельсе между несущей рамой и бетонным строительным элементом AAC.

Строительные системы и материалы по настоящему изобретению совместимы с деревянным каркасом, тяжелым деревянным каркасом, стальным каркасом или тяжелым стальным каркасом со стальным заполнением шпильками. В одном варианте осуществления настоящего изобретения несущая рама изготовлена ​​по меньшей мере из одного материала из группы материалов, состоящей из массивной древесины, деревянных материалов, конструкционных деревянных изделий, древесных композитных материалов, стали, алюминия, бетона, пластмасс и других материалов. композиты, переработанные и экологически чистые материалы или другие подходящие материалы.В одном варианте осуществления настоящего изобретения несущая рама содержит материал, выбранный из группы, состоящей из дерева и металла. В предпочтительных вариантах осуществления несущая рама в противном случае не имеет оболочки.

В дополнительном варианте осуществления каждое из множества соединительных устройств (например, зажимные зажимы) содержит, по меньшей мере, первый конец (первый конец), который вставляется в систему направляющих, которая прикреплена к несущей раме, и второй конец. (второй конец), который заканчивается, по меньшей мере, одной поверхностью крепления, а более предпочтительно двумя поверхностями крепления (т.е.е., заглушка (и) блокировки). Поверхности крепления оптимизированы для зацепления канавки в элементе из легкого строительного материала, таком как блок AAC. Более конкретно, в некоторых предпочтительных вариантах осуществления множество соединительных устройств содержит застежки-клипсы. В предпочтительных вариантах осуществления первый конец каждой соответствующей застежки-клипсы содержит две сжимаемые ножки, имеющие поперечное сечение примерно Y-образной формы. В предпочтительных вариантах реализации каждая из соответствующих ножек заканчивается крючком в форме (например,г., полукруглый) элемент. Таким образом, концы ножек образуют зазор (пространство) между собой, когда они не сжимаются. В одном предпочтительном варианте осуществления зазор, когда ножки не сжимаются, измеренный в самой широкой точке на внутренних поверхностях ножки, составляет от примерно дюйма до примерно 6 дюймов, более предпочтительно от примерно дюйма до примерно 3 дюймов и более предпочтительно от примерно ¾ ″ до примерно 1¼ ″. В других вариантах реализации зазор составляет примерно 1 дюйм.

В особенно предпочтительных вариантах осуществления Y-образные ножки могут сжиматься установщиком стеновой системы (например,грамм.; каменщик), просто используя силу пальцев так, чтобы ножки сдвинулись вместе относительно зазора и центральной оси застежки-клипсы. После сжатия ножки зажимной застежки вставляются в канал секции гусеницы, и сила сжатия снимается, так что ноги возвращаются в свою приблизительную форму предварительного сжатия и ориентацию в канале секции гусеничной системы, тем самым создавая небольшое натяжение между ногами и участком гусеницы. Поперечное сечение отрезков гусеницы оптимизировано для скользящего удержания вставленных в них зажимов.Второй конец каждой соответствующей застежки-клипсы содержит конец, имеющий поперечное сечение примерно Т-образной формы. Т-образная секция содержит два выступа (т. Е. Штырей), ориентированных под прямым углом относительно основного корпуса застежки-клипсы. Заглушки блокировки, содержащие Т-образный конец зажимных креплений, оптимизированы для зацепления соответствующих канавок на одной или нескольких поверхностях элементов из легкого строительного материала (например, блоков AAC). В предпочтительном варианте осуществления заглушки компонентов застежки-клипсы содержат выступы длиной примерно ½ дюйма и шириной примерно дюйма.Однако следует отметить, что различные размеры выступа штыря (и размеры канавки) возможны в пределах общих вариаций ввиду желания достичь достаточного зацепления канавок в элементах из легкого строительного материала с помощью штырей зажима.

В дополнительном варианте осуществления множество соединительных устройств (например, зажимные застежки) содержат материал, выбранный из группы, состоящей из подходящих металлов (например, алюминия, стали и т.п.), пластмасс и композитных материалов.Соединительные устройства (например, зажимы) должны быть изготовлены из материала или комбинации материалов, которые обеспечивают достаточный уровень эластичности после повторяющихся деформаций, чтобы устройство могло вернуться к своей первоначальной форме. В предпочтительном варианте осуществления застежки-клипсы изготовлены из пластика, а более предпочтительно из АБС-пластика, хотя возможны и другие материалы, такие как подходящие металлы и композиты.

В предпочтительных вариантах осуществления гусеничная система по настоящему изобретению обеспечивает дорожку для приема и удержания с скольжением множества зажимных креплений.Не ограничиваясь какой-либо конкретной конфигурацией, предпочтительно, чтобы гусеница имела в поперечном сечении примерно С-образную форму. Основной корпус гусеничной системы предпочтительно имеет как на верхнем, так и на нижнем краях короткий выступ под прямым углом от него. Эти выступы верхнего и нижнего края заканчиваются двумя противоположными загнутыми внутрь скосами / выступами, которые надежно зацепляются с крючком соответствующей формы (например, полукруглым), находящимся на конце каждой из соответствующих Y-образных секций ножек на первом конце зажима. застежка.В некоторых вариантах реализации два противоположных скоса, повернутых внутрь, имеют полукруглое сечение. Ножка зажимной застежки при сжатии, вставке и последующем освобождении входит в зацепление с противоположными скосами канала на верхнем и нижнем краях U-образной направляющей системы. В вариациях конструкции предусматривается любое поперечное сечение гусеницы и поперечное сечение ножки зажимной застежки, которые обеспечивают достаточное натяжение и способность скольжения.

В некоторых вариантах реализации участки пути содержат материал, выбранный из группы, состоящей из подходящих металлов (например,g., алюминий, сталь и т.п.), пластмассы и композитные материалы. Секции пути должны быть изготовлены из материала или комбинации материалов, которые обеспечивают достаточный уровень эластичности после повторяющихся деформаций, чтобы устройство могло вернуться к своей первоначальной форме.

Отдельные участки пути не ограничены какой-либо определенной длиной. Действительно, длина соответствующих участков пути определяется производством, транспортировкой и хранением, а также обращением и установкой на месте.В предпочтительных вариантах реализации ряд участков пути прикрепляется к внешней поверхности несущего каркаса здания с помощью множества правильно или неравномерно расположенных крепежных устройств, включая, помимо прочего, один или несколько винтов, болтов, гвоздей, заклепки, клеи и тому подобное. В случаях, когда устройства крепления пересекают участки пути, предполагается, что участки пути либо предварительно изготовлены, либо модифицированы (например, просверлены, пробиты или вырезаны) на месте, чтобы иметь достаточное количество отверстий для размещения устройств крепления.В одном варианте осуществления участки пути прикреплены к несущему каркасу с помощью множества винтов. В особенно предпочтительных вариантах осуществления винты содержат самосверлящие винты с одноранговым приводом. В предпочтительном варианте осуществления множество секций путевой системы прикреплено к одной или нескольким опорным секциям пути (например, балкам), которые прикреплены горизонтально (относительно фундамента здания) к внешней поверхности несущего каркаса. . Множество опорных секций пути можно прикрепить к внешней поверхности несущего каркаса с помощью любого обычного крепежного устройства, включая, помимо прочего, винты, болты, гвозди, заклепки, клеи и т.п.В предпочтительных вариантах реализации множество опорных секций пути прикреплено гвоздями. В другом предпочтительном варианте осуществления множество опорных секций пути прикреплено винтами.

В другом варианте осуществления опорные секции пути содержат материал, выбранный из группы, состоящей из подходящей древесины, древесных композитов, металлов (например, алюминия, стали и т.п.), пластмасс, таких как АБС-пластик, пултрузионное стекловолокно и композитных материалов. материалы. В предпочтительном варианте осуществления опорные секции пути состоят из дерева или древесных композитов.Древесина и древесные композитные материалы, подходящие для опорных секций пути, включают, помимо прочего, 1 ″ × 3 ″, 1 ″ × 4 ″, 1 ″ × 5 ″, 1 ″ × 6 ″, 2 ″ × 4 ″, 2 ″. × 6 ″, 2 ″ × 8 ″, 4 ″ × 4 ″, 4 ″ × 6 ″ и т.п., а также их размерные размеры и их метрические эквиваленты. Горизонтальные опорные секции пути называются «балками».

В других вариантах осуществления строительные материалы и сопутствующие способы строительства по настоящему изобретению обеспечивают и используют цельные интегрированные опорные секции (балки) с секциями путевой системы.В других вариантах осуществления строительные материалы и сопутствующие способы строительства по настоящему изобретению обеспечивают одну или несколько секций (балок) горизонтальных опор пути, прикрепленных к одной или множеству секций системы пути перед установкой опор пути на несущую. обрамление.

В предпочтительных вариантах осуществления первый ряд установленных блоков из легкого строительного материала (например, блоков AAC) входит в зацепление с помощью одного или нескольких из множества уголков полок, прикрепленных к нижней части несущих элементов крепления.В предпочтительных вариантах осуществления угол полки содержит поперечное сечение примерно L-образной формы, так что угол полки определяется как прямой угол, имеющий вертикальную ножку и горизонтальную ножку, при этом вертикальная ножка прикреплена к несущей стойке и горизонтальной ножке. оканчивается вертикальным выступом (например, непрерывным или прерывистым шлейфом блокировки). В другом варианте осуществления изобретения вертикальная полка уголков полки содержит широкое основание, которое сужается по мере продвижения вверх, образуя наклонную поверхность, обращенную в сторону от несущей рамы.В особенно предпочтительных вариантах осуществления заглушка уголка полки входит в зацепление с нижним пазом элементов из легкого строительного материала, размещенных на угловых секциях. Канавка на нижней поверхности каждого из первого ряда блоков AAC в секции стены входит в зацепление за счет собственного угла.

В другом варианте осуществления уголки полок содержат материал, выбранный из группы, состоящей из подходящих металлов (например, алюминия, стали и т.п.), пластмасс, таких как АБС-пластик, пултрузионное стекловолокно и композитных материалов.В предпочтительном варианте осуществления уголки полок состоят из пултрузионного стекловолокна и / или армированного волокном пластика. В предпочтительных вариантах реализации множество секций уголка полки прикрепляют к внешней поверхности несущего каркаса здания с помощью множества правильно или неравномерно расположенных крепежных устройств, содержащих, помимо прочего, один или несколько винтов, болтов, гвозди, заклепки, клеи и т.п. В случаях, когда крепежные устройства пересекают углы полки, предполагается, что углы полки либо предварительно изготовлены, либо изменены на месте с достаточным количеством отверстий для размещения крепежных устройств.В предпочтительном варианте осуществления секции уголка полки прикреплены к несущему каркасу с помощью множества винтов. В особенно предпочтительных вариантах осуществления винты содержат самосверлящие винты с одноранговым приводом.

В другом варианте осуществления изобретения способы дополнительно включают этап помещения выравнивающего раствора в любые зазоры под углами полок.

В еще одном варианте осуществления настоящего изобретения способы дополнительно содержат этап прикрепления вертикальных ножек множества уголков полки к несущей раме предпочтительно в горизонтальной ориентации; тем не менее, одна или несколько угловых секций полки также могут быть прикреплены вертикально к несущей раме.

Кроме того, предпочтительные зажимные зажимы, секции рельсовой системы и секции полочного уголка содержат материалы, демонстрирующие одно или несколько желаемых свойств, включая, но не ограничиваясь этим, обладающие / достаточно устойчивые к химическому разложению, огнестойкость, плесень, плесень, устойчивость к повреждениям насекомыми и грызунами, высокая ударопрочность, высокая прочность на сдвиг, достаточная обрабатываемость в широком диапазоне температур окружающей среды, минимальное образование тепловых мостиков или его отсутствие и / или легкий вес.Конкретные размеры направляющей системы, зажимов и углов полок не являются критическими для успешного развертывания строительных систем и строительных материалов, если достигаются желаемые свойства стен в отношении прочности, жесткости, пластичности, теплоизоляции, огнестойкости. , устойчивость к повреждениям от насекомых, гниль, плесени и плесени, гидроизоляция и т.п.

В одном варианте осуществления настоящего изобретения несущая рама и бетонная конструкция AAC возводятся на бетонном фундаменте.Однако настоящее изобретение не ограничивается выбором основания или фундамента для использования со способами возведения стен и системами строительных материалов, поскольку настоящее изобретение может быть адаптировано для использования с любой стандартной техникой строительства (например, фундаменты из плит, фундаментные стены, и тому подобное). В другом варианте осуществления настоящего изобретения фундамент представляет собой бетонный фундамент. В другом варианте осуществления изобретения способы строительства дополнительно включают этап крепления первого множества соединительных устройств и / или угловых секций полки к фундаменту.

В одном варианте осуществления изобретения способы дополнительно включают этап добавления клея в верхние и / или нижние канавки блоков AAC перед их размещением на стене. Подходящие клеи включают, помимо прочего, тонкослойный строительный раствор и клеи оружейного качества.

В другом варианте осуществления настоящего изобретения расстояние между внешней поверхностью несущей рамы и внутренней поверхностью бетонной конструкции из AAC составляет от примерно 1 дюйма до примерно 10 дюймов или более, предпочтительно от примерно 1½ дюйма до примерно 8 дюймов, более предпочтительно от примерно 1½ дюйма до примерно 6 дюймов и даже более предпочтительно от примерно 1½ дюйма до примерно 4 дюймов.

В предпочтительных вариантах осуществления изобретения полость, созданная с использованием элементов легкого строительного материала (например, блоков AAC), соединительных устройств (например, зажимов), секций системы направляющих и секций уголка полки настоящего изобретения частично заполнены вспененным структурным пенополиуретаном. В другом варианте осуществления изобретения единственный промежуточный слой (наполнитель) пенополиуретана имеет ширину от примерно 1 дюйма до примерно 10 дюймов, или от примерно 2 дюймов до примерно 10 дюймов или более, более предпочтительно, от примерно 2 дюймов до примерно 8 дюймов и даже более предпочтительно от примерно 3½ дюймов до примерно 6 дюймов.

Подходящие пенополиуретаны для инъекций включают пенополиуретаны, имеющие проницаемость для водяного пара примерно менее одного проницаемости и тепловые характеристики примерно R-5 (или более) на дюйм или более, и / или общее значение интегрированной стеновой системы примерно Р-40. Подходящие пенополиуретаны включают, но ограничиваются ими, пенополиуретаны с закрытыми ячейками, имеющие плотность около двух фунтов. Однако настоящее изобретение не ограничивается какими-либо конкретными полиуретановыми и / или полиуретановыми конструкционными пенами.Действительно, пены, подходящие для использования с настоящим изобретением, обладают по меньшей мере одной, а более предпочтительно несколькими из следующих подходящих характеристик: непроницаемость (т.е. от примерно 100 до примерно 90 до примерно 80-70% непроницаемости) для паров и воды, термобарьерные свойства, сопротивление / предотвращение образования тепловых мостиков, звукоизоляционные / защитные свойства, амортизационные свойства, нулевое (или приемлемо низкое) выделение токсичных и / или вредных паров, огнестойкость и, что важно, необходимые адгезионные качества.

В другом варианте осуществления изобретения внешняя отделка может быть нанесена на внешнюю поверхность бетонной конструкции из AAC. В одном варианте осуществления изобретения внешняя отделка включает отделку из цементной штукатурки. В еще одном варианте осуществления цементная штукатурная отделка включает водонепроницаемую штукатурную отделку, модифицированную или иным образом.

В другом варианте осуществления изобретения любая стандартная внутренняя отделка может быть нанесена на внутреннюю поверхность несущей рамы (т.е.е., занимаемое пространство). В одном варианте осуществления изобретения внутренняя отделка включает любые стандартные материалы и / или методы внутренней отделки стен, такие как гипсокартон, включая гипсокартон, гипсокартон, стеновую плиту, гипсокартон, штукатурку, древесину и композитные древесные панели, но не ограничиваясь ими, бетонные панели, плитка и тому подобное.

Настоящее изобретение обеспечивает множество преимуществ по сравнению с существующими строительными системами. В некоторых вариантах осуществления композиции и способы по настоящему изобретению включают улучшение U.С. Пат. № 8,240,103.

В композитной строительной системе, имеющей: несущую (без оболочки) раму и легкую бетонную конструкцию, а также внутреннюю полость (шириной не менее 1 дюйма) между несущей рамой и легкой строительной единицей, при этом одна сторона конструкции из легкого бетона обращена к несущей (без оболочки) раме, при этом несущая (без оболочки) рама приклеивается к элементу из легкого бетона с использованием, по меньшей мере, одного слоя ( инжектированная) полиуретановая пена, помещенная между несущей (без оболочки) рамой и легким бетоном, полностью заполняющим внутреннюю полость, при этом слой пенополиуретана предотвращает образование теплового моста между несущей (без оболочки) рамой и легким бетоном ; и множество соединительных устройств между несущей (не обшитой) рамой и конструкцией из легкого бетона, при этом усовершенствование включает множество соединительных устройств, удерживаемых с возможностью скольжения в секции рельсовой системы.

Изобретение также включает способ возведения стены, включающий следующие этапы: а) возведение несущего каркаса, имеющего внутреннюю облицовочную поверхность и внешнюю облицовочную поверхность, на опоре, такой как обычный фундамент или плита; б) прикрепление первого множества угловых секций полки (поверх фундамента) на внешней поверхности несущей рамы, при этом каждая из угловых секций полки содержит выступающую вверх стопорную заглушку, при этом каждая из угловых секций полки размещается так, чтобы блокировочная заглушка выходила вверх от фундамента дальше от несущей рамы; c) размещение первого множества элементов из легких строительных материалов (например,g., блоки AAC) наверху угловых секций полки, внешних по отношению к несущей раме, путем вставки фиксирующих заглушек размещенных первых множества угловых секций полки в нижнюю канавку на каждом элементе из легкого строительного материала, так что вертикальная внутренняя полость создается между несущей рамой и первым множеством элементов из легкого строительного материала, при этом каждая единица из легкого строительного материала дополнительно содержит верхнюю канавку, при этом множество элементов из легкого строительного материала имеют внутреннюю поверхность, обращенную к несущей раме, и противоположная внешняя поверхность; d) прикрепление первого множества опорных секций пути к внешней поверхности внешней поверхности несущей рамы; e) прикрепление первого множества секций путевой системы к первому множеству опорных секций пути; f) вставка первого множества соединительных устройств (например,g., зажимные крепления) в первое множество секций рельсовой системы, так что первое множество соединительных устройств удерживается с возможностью скольжения в первом множестве секций рельсовой системы, при этом каждое из первого множества соединительных устройств содержит нисходящий фиксирующий шлейф и восходящий заглушка блокировки, дополнительно в которой каждое из первого множества соединительных устройств размещено таким образом, что нижняя заглушка блокировки вставляется в верхнюю канавку первого множества элементов легкого строительного материала; г) нанесение слоя клея (например,g. тонкослойный раствор) на верхнюю поверхность первого множества элементов легкого строительного материала; h) размещение второго множества легких строительных элементов непосредственно поверх первого множества элементов из легких строительных материалов, при этом каждый из элементов имеет верхнюю канавку и нижнюю канавку, при этом верхний фиксатор первого множества соединительных элементов вставляется в нижний паз второго множества элементов легкого строительного материала; i) повторение этапов (d) — (h) до тех пор, пока не будет достигнута желаемая высота внешней стены и не будет достигнута вертикальная внутренняя полость, разделяющая легкие блоки строительных материалов и несущий каркас; j) нанесение внешней отделки (например,g., двухслойная цементная штукатурка) на внешнюю поверхность блоков из легких строительных материалов; k) впрыскивание пенополиуретана в вертикальную внутреннюю полость и обеспечение возможности расширения и отверждения пенополиуретана; и l) нанесение внутренней отделки на внутреннюю поверхность несущей рамы. Следует понимать, что точный порядок этапов, описанный здесь, может быть изменен или заменен до тех пор, пока желаемая стенка будет достигнута.

Изобретение также включает способ возведения стены, включающий следующие этапы: а) возведение несущего каркаса, имеющего внутреннюю облицовочную поверхность и внешнюю облицовочную поверхность, на опоре, такой как обычный фундамент или плита; б) прикрепление первого множества угловых секций полки поверх фундамента на внешней поверхности несущей рамы, при этом каждая из угловых секций полки содержит выступающую вверх стопорную заглушку, при этом каждая из угловых секций полки размещается таким образом, что блокировочная заглушка проходит в направлении вверх от фундамента, удаленного от несущей рамы; c) размещение первого множества блоков AAC поверх угловых секций полки, внешних по отношению к несущей раме, путем вставки фиксирующих заглушек размещенных первых множества угловых секций полки в нижнюю канавку на каждой блоке из легкого строительного материала, так что между несущей рамой и первым множеством блоков AAC создается вертикальная внутренняя полость, при этом каждая единица из легкого строительного материала дополнительно содержит верхнюю канавку, при этом множество блоков AAC имеют внутреннюю поверхность, обращенную к несущей раме, и противоположная внешняя облицовочная поверхность; d) прикрепление первого множества опорных секций пути (например,ж., балки) на внешней поверхности внешней поверхности несущего каркаса; e) прикрепление первого множества секций путевой системы к первому множеству опорных секций пути; f) вставка первого множества зажимных зажимов в первое множество секций системы направляющих таким образом, чтобы первое множество зажимных приспособлений удерживалось с возможностью скольжения в первом множестве секций системы направляющих, где каждый из первого множества зажимных зажимов содержал нисходящую заглушку блокировки. и восходящую заглушку блокировки, дополнительно в которой каждая из первого множества зажимных зажимов размещена так, что нижняя заглушка блокировки вставляется в верхнюю канавку первого множества блоков AAC; г) нанесение слоя клея (например,g. тонкослойный раствор) на верхнюю поверхность первого множества блоков AAC; h) размещение второго множества блоков AAC непосредственно поверх первого множества блоков AAC, при этом каждый из блоков имеет верхнюю канавку и нижнюю канавку, при этом верхний фиксатор первого множества соединений вставляется в нижнюю канавку. второго множества блоков AAC; i) повторение этапов (d) — (h) до тех пор, пока не будет достигнута желаемая высота внешней стены и вертикальная внутренняя полость, разделяющая блоки AAC и несущую раму; j) нанесение внешней отделки на внешнюю поверхность блоков AAC; k) впрыскивание пенополиуретана в вертикальную внутреннюю полость и обеспечение возможности расширения и отверждения пенополиуретана; и l) нанесение внутренней отделки на внутреннюю поверхность несущей рамы.

Специалистам в данной области техники будет понятно, что соединения между разнородными материалами (а иногда и схожими материалами) и любыми выступами через готовые стены (например, двери, окна, трубопроводы, воздуховоды, конструктивные элементы и т. Д.) Могут выиграть от необязательное включение одного или нескольких подходящих отливов, встречных отливов, каплеуловителей, гибких герметиков, герметиков (например, силиконизированных герметиков), строительных растворов, клеев и т.п. для ограничения проникновения воды и / или пара и / или для обеспечения стабильности.

Ряд стандартных методов испытаний известен в области проектирования конструкций и связанных со строительством технологий, подходящих для количественной оценки желаемых характеристик интегрированных строительных систем и композиций (или их компонентов) по настоящему изобретению, таких, но не ограничиваясь, уровнями водо- и паронепроницаемость, термобарьерные свойства, сопротивление / предотвращение образования тепловых мостиков, акустические свойства гашения / защиты (например, где значение STC составляет около 41 и / или значение OITC составляет около 33), поглощение удара, прочность на сдвиг, пластичность для сейсмостойкости, адгезионные качества, огнестойкость / защита, нулевое (или приемлемо низкое) выделение токсичных и / или вредных газов, устойчивость к гниению, плесени, насекомым и животным и т.п.Специалисты в данной области техники смогут выбрать желаемые свойства различных компонентов систем и материалов стеновых конструкций для соответствующих жилых и / или коммерческих строительных проектов с учетом местных, государственных, национальных и / или федеральных строительных норм и правил, и / или условности, соблюдаемые в определенной области. В предпочтительных вариантах осуществления системы и материалы стеновых конструкций испытываются в соответствии с одним или несколькими тестами Американского общества испытаний и материалов («ASTM») и доказывают их пригодность для использования по назначению (например.g., ASTM C 518, ASTM D1622, ASTM D 2126, ASTM E84, ASTM E90, ASTM E96, ASTM E283, ASTM E330, ASTM E331, ASTM E564 и / или TAS 201, TAS 203 и т.п.).

Существуют дополнительные признаки изобретения, которые будут описаны ниже и составляют предмет прилагаемой формулы изобретения. В этом отношении, прежде чем подробно объяснять по меньшей мере один вариант осуществления изобретения, следует понимать, что изобретение не ограничивается в своем применении деталями конструкции и компоновкой компонентов или этапами конструкции, изложенными ниже. описания или проиллюстрированы на чертежах.Изобретение допускает другие варианты осуществления и может быть реализовано на практике и реализовано различными способами. Понятно, что используемые здесь фразеология и терминология предназначены для целей описания и не должны рассматриваться как ограничивающие.

Для лучшего понимания изобретения, его эксплуатационных преимуществ и конкретных целей, достигаемых при его использовании, следует сделать ссылку на прилагаемые чертежи и описательный материал, в котором проиллюстрированы предпочтительные варианты осуществления изобретения.Другие особенности и преимущества настоящего изобретения станут очевидными из следующего описания предпочтительного варианта (ов) осуществления, взятого вместе с прилагаемыми чертежами, которые иллюстрируют в качестве примера принципы изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

РИС. 1А показан вид в изометрии типичного участка стенной системы в сборе. ИНЖИР. 1В показан типичный вид стенной системы в сборе с внешней стороны здания.ИНЖИР. 1С показан типичный вид стенной системы в сборе изнутри здания. ИНЖИР. 1D показан вид в разрезе стенной системы в сборе изнутри здания.

РИС. 2 показан типичный разрез стенной системы в сборе у фундамента.

РИС. 3 иллюстрирует вид сверху типичного участка стенной системы в сборе у угловой стены и оконного косяка.

РИС. 4 показан типичный разрез стенной системы в сборе на промежуточном этаже.

РИС. 5 иллюстрирует типичный разрез стенной системы в сборе у оконной головки и подоконника.

РИС. 6 показан типичный разрез стенной системы в сборе на плиточном фундаменте с внешней площадью.

РИС. 7 иллюстрирует типичный вид в разрезе стенной системы в сборе изнутри здания у основной стены.

РИС. 8 показаны поперечные сечения типичной системы рельсов и зажимной скобы настенной системы в сборе.

РИС.9 показано поперечное сечение типичного уголка полки стенной системы в сборе.

ПОДРОБНОЕ ОПИСАНИЕ

Хотя несколько вариантов настоящего изобретения были проиллюстрированы в качестве примеров в предпочтительных или конкретных вариантах осуществления, очевидно, что дополнительные варианты осуществления могут быть разработаны в пределах сущности и объема настоящего изобретения или его изобретательской концепции. .

Изобретение включает новую стеновую систему для жилого и легкого коммерческого строительства, которая включает в себя элементы из легких строительных материалов, такие как блоки AAC.Эта стеновая система включает внешнюю стену, состоящую из блоков AAC, соединенных с внутренним деревянным или металлическим несущим (структурным) каркасом. Блоки AAC будут прикреплены к каркасу с помощью новых строительных зажимов. Кроме того, полость или пространство между каркасом и внутренней поверхностью наружной стены, содержащей блоки AAC, заполнены структурной изоляцией из пенополиуретана, чтобы склеить каркас и стены вместе и обеспечить изоляцию, герметичность и пароизоляцию. Наружные поверхности стен AAC дополнительно покрыты водонепроницаемой цементной штукатуркой.Внутренняя часть несущего каркаса приобретает типичную внутреннюю отделку.

РИС. 1-7 в общем показаны виды в изометрии, в плане и в разрезе некоторых типичных вариантов строительных материалов и способов строительства по настоящему изобретению для строительства новой системы стен. В этих вариантах осуществления, как показано на типичных чертежах, несущая рама (без оболочки) 2 из дерева и / или металла (например, стали) возводится с помощью ветровой распорки 3 (см. ФИГ.1B) (например, стальные ветровые распорки) на обычном бетонном фундаменте 1 . Обшивка не применяется.

В частности, фиг. 1A показан детальный вид в изометрии секции гусеничной системы 10 , имеющей скользящие фиксаторы 8 с фиксирующими штифтами 8 c и 8 d зацепление / установка для зацепления с канавкой (канавками) 7 в блоке AAC 5 . Участок гусеницы 10 крепится с помощью приспособлений для крепления 9 (т.е.г., винты) к направляющей опорной секции 16 . К несущей раме 2 прикреплен участок опоры гусеницы 16 (балка). Кроме того, фиг. 1A показан первый ряд блоков 5 AAC, поддерживающих второй ряд блоков 5 AAC с (выравнивающим) слоем тонкослойного раствора 6 между рядами.

РИС. 2 показан уровень поверхности здания (без номера) снаружи бетонного фундамента 1 . В одном варианте осуществления изобретения несущая рама 2 может быть прикреплена к бетонному фундаменту 1 с помощью болтов (не показаны) на расстоянии от 7 дюймов до 9 дюймов внутрь от внешнего края бетонного фундамента 1 .

Уголок полки 4 или стартовый элемент представляет собой непрерывную пултрузионную полку из стекловолокна 4 , которая прикреплена 9 (например, привинчена) к несущей раме 2 на горизонтальной плоскости для создания стартера уровня . Выравнивающий раствор 6 можно добавлять под уголки полок 4 в любые зазоры между углами полок 4 и фундаментом 1 . Уголки полок 4 имеют непрерывный фиксатор 4 d , который входит в нижнюю канавку 7 блоков AAC 5 .Уголки полки 4 также содержат вертикальную ножку 4 c с отверстием для продольного винта 4 b для крепления уголка полки 4 к несущей системе каркаса 2 с помощью винтов или болты 9 .

Уголок полки 4 крепится непрерывно вокруг основания несущей рамы 2 на ровной плоскости поверх бетонного фундамента 1 . Штифты блокировки 4 d углов полки 4 образуют ровную стартовую дорожку.Тонкослойный раствор 6 толщиной от примерно 1/16 дюйма до примерно дюйма или более помещается над стартовой дорожкой, а блоки 5 AAC укладываются на ровную стартовую дорожку. Блоки 5, AAC имеют по две канавки 7, сверху и снизу, которые могут иметь глубину приблизительно ½ дюйма и ширину дюйма. Поскольку блок AAC 5 укладывается на стартовую дорожку, штыри блокировки 4 d углов полки 4 вставляются в нижние канавки 7 блоков AAC 5 .

В другом варианте осуществления изобретения клей может быть добавлен в канавки 7 для обеспечения дополнительного прикрепления блоков AAC 5 к уголкам полок и различным зажимным зажимам 8 , раскрытым в изобретении.

В одном варианте осуществления изобретения блоки AAC являются защищенными от насекомых, легкими и изолирующими. В другом варианте осуществления изобретения блоки 5, AAC могут иметь толщину от около 2 дюймов до около 6 дюймов или более, высоту от около 8 дюймов до около 24 дюймов или более и длину от около 24 дюймов. приблизительно до 48 дюймов или более, хотя настоящее изобретение не ограничивается конкретными легкими конструктивными элементами и / или размерами блоков AAC.В предпочтительном варианте осуществления изобретения блоки 5, AAC имеют толщину 3 дюйма и поверхность 24 дюйма × 24 дюйма.

В конкретных вариантах осуществления, после того, как начальный набор блоков AAC 5 размещен над блокировочными штифтами 4 d углов полки через нижние канавки 7 , множество опорных секций гусеницы 16 расположено горизонтально (уровень) крепится к несущему каркасу с помощью приспособлений для крепления 9 (эл.g., винты) таким образом, что секции 10 гусеничной системы, впоследствии или ранее прикрепленные к ним с помощью крепежных устройств 9 (например, винты), располагаются так, чтобы со скольжением удерживать множество зажимов 8 , имеющих выступающие вверх стопорные штифты. 8 c и выступающие вниз заглушки блокировки 8 d , расположенные для зацепления с канавками 7 на одной или нескольких поверхностях (например, сверху, снизу, по бокам, концам) множества блоков AAC 5 на первый, второй, третий, четвертый и т. д., ход (и) блоков AAC 5 при возведении стены.

Как показано на фиг. 8, зажимной зажим 8 содержит секцию основного корпуса 8 и , которая определяет горизонтальную ось зажимного зажима 8 , и четыре выступа от него: первый, скользящий участок крепления 8 b , который, в свою очередь, содержит две ножки Y-образной формы, выходящие из основной части корпуса 8 a зажимной застежки 8 ; во-вторых, шлейф блокировки вверх 8 c ; и, в-третьих, нисходящий фиксатор 8 d .Скользящая фиксирующая часть 8 b образует первый конец зажимного зажима 8 . Восходящий фиксатор 8 c и нижний фиксатор 8 d , соответственно, выходят из основного корпуса 8 и зажимного зажима 8 . Восходящий фиксатор 8 c и нижний фиксатор 8 d , соответственно, образуют второй конец зажимного зажима 8 .Каждая из ножек скользящей анкерной части , 8, , b, , зажимной застежки 8, оканчивается полукруглым загнутым внутрь концом в форме крючка. ИНЖИР. 8 также показано поперечное сечение секции рельсовой системы 10, . Гусеничная система 10 содержит корпус основного канала 10 a и два перпендикулярных выступа 10 b от основного корпуса в верхней и нижней части секции 10 гусеничной системы соответственно.В предпочтительных вариантах реализации каждый из выступов 10 b , в свою очередь, оканчивается обращенным внутрь скошенным (или полукруглым) выступом 10 c , который оптимизирован для удержания со скольжением сопряженных полукруглых концов каждой из ножек скользящей части крепления. 8 b клипсы 8 . ИНЖИР. На фиг.1А показаны полукруглые концы каждой из ножек скользящей анкерной части 8 b зажимной застежки 8 , принимаемые соответствующими выступами 10 b рельсовой системы 10 и скользящие с ними.Каждая секция секции 10 гусеничной системы предпочтительно дополнительно содержит множество отверстий (не показаны), которые пересекают секцию корпуса 10 и основного канала для приема крепежных устройств 9 , чтобы таким образом закрепить секцию 10 гусеничной системы на секция опоры гусеницы 16 (опоясывающая) или закрепите ее непосредственно на несущей раме 2 .

Множество зажимов 8 удерживаются с возможностью скольжения в секциях 10 гусеничной системы, устанавливая блоки 5 AAC на расстоянии от несущей рамы 2 от примерно 1 дюйма до примерно 3½ дюйма или более.Нижний фиксатор 8 d вставляется в верхние пазы 7 блоков AAC 5 , а верхний фиксатор 8 c вставляется в нижний паз 7 следующего слоя Блоки AAC 5 .

В этом варианте осуществления изобретения слои зажимов 8 и блоков 5 AAC размещены друг над другом и соединены с каркасом. В предпочтительном варианте осуществления изобретения смещение между несущей рамой 2 и блоками 5 AAC составляет примерно 3½ ‘.

В предпочтительных вариантах осуществления после установки блоков AAC 5 окна 13 (например, фиг. 3 и 5), двери, электропроводка и водопроводные системы, а также другие системы и подсистемы строительной конструкции может быть установлен.

В настоящем изобретении вертикальная полость между несущим каркасом 2 и стенкой из блоков AAC 5 заполнена вспененным пенополиуретаном средней плотности с закрытыми ячейками 14 .Поскольку пенополиуретан 14 является адгезивным и структурным, все компоненты стены и системы стеновых конструкций соединены в единую композитную конструкцию с большой прочностью. В одном варианте осуществления изобретения пенополиуретан 14, может быть водонепроницаемым, паронепроницаемым и нетоксичным с высоким термическим сопротивлением. В дополнительном варианте осуществления настоящего изобретения пенополиуретан , 14, может иметь проницаемость для водяного пара менее одного допуска на метр и тепловые характеристики примерно R-5 на дюйм или более.Обычная отделка, такая как штукатурка, может быть нанесена на внутреннюю часть стены , 15, (см. Фиг. 2).

Наружные поверхности блоков AAC 5 покрыты цементной штукатуркой 12 . В одном варианте осуществления настоящего изобретения штукатурная отделка , 12, может быть ударопрочной, водонепроницаемой и декоративной во множестве цветов.

РИС. 3 иллюстрирует вид сверху типичного участка стенной системы в сборе у угловой стены и оконного косяка.В этом варианте показано включение окна , 13, в конструкцию стены. Снаружи окно 13 заделано силиконизированным герметиком 17 . Точно так же фиг. 5 показан вид в разрезе типичного участка стенной системы в сборе у оконной головки и подоконника. В этом варианте осуществления настоящего изобретения показано включение окна , 13, в конструкцию стены. Перемычки создаются при помощи полки уголка 4 , привинченной к балке перемычки 11 несущей рамы 2 .

РИС. 4 иллюстрирует один вариант осуществления вида в разрезе промежуточного этажа стенной системы в сборе. В этом варианте осуществления каркасная балка может разделять полы в конструкции, как известно специалистам в данной области техники.

РИС. 6 показан вид в разрезе типичного участка стенной системы в сборе на плиточном фундаменте. В этом варианте выполнения брусчатка , 18, показана как часть обработки внешней поверхности плиты фундамента 1 .

РИС.7 иллюстрирует типичный вид в разрезе стенной системы в сборе изнутри здания у основания стены ствола. В этом варианте осуществления показано одно частичное применение материалов и систем для строительства стен ниже уровня 19 по настоящему изобретению. В этом варианте осуществления может быть предусмотрена дренажная система 20, , известная специалистам в данной области техники.

РИС. 9 показано поперечное сечение уголка 4, полки настенной системы в сборе.В этом варианте осуществления горизонтальная секция основания 4 a и отверстие 4 b , пересекающее вертикальную опору 4 c для крепления с помощью устройства крепления 9 к несущей раме 2 , а также заглушка непрерывной блокировки 4 d .

В одном варианте осуществления застежки-клипсы по настоящему изобретению могут иметь длину от 3 дюймов до 10 дюймов. В другом варианте осуществления базовые поверхности зажимных застежек по настоящему изобретению могут иметь высоту от ″ до 4 дюймов и ширину от ″ до 4 дюймов.В дополнительном варианте осуществления выступы зажимных застежек по настоящему изобретению могут иметь высоту от примерно 1/4 дюйма до примерно 4 дюймов и ширину от примерно 1/4 дюйма до примерно 4 дюймов. В одном варианте осуществления настоящего изобретения результирующая общая толщина стенки составляет от примерно 8 дюймов до примерно 16 дюймов или более.

Автоклавный газобетон 2020. Автоклавный газобетон (AAC) — это… | by Marc Strewart

Автоклавный газобетон (AAC) состоит из отличных заполнителей, цемента, ростового агента, который заставляет современную комбинацию подниматься, как тесто.Фактически, этот сорт бетона на 80% содержит воздух. В производственном отделении, где бы она ни создавалась, ткани придают форму и снимают гаджеты с точными размерами.

Мировой рынок автоклавного газобетона оценивался в 3840,64 млн долларов США в 2018 году и, как ожидается, достигнет 6 658,37 млн долларов США к 2026 году при среднегодовом темпе роста 7,12% в течение прогнозного периода 2019–2026 годов.

Затвердевшие блоки или панели из ячеистого бетона в автоклаве, соединенные строительным раствором с тонким слоем.детали часто используются для перегородок, полов и крыш. Легкая ткань обеспечивает отличную звуко- и теплоизоляцию, и, как и все материалы на цементной основе, прочны и устойчивы к возгоранию. Чтобы быть прочным, AAC подразумевает некоторое разнообразие накладываемых концов в сочетании с модифицированной полимером штукатуркой, ароматизатором, искусственным камнем или сайдингом.

Ключевые аспекты AAC, независимо от того, планируете ли вы его или строите с ним или нет, единицы площади, указанные ниже:

Преимущества

Автоклавный газобетон сочетает изоляционные и структурные возможности в одном единственном материале для перегородок, полов, и крыши.Его легкий вес / мобильные дома позволяют легко масштабировать, брить и придавать форму, быстро принимать гвозди и шурупы и направлять его для формирования пазов для электрических проводов и трубопроводов меньшего диаметра. Это обеспечивает гибкость его компоновки и создания, а также возможность внести чистые изменения в сектор.

Прочность и стабильность размеров. Материал на основе цемента, AAC устойчив к воде, гниению, плесени и насекомым. Единицы измерения площади точно сформированы и соответствуют жестким допускам.

Огнестойкость великолепна, AAC толщиной восемь дюймов достигает 4-часового срока службы (фактическая производительность превышает это значение и соответствует требованиям проверки до восьми часов). И благодаря тому, что он на много километров негорючий, он не горит и не выделяет токсичных паров.

Легкий вес приближается к тому, что значения R для единицы площади AAC соответствуют типичным стенам каркаса, но они требуют более высокой тепловой массы, обеспечивают воздухонепроницаемость и, как просто отмечено, не горючие. Этот легкий вес, кроме того, обеспечивает чрезмерное шумоподавление для уединения, как от внешнего шума, так и от совершенно разных комнат при использовании в качестве внутренних перегородок.

Но ткань будет иметь некоторые ограничения. он не так широко представлен на рынке, как большинство конкретных товаров, хотя его можно будет доставить куда угодно. Если его нужно отправить, его тонкий вес имеет преимущество. из-за того, что его прочность на несколько миль меньше, чем у большинства бетонных изделий или конструкций, в несущих конструкциях, его следует значительно усилить. Он также нуждается в защитном конце, так как материал пористый и может попасть в горшок, если оставить его открытым.

Размеры

Должны быть как блоки, так и единицы площади панелей.Блоки площади укладывались одинаково с древней кладкой, но с тонким слоем раствора, а единицы площади панелей стояли вертикально, охватывая всю высоту этажа. По желанию конструкции, залитые, усиленные ячейки и единицы площади балок устанавливаются в секции стены. (Вогнутые углубления на вертикальных краях образуют цилиндрическую середину между двумя соседними панелями.) Для древних применений вертикальные ячейки находятся в углах, на каждой стороне отверстий и на расстоянии от 6 до 8 футов на стене. AAC в среднем составляет около тридцати семи фунтов на единицу мощности (PCF), поэтому блоки также можно размещать вручную, но панели из-за их длины, как правило, требуют небольшого подъемного крана или совершенно другого устройства.

> Панели усиливаются от земли до вершины стены:

> Высота: до двадцати футов

> Ширина: двадцать четыре дюйма

> Толщина: полдюжины, 8, 10 или двенадцать дюймов (четыре дюйма толщиной внутри

> Блоки по площади гигантские и легче древней бетонной кладки:

> Высота: обычно восемь дюймов

> Ширина: двадцать четыре дюйма в длину

> Толщина: четыре, 6, 8, 10 и двенадцать дюймов

A most well -похоже на 8-на-восемь-на-24 дюйма.устройство весит около тридцати трех фунтов;

Особые формы:

U-образная связка балок или единиц площади блоков заголовка должна иметь толщину восемь, 10 и двенадцать дюймов.

Единица площади блоков языка и паза должна быть получена от пары производителей, и они должны быть частью соседних блоков без раствора на вертикальных краях.

На рынке порошковые блоки для выращивания вертикальных усиленных ячеек для раствора.

Монтаж, соединения и отделка

Из-за сходства с древней бетонной кладкой, блоки (блоки) из автоклавного газобетона также можно было просто установить с помощью бетонных каменных блоков.Иногда плотникам мешают монтажные работы. Единица площади панелей тяжелее из-за их длины и необходимости использования подъемного крана для установки. Производители проводят обучающие семинары, и обычно нормально иметь одного или двух опытных установщиков на небольшом количестве товаров. делая ставки на выбранный тип завершения, они будут напрямую привязаны или обычно связаны с лицом AAC.

Блок

AAC_walls Первый ряд устроен и выровнен. Блоки, уложенные друг на друга, соединяются тонким слоем строительного раствора в очень удобной связке с минимальным 6-дюймовым перекрытием.

Единица площади стен, измеренная, выровненная и квадратная с помощью резинового молотка.

Единица площади проемов и нестандартных углов вырезается столярной пилой или пильным станком.

Арматура размещает арматурный стержень, определяемый единицей площади, и происходит заливка раствора. Затирку нужно постоянно взбалтывать, чтобы она затвердела.

Блок измерения площади приклеиваемых балок расположен у изголовья стены и может использоваться для крепления тяжелых приспособлений.

Панели

Единицы площади панелей размещаются по одной, начиная с угла.Единица площади панелей устанавливается в слой тонкослойного раствора, и вертикальная арматура прикрепляется к дюбелям, выступающим снизу вверх, до того, как будет найдена соседняя панель.

Нон-стоп скрепляющая балка формируется наверху либо из фанеры и материала AAC, либо из скрепляющей балки.

Отверстия также можно вырезать заранее или на месте.

Соединения

Рама / каркас крыши соединяется с традиционной опорной пластиной или циклонными ремнями, встроенными в соединительную балку.

Каркас пола соединен с наиболее популярными ригелями, закрепленными на фасете сборки AAC, прилегающей к соединительной балке.

Напольные системы AAC опираются непосредственно на перегородки AAC.

Пластины для сварных швов или пластины с болтами, установленные в соединительной балке, более крупной конструкции из бронзы.

Отделка

AAC_finish Отделка под штукатурку предназначена специально для AAC. Эти модифицированные полимером штукатурки герметизируют от проникновения воды, но пропускают пары влаги для обеспечения воздухопроницаемости.

Обычный сайдинг автоматически прикрепляется к поверхности стены. Если желателен возврат воздуха из сайдингового материала, необходимо использовать опушку.

Кладочный шпон можно без промедления приклеить к поверхности стены или сконструировать как пустотелые стены. Виниры прямого наложения, как правило, представляют собой легкие материалы, такие как искусственный камень.

Соображения по вопросам устойчивого развития и энергетики

Автоклавный газобетон дает как ткань, так и рабочие характеристики с точки зрения устойчивости.Что касается ткани, она может содержать переработанные вещества, такие как летучая зола и арматура, которые могут способствовать внесению взносов в кредиты в системе LEED® или других экологических рейтинговых системах. Кроме того, он состоит из такого большого количества воздуха, что состоит из гораздо меньшего количества необработанной ткани, чем многие другие строительные продукты.

С точки зрения производительности, машина заканчивается плотно прилегающими конструкциями. Это создает энергосберегающую оболочку и защищает от нежелательных потерь воздуха.Физическая проверка демонстрирует экономию финансовых средств на отопление и охлаждение примерно от 10 до 20 процентов по сравнению с традиционной конструкцией кузова. В бескровном климате экономия может быть несколько меньше, потому что эта ткань имеет меньшую тепловую массу, чем другие разновидности бетона. В зависимости от местоположения производства относительно веб-страницы задачи, AAC может также вносить вклад в кредиты на материалы по соседству в нескольких неопытных конструкторских рейтинговых структурах.

AAC_exterior

Производственные и физические свойства

Во-первых, несколько элементов объединяются прямо в суспензию: цемент, известь, вода, мелкоизмельченный песок и часто летучая зола.Вводится расширительный агент, такой как алюминиевый порошок, и жидкая комбинация становится твердой прямо в массивной заготовке. Когда суспензия реагирует с ростовым агентом с образованием пузырьков воздуха, комбинация расширяется. После предварительного застывания полученный «пирог» измельчается проволокой на блоки или панели точного размера, после чего запекается (автоклавируется). Тепло позволяет ткани быстрее застыть, чтобы блоки и панели сохранили свои размеры. Армирование располагается внутри панелей до отверждения.

> AAC_floating Этот метод производства позволяет получить легкий негорючий материал с последующим размещением:

> Плотность: от 20 до 50 фунтов на кубический фут (PCF) — этого достаточно, чтобы плавать в воде.

> Электроэнергия сжатия: от трехсот до 900 фунтов в зависимости от прямоугольного дюйма (psi)

> Допустимое напряжение сдвига: от восьми до 22 psi

> Термическое сопротивление: 0.от восьми до 1,25 с шагом дюйма. Толщина

> Класс передачи звука (STC): сорок для толщины 4 дюйма; сорок пять для толщины 8 дюймов

Автоклавный газобетон

В настоящее время нет никаких изменений в ассоциации, представляющей отрасль автоклавного газобетона. Тем не менее, производство AAC существует в Северной Америке. Мы предлагаем вам поискать в Интернете представителей поставщиков, которые могут помочь вам с доступностью продукции для вашего региона.

AAC Projects

История трех городов: универсальность жилого пространства AAC

AAC_Dodson_100px Использование автоклавного газобетона (AAC) дает множество преимуществ. Возможно, свидетельством универсальности AAC является то, что три жилых проекта, описанные здесь, совершенно разные — тем не менее, они представляют собой общий объект защиты. Огромный частный особняк в лесной зоне, строительство которого ведется самим владельцем; скромный частный семейный дом на лесистой веб-странице, спроектированный архитектором, стремящимся к экологически безопасному и здоровому образу жизни; и масштабная застройка вдоль побережья залива Луизиана, требующая повышенной устойчивости к погодным условиям.

Handal Home, Мэриленд: простота и безопасность

Эта огромная резиденция (6800 квадратных футов), расположенная в лесу на юге Мэриленда, ставила перед собой несколько производственных проблем. Таким образом, собственник, который сам руководил строительством, захотел иметь простую систему. Так получились 12-дюймовые блоки AAC. Он хотел, чтобы их теплоизоляционные и негорючие свойства соответствовали параметрам лесной зоны дома, включая низкие температуры и, возможно, опасность для камина.По его словам, простота AAC позволяет ему за один шаг собрать конструктивную стену, которая будет изолирована, защищена от термитов и подготовлена ​​для отделки. Ему не нужно было прикреплять сайдинг, предпочитая альтернативные варианты отделки, выполненной напрямую: гипсовую штукатурку для интерьера и лепнину для экстерьера.

Дом Додсона: здоровый и безмятежный

Несколько лет назад, когда архитектор Элис Додсон выбрала AAC для строительства собственного дома, он частично изменился по соображениям здоровья и окружающей среды.Давний сторонник устойчивого развития, она также уже следила за Bau-Biologie. Относительно неизвестный в Соединенных Штатах, но хорошо зарекомендовавший себя в Европе среди архитекторов и медицинских работников, Bau-Biologie строит биологию или строит для жизни.

Это произошло в результате того, что быстрое производство в постконфликтной Германии вызвало то, что мы теперь называем синдромом больного здания. Тогда, как и сейчас, она искала здоровые конструктивные решения. С этой целью она решила использовать блоки и панели из AAC, чтобы обеспечить воздухопроницаемость каменных стен, которые не выделяют летучие органические соединения (ЛОС).Это создает экологически чистое здание с тихой и спокойной атмосферой. А когда ее муж-пожарный занялся строительным методом, негорючие материалы стали необходимы.

Оболочка из AAC дополнительно обеспечивает точную тепловую массу и изоляцию. Благодаря прочному корпусу, дополненному солнечными батареями и дровяной печью, счета за бензин в течение первого года составляли всего сотню долларов для дома площадью 4000 квадратных футов.

Дом может находиться в тепле от двух до трех дней даже после отключения электроэнергии.Додсону нравится, как из материала можно вылепить с помощью деревообрабатывающего оборудования многочисленные формы и элементы, такие как колонны и камины, и он по-прежнему является сторонником AAC с клиентами, которые восхищаются его универсальностью и эстетическими возможностями.

Роща на пляже Инлет: безопасность и устойчивость к погодным условиям

Эта история успеха ускользнула из-за разрушений в результате урагана Катрина. The Grove at Inlet Beach — это первый жилой комплекс с высокой плотностью застройки, созданный компанией Florida Panhandle, полностью отвечающий требованиям AAC. Он призван противостоять неблагоприятным климатическим условиям и проблемам безопасности на побережье Мексиканского залива.Все стены, полы и потолки этого единого круга резиденций родственников выполнены из панелей и блоков AAC. Превосходный рейтинг камина (4 часа на 4 дюйма) стал ключом к утверждению местного зонирования, и в результате не возникло никаких проблем с конструкцией камина.

Когда прибывают ураганы, эти системы готовы выдержать 150 миль в соответствии с часовым ветром (четвертая категория), и при надлежащем усилении могут быть спроектированы так, чтобы противостоять ветрам со скоростью двести миль в час и более (Категория 5).Дома AAC не разрушаются в результате наводнений: они противостоят растущей воде, гниению, плесени и плесени, и их можно чистить, перекрашивать и открывать для жителей без необходимости восстановления.

Как будто безопасности и устойчивости к погодным условиям было недостаточно, чтобы выбрать AAC для своего дома, разработчик рассчитывает сэкономить 35 процентов на счетах за коммунальные услуги и 65 процентов на страховых взносах.

Комфорт бетона

AAC_hotel_100pxНекоторые посетители курорта Джорджии сегодня ночью лучше спят благодаря автоклавному газобетону (AAC).Примерно в часе езды от Атланты, где находится отель «Форсайт», штат Джорджия, «Комфорт Сьютс», узкий участок, примыкающий к автомагистрали между штатами, создавал несколько сложных ситуаций. А чрезмерная стоимость земли делает все более обычным создание веб-сайтов, которым присущи сложные ситуации, а также шум, неровная местность или минимальные препятствия. Таким образом, разработчики превратились в конкретную машину, которая помогала удовлетворить их желания в выполнении первоклассной задачи — в данном случае — в прочном, тихом четырехэтажном здании рядом с оживленным шоссе.

Подробнее на AAC.

Заявление об ограничении ответственности

Список компаний и информационных ресурсов не является ни одобрением, ни рекомендацией со стороны Portland Cement Association (PCA). PCA отказывается от каких-либо обязательств по выбору индексируемых корпораций и продуктов, которые они представляют. PCA дополнительно не несет ответственности за ошибки и упущения в этом списке.

R-ЗНАЧЕНИЯ И U-ФАКТОРЫ ДЛЯ ОДНОГО БЕТОНА КЛАДКИ

ВВЕДЕНИЕ

Однослойные бетонные стены из кирпича часто строятся из пустотелых блоков с сердцевиной, заполненной изоляцией и / или цементным раствором.Этот метод строительства позволяет использовать изоляцию и армирование для повышения тепловых и конструкционных характеристик, соответственно, без увеличения толщины стены.

U-факторы и R-значения используются для оценки теплового потока в установившихся условиях (без учета влияния тепловой массы). Эти установившиеся значения могут использоваться в сочетании с такими факторами, как тепловая масса, климат и ориентация здания, для оценки тепловых характеристик оболочки здания, обычно с использованием программного обеспечения.

В этом TEK перечислены значения термического сопротивления (R) и коэффициента теплопередачи (U) одинарных стен. R-значения стенок полости перечислены в TEK 6-1C, R-Values ​​of Multi-Wythe Concrete Masonry Walls (ref. 1).

R-значения / U-факторы, перечисленные в этом TEK, были определены путем расчета с использованием признанного в кодексе метода последовательно-параллельных (также называемых изотермическими плоскостями) расчетного метода (ссылки 2, 3, 4). Этот метод учитывает тепловые мосты (потери энергии), возникающие через стенки бетонных блоков.Метод полностью описан в ТЭК 6-1С. Альтернативные утвержденные кодексом средства определения R-значений бетонных стен из каменной кладки включают двухмерные расчеты и испытания (см. 2).

БЕТОННАЯ КЛАДКА ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Хотя этот TEK представляет собой сборник R-значений и U-факторов для бетонной кладки, важно отметить, что сами по себе R-значения / U-факторы не полностью описывают тепловые характеристики бетонной кладки.

Тепловые характеристики бетонной кладки зависят как от ее стационарных тепловых характеристик (описываемых значением R или U-фактора), так и от ее характеристик теплоемкости (теплоемкости). На установившееся состояние и массовые характеристики влияют размер, тип и конфигурация кирпичной кладки, тип и расположение изоляции, отделочные материалы, плотность кладки, климат, ориентация здания и условия воздействия.

Термическая масса описывает способность материалов накапливать энергию.Из-за своей сравнительно высокой плотности и удельной теплоемкости кладка обеспечивает очень эффективное аккумулирование тепла. Кирпичные стены сохраняют свою температуру долгое время после отключения отопления или кондиционирования воздуха. Это, в свою очередь, эффективно снижает нагрузку на отопление и охлаждение, смягчает колебания температуры в помещении и переносит нагрузку на отопление и охлаждение на непиковые часы.

Благодаря значительным преимуществам собственной тепловой массы бетонной кладки, здания с бетонной кладкой могут обеспечивать такие же энергетические характеристики, как и более сильно изолированные здания с легким каркасом.

Эти тепловые массовые эффекты были включены в требования энергетического кодекса, а также в сложные компьютерные модели. Из-за тепловой массы энергетические нормы и стандарты, такие как Международный кодекс энергосбережения (IECC) (ссылка 5) и стандарт энергоэффективности для зданий, за исключением малоэтажных жилых домов, стандарт ASHRAE 90.1 (ссылка 2) требует меньшей изоляции в сборках из бетонной кладки, чем эквивалентные системы легкого каркаса. Хотя это применимо ко всем климатам, большие преимущества термальной массы, как правило, обнаруживаются в более теплом климате (климатические зоны с меньшим номером).

Несмотря на то, что тепловая масса и присущее R-значение / U-фактор бетонной кладки может быть достаточным для удовлетворения требований энергетического кодекса (особенно в более теплом климате), бетонные кладки могут потребовать дополнительной изоляции, особенно когда они спроектированы в соответствии с более современными требованиями строительных норм или правил. для достижения тепловых характеристик, указанных выше. Для таких условий доступно множество вариантов утепления бетонной кладочной конструкции.

Хотя в целом более высокие значения R уменьшают поток энергии через элемент здания, значения R оказывают меньшее влияние на общее потребление энергии оболочкой здания.Другими словами, важно не приравнивать автоматически более высокую ценность R к повышению энергоэффективности. В качестве примера рассмотрим двухэтажную начальную школу в Боулинг-Грин, штат Кентукки. Если эта школа построена с использованием однослойных бетонных стен с только ячеистой изоляцией, и результирующее значение R стены составляет 7 часов в час 2. ° F / BTU (1,23 м² · K / Вт), оценка энергопотребления ограждающей конструкции здания для этого структура составляет примерно 27 800 БТЕ / фут² (87,7 кВтч / м²), как показано на Рисунке 1. Если мы увеличим R-значение стены до R14, добавив дополнительную изоляцию, сохраняя при этом другие переменные оболочки постоянными, потребление энергии оболочкой здания снизится. всего на 2.5%, что не пропорционально удвоению R-значения стенки. Рисунок 1 иллюстрирует эту тенденцию: по мере того, как R-значение стены увеличивается, оно все меньше и меньше влияет на тепловые характеристики ограждающей конструкции здания.

В этом примере значение R стены больше, чем примерно R12, больше не оказывает значительного влияния на использование энергии огибающей. На данный момент имеет смысл вкладывать средства не только в изоляцию стен, но и в меры по повышению энергоэффективности.

При необходимости бетонная кладка может обеспечить сборки со значениями R, превышающими минимальные нормы кода.Однако для общей экономии проекта отрасль рекомендует балансировать потребности и ожидаемые характеристики с разумными уровнями изоляции.

Рисунок 1 — Уменьшение отдачи от дополнительной теплоизоляции стен

СООТВЕТСТВИЕ КОДЕКСУ ЭНЕРГИИ

Соответствие нормативным требованиям энергетического кодекса может быть продемонстрировано:

  • бетонная кирпичная стена сама по себе или бетонная каменная стена плюс предписанная R-ценность дополнительной изоляции, или
  • — общий коэффициент теплопередачи стены.

Таблица нормативных значений R IECC требует «непрерывной изоляции» бетонной кладки и других массивных стен. Имеется в виду изоляция, не прерываемая обшивкой или стенками бетонных блоков. Примеры непрерывной изоляции включают жесткую изоляцию, приклеенную к внутренней части стены с помощью опалубки и гипсокартона, нанесенные поверх изоляции, непрерывную изоляцию в полости стены с каменной кладкой, а также системы внешней изоляции и отделки. Эти и другие варианты изоляции для бетонных кладок обсуждаются в TEK 6-11A, Изоляция бетонных стен (см.6).

Если бетонная кладка не будет включать непрерывную изоляцию, есть несколько других вариантов соответствия требованиям IECC — бетонные блоки не должны иметь непрерывную изоляцию, чтобы соответствовать IECC, независимо от климатической зоны.

Другие методы обеспечения соответствия включают: предписывающие таблицы U-факторов и компьютерные программы, которые могут требовать ввода U-факторов и теплоемкости (свойство, используемое для указания количества тепловой массы) для бетонных стен из каменной кладки.См. TEK 6-4B, Соответствие энергетическому кодексу с помощью COMcheck, (ссылка 7) для получения более подробной информации. Другой метод соответствия, метод расчета затрат на энергию, включает в себя сложное моделирование для оценки годовой стоимости энергии в здании.

Более полное обсуждение соответствия IECC бетонной кладки можно найти в TEKs 6-12C (для IECC издания 2006 г.), 6-12D (для IECC 2009 г.) и 6-12E (для IECC 2012 г.) (refs. 8, 9, 10).

КОНФИГУРАЦИЯ БЕТОННОЙ КЛАДКИ

Изменения в 2011 г. к Стандартным техническим условиям ASTM C90¸ для несущих бетонных блоков (см.11) значительно сократили минимальное количество веб-материалов, необходимых для CMU. Значения в этом TEK основаны на бетонных кирпичных элементах с тремя перемычками, каждая из которых составляет полную высоту элемента и имеет минимальную толщину, как это предусмотрено в исторических версиях ASTM C90 (см. Таблицу 1).

Изменения в C90, однако, допускают гораздо более широкий диапазон конфигураций полотна с соответствующими изменениями в R-значениях и U-факторах (поскольку полотна CMU действуют как тепловые мосты, уменьшение веб-области CMU увеличивает R-значение соответствующего бетонного блока кладки).Полное обсуждение этих изменений можно найти в TEK 2-5B, Новые конфигурации бетонных блоков согласно ASTM C90 (ссылка 12).

Термический каталог сборок бетонной кладки (ссылка 13) перечисляет R-значения и U-факторы традиционных элементов, включенных здесь, а также стеновых сборок с меньшими площадями стенок, как теперь разрешено ASTM C90. Дополнительные комплекты стенок основаны на:

  • CMU с двумя перемычками полной высоты толщиной ¾ дюйма (19 мм), и
  • — «гибридная» система CMU, предназначенная для максимального увеличения теплового КПД.В гибридной системе используются блоки с двумя перемычками, описанные выше, для областей, требующих ячейки с цементным раствором, и устройства с одним полотном, где удержание раствора не требуется.

Хотя R-значения / U-факторы в таблице 2 основаны на типичных 8-дюймовых. (203 мм) высокие бетонные блоки, 4 дюйма Блоки высотой 102 мм (обычно называемые полувысотой) также широко доступны, а на некоторых рынках могут быть доступны блоки другой высоты. Поскольку значения R для стен очень мало различаются с разной высотой блоков, значения в таблице 2 могут применяться к блокам с высотой, отличной от 8 дюймов.(203 мм).

Таблица 1 — Размеры устройства

A В таблице перечислены конфигурации агрегатов, используемые для расчета значений в таблице 2. Установки имеют три стенки полной высоты. Толщина стенки и лицевой оболочки соответствует минимальным требованиям, которые исторически требовались ASTM C90 до версии стандарта 2011b.

ТАБЛИЦЫ U-ФАКТОРА И R-ЗНАЧЕНИЯ — ТРАДИЦИОННЫЕ ТРЕХВЕБ-ЕДИНИЦЫ

В Таблице 2 перечислены рассчитанные коэффициенты U и R для бетонных стен различной толщины с плотностью бетона от 85 до 135 фунтов / фут³ (от 1362 до 2163 кг / м³) с различными заполнениями сердцевины.В Таблице 3 показан приблизительный процент площади стен с заделкой и без цемента для различных расстояний между цементным раствором по вертикали и горизонтали, которые можно использовать для определения значений R для частично залитых раствором стен (см. Следующий раздел).

В дополнение к изоляционным материалам жил, перечисленным в верхней части Таблицы 2, доступны вставки из полистирола, которые подходят для сердечников бетонных блоков. Вставки доступны во многих формах и размерах, чтобы обеспечить диапазон изоляционных свойств и приспособиться к различным условиям строительства.Специально разработанные бетонные блоки для каменной кладки могут включать перегородки уменьшенной высоты для размещения вставок. Такие полотна также уменьшают тепловые мосты через кладку, поскольку уменьшенная площадь полотна обеспечивает меньшую площадь поперечного сечения для потока энергии. Чтобы еще больше уменьшить тепловые мосты, некоторые производители разработали блоки с двумя перегородками, а не с тремя. Кроме того, некоторые вставки имеют одобрение строительных норм и правил, которые следует оставлять в залитых раствором ядрах, таким образом улучшая тепловые характеристики полностью или частично залитых цементным раствором стен.

Значения для изолированных и залитых заполнителей в Таблице 2 основаны на предположении, что все сердечники кладки залиты или залиты, соответственно. Другими словами, для стен без заделки и полностью залитых раствором значения в Таблице 2 можно использовать напрямую. Для стен, частично залитых раствором, см. Следующий раздел.

R-значения различных внутренних и внешних систем изоляции и отделки перечислены в Таблице 4. (Обратите внимание, что использование ватной изоляции не рекомендуется из-за ее чувствительности к влаге.) Эти значения R могут быть добавлены к значениям R стен в таблице 2. После добавления значений R можно найти коэффициент U стенок, инвертируя общее значение R (т. Е. U = 1 / R ) (см. также следующий пример). Обратите внимание, что таблицы предварительно рассчитанных R-значений и U-факторов, включая различные системы изоляции и отделки, доступны в Тепловом каталоге бетонных сборок.

Тепловые свойства, использованные для составления таблиц, перечислены в Таблице 5.

Таблица 2 — Коэффициент теплопроводности и R для бетонных стен из кирпича

(102-мм) сплошных блоков, которые, как предполагается, имеют полную засыпку строительным раствором).Включены пленки с приземного воздуха.
B Значения действительны, когда все кладки заполнены полностью. Плотность раствора составляет 140 фунтов на фут (2243 кг / м³). В некоторых регионах также могут быть доступны легкие растворы, обеспечивающие более высокие значения R.
C Из-за небольшого размера сердцевины и, как следствие, трудности уплотнения раствора, 4 дюйма. (102-мм) блоки заделываются редко. Учтите, что заполнение ядер этих блоков также может быть затруднено. Предполагается полная засыпка строительным раствором.

Таблица 5 — Тепловые данные, используемые для создания таблиц

R-ЗНАЧЕНИЯ И U-ФАКТОРЫ ЧАСТИЧНО ЗАТЯНЕННОЙ БЕТОННОЙ КЛАДКИ

Для стен с частичным заполнением цементным раствором значения в таблице 2 должны быть изменены для учета заполненных цементным раствором сердцевин с использованием метода средневзвешенной площади.Первый шаг — определить, какая часть стены залита раствором (см. Таблицу 3). U-фактор стены рассчитывается на основе средневзвешенного значения U-факторов залитой и незаращенной территории следующим образом:

Например, рассмотрим стену 8 дюймов (203 мм), состоящую из полой бетонной кладки 105 фунтов / фут³ (1682 кг / м³) и залитой раствором 48 дюймов.(1219 мм) o.c. как по вертикали, так и по горизонтали. Незакрепленные сердечники содержат пенополиуретановую изоляцию на месте, а стены изнутри отделаны гипсокартоном.

Из таблицы 3, 31% стены залит ( gr = 0,31) и 69% содержит изоляцию ( ungr = 0,69). Из Таблицы 2, коэффициент U для этой стены, если она залита сплошным раствором, составляет 0,527 БТЕ / час 2 ° F (3,0 Вт / м²K). Снова из Таблицы 2 видно, что та же самая стена с изоляцией из вспененного материала в каждой жиле имеет коэффициент U, равный 0.157 БТЕ / час 2 ° F (0,9 Вт / м² · K). Используя эти данные, U-фактор и R-значение стены (без отделки стеновой панелью) рассчитываются следующим образом:

R-ценность любой отделки теперь может быть добавлена ​​к полученной R-величине. Из Таблицы 4, дополнительное значение R из-за отделки гипсокартоном на обшивке составляет 1,1. Итак, общее R-значение и U-фактор стены составляют:

R = 3.7 + 1,1 = 4,8 ч / ч 2. ° F / BTU (0,84 м² · K / Вт)
U = 1 / R = 1 / 4,8
= 0,208 Btu / hrft 2. ° F (1,18 Вт / м² · K)

Список литературы

  1. Значения R для бетонных стен с несколькими витками, TEK 6-1C. Национальная ассоциация бетонщиков, 2013.
  2. Энергетический стандарт
  3. для зданий, кроме малоэтажных жилых домов, ANSI / ASHRAE / IESNA 90.1-2010. Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc., 2010.
  4. Справочник ASHRAE, основы. Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Inc., 2009 г.
  5. Руководство по тепловым свойствам бетонных и каменных систем. ACI 122R-02. Американский институт бетона, 2002 г.
  6. Международный кодекс энергосбережения. Совет Международного кодекса, 2006, 2009, 2012.
  7. Изоляция бетонных стен, ТЕК 6-11А. Национальная ассоциация бетонных каменщиков, 2010 г.
  8. Соответствие энергетическому кодексу
  9. с использованием COMcheck, TEK 6-4B.Национальная ассоциация каменщиков из бетона, 2012 г.
  10. Международный кодекс энергосбережения (изд. 2006 г.) и бетонная кладка, TEK 6-12C. Национальная ассоциация бетонных каменщиков, 2007.
  11. Бетонная кладка в редакции IECC 2009 г., TEK 6-12D. Национальная ассоциация каменщиков из бетона, 2012 г.
  12. Бетонная кладка в издании IECC 2012 г., TEK 6-12E. Национальная ассоциация каменщиков из бетона, 2012 г.
  13. Стандартные технические условия для несущих бетонных блоков, ASTM C90-11.ASTM International, 2011.
  14. Новые конфигурации бетонных блоков в соответствии с ASTM C90, TEK 2-5B. Национальная ассоциация каменщиков из бетона, 2012 г.
  15. Каталог термических характеристик бетонных кладок, второе издание, TR233A. Национальная ассоциация каменщиков из бетона, 2012 г.

NCMA TEK 6-2C, редакция 2013 г.

NCMA и компании, распространяющие эту техническую информацию, не несут никакой ответственности за точность и применение информации, содержащейся в этой публикации.

Ключевые отличия блочной кладки от кирпичной

Глава отдела структур BSBG Стивен Бейли представляет тематическое исследование, в котором подчеркиваются принципиальные различия между блочной кладкой и кирпичной кладкой.

Мы используем слово «кладка» для описания стен, построенных из каменных блоков, уложенных на слой раствора.

Каменная кладка либо:

  • Блоки — большие пустотелые или сплошные блоки, как правило, из бетона
  • Кирпичи — меньшие блоки, сплошные или с мелкими сердцевинами, обычно сделанные из глины
Размеры и варианты размеров

Блоки

Блоки обычно обозначаются их номинальным размером (т.е.е. 400 мм в длину, 200 мм в ширину и 200 мм в высоту). Поскольку сделан припуск для швов раствора шириной 10 мм, фактический размер составляет 390 мм x 190 мм x 190 мм.

Стандартные номинальные размеры как для полнотелых, так и для полых блоков:

400 x 300 Ш x 200 В

400 x 250 Ш x 200 В

400 x 200 Ш x 200 В

400 x 150 Ш x 200 В

400 x 100 Ш x 200 В

Блоки формуются в стальных формах, и, поскольку материал относительно стабилен, размер отдельных блоков можно контролировать с небольшими допусками.

кирпичей

Кирпичи обычно изготавливаются традиционного размера — 230 мм в длину, 110 мм в ширину и 76 мм в высоту. Это фактические размеры, а номинальный размер не указан для кирпича.

Поскольку кирпичи изготавливаются из глины, они могут претерпевать изменения формы во время производства, особенно в процессе обжига, а отдельные блоки могут значительно различаться по размеру. Допуски измеряются путем размещения 20 единиц вместе, что измеряет средний размер, но не разброс отдельных единиц.

Плотность материала и блока

Плотность обычно выражается в килограммах на кубический метр (кг / м 3 ). Плотность материала , как следует из названия, является фактической плотностью материала, тогда как плотность блока является средней плотностью, которая учитывает любые пустоты или ядра в блоке. Материал и плотность блоков такие же, как для полнотелых блоков / кирпичей.

Блоки

Обычно бетонные блоки имеют следующую плотность материала:

  • 2100 кг / м 3 — блоки с такой плотностью обычно обозначаются как нормальный вес Фактическая плотность блоков для вертикальных полых блоков нормального веса варьируется от 1250 кг / м 3 до 1750 кг / м 3 , в зависимости от толщины блока
  • 1000 кг / м 3 — блоки с такой плотностью обычно называют Легкий вес Фактическая плотность блоков для легких вертикальных полых блоков варьируется от 650 кг / м 3 до 800 кг / м 3 , в зависимости от толщины блока
  • 550 кг / м 3 — блоки с такой плотностью обычно называют блоками из автоклавного газобетона (AAC).Эти блоки изготавливаются сплошными, поэтому их блочная плотность такая же, как у материала.

Кирпичи

Кирпич обычно не используется в архитектуре и строительстве ОАЭ. Плотность обожженного полнотелого кирпича составляет примерно 1900 кг / м3, а у перфорированного кирпича — 1400-1500 кг / м 3 .

ПРОЧИТАЙТЕ: Примечание по проектированию BDA — Таблицы размеров кирпичной кладки

Прочие данные

Различные другие параметры, которые обычно указываются и приводятся в спецификации F10:

  • Характеристическая прочность на сжатие — обычно важна для несущих стен
  • Тепловые свойства
  • Звукоизоляция — например, твердые или заполненные цементным раствором блоки нормального веса толщиной 200 мм могут обеспечить изоляцию на 58 дБ; Пустотелые блоки нормального веса 200 мм — 52 дБ; и легкие полые блоки 200 мм — 48 дБ
  • Класс огнестойкости — обычно нормальные или легкие блоки толщиной 150 мм, сплошные или полые, обеспечивают не менее трех часов огнестойкости.
Растворы и швы

Раствор — это работоспособная паста, которая связывает строительные блоки вместе. Его делают из цемента и песка в разном соотношении для достижения необходимой прочности. Прочность на сжатие раствора составляет от 2 до 12 Н / мм 2 . Швы, используемые при строительстве бетонных блоков и кирпича, обычно имеют толщину 10 мм. Для строительства из блоков AAC используется специальный раствор (2-3 мм), который представляет собой предварительно смешанный продукт на основе цемента с более высоким качеством, чем обычный раствор.

Управляющие шарниры

Блоки

Контрольные швы необходимы в бетонной кирпичной стене для предотвращения растрескивания из-за усадки бетонных блоков, температурного расширения / сжатия и дифференциальной осадки фундамента.

Каменная кладка неармированная

Контрольные стыки должны быть предусмотрены на всех стыках, где есть вероятность растрескивания, например, при значительном изменении высоты стен, изменении толщины стен (кроме опор), стыках в плитах и ​​Т-образных стыках.

Обычно контрольные стыки не следует размещать на расстоянии более 6 м.

Кладка железобетонная

В стенах высотой более 3 м расстояние между контрольными швами не должно превышать 16 м.

В стенах высотой 3 м или меньше, включающих перекрывающие железобетонные балки, нельзя использовать контрольные швы.

Кладка из глины

Изделия из глины со временем расширяются, поскольку они впитывают воду. Расширение не является равномерным во времени; примерно четверть приходится на первые шесть месяцев, половина — на первые два года и три четверти — на пять лет.Расширение может достигать 1 мм на метр в течение 15 лет.

В глиняной кладке (кирпичных стенах) требуются швы, чтобы учесть расширение глины. Швы должны иметь достаточную ширину, чтобы кирпичи могли свободно расширяться. В глиняной кладке также предусмотрены швы для учета температурного расширения / сжатия и дифференциальной осадки фундамента.

Стяжки необходимы с обеих сторон стыка, но там, где их невозможно использовать, необходимо использовать гибкие анкеры для каменной кладки поперек стыка.

Есть два типа соединений:

  • Шарнирно-сочлененные сочленения — вертикальные зазоры, допускающие незначительное перемещение опоры, чтобы предотвратить повреждение и растрескивание. Эти соединения обеспечивают гибкость, необходимую, когда здание находится на мягком грунте, и обычно не требуются на устойчивых площадках. Стыки не должны располагаться дальше 3 м от углов, а их ширина должна составлять 10 мм для стены высотой 3 м и 15 мм для стены высотой 6 м.
  • Контрольные стыки — эти стыки предоставляются при изменении толщины стены, высоты стены или ступенек основания.Они также обычно расположены недалеко от угла. Во внутренней кладке контрольные зазоры обычно не требуются, за исключением входных углов в длинных стенах.
Применения для армированных блоков

Если стена из бетонных блоков армирована и залита раствором, ее можно использовать как несущую стену в обоих направлениях — вертикальном и горизонтальном. Такая стена используется в самых разных конструкциях. Области применения включают подпорные стены, жилые дома, промышленные здания, заборы и т. Д.Следует отметить, что стена из массивных бетонных блоков также может использоваться как несущая, но преимущественно в вертикальном направлении.

Армированная блочная кладка строится путем размещения арматуры в сердцевинах блоков и последующей заливки раствором. Кладка представляет собой смесь блоков, цементного раствора и арматуры и может иметь прочность, аналогичную прочности бетона более низких марок.

Большинство бетонных стен толщиной 150 и 200 мм, которые требуют несущей функции в вертикальном направлении, могут иметь только некоторые части, армированные и залитые раствором — это всегда торцевые и вертикальные стержни с Т-образным соединением.

Фасадные бетонные стены из кирпича, которые должны поддерживать тяжелые сборные элементы, обычно требуют, чтобы все ядра были усилены и залиты раствором.

Стены ванных комнат и кухонь, поддерживающие сантехническое оборудование и шкафы, также обычно требуют, чтобы все сердечники были усилены и залиты раствором, или в качестве альтернативы использовались сплошные блоки. В ванных комнатах частичная затирка швов может производиться на высоте до 1,2 м над уровнем пола.

Раствор, используемый для заполнения стержней, должен быть правильно определен, и обычно он не должен иметь характеристическую прочность на сжатие менее 15 МПа, предпочтительно 20 МПа.Содержание цемента не должно быть менее 300 кг / м. 3 , а размер крупного заполнителя не должен превышать 10 мм.

Армирование обычно состоит из стержней 1T12 или 1T16 возле всех дверных проемов, всех углов, стыков и на расстоянии 1600–1800 мм вдоль стены. Турник — обычно 1Т12 ставится под все подоконники.

Информация, требуемая инженером-строителем

Инженеру-строителю обычно требуется следующая информация, чтобы он мог оценить вес каменных стен на плитах, а также предоставить детали армирования в случае, если требуются несущие стены:

  • План кирпичной стены
  • Вид кладки — бетонные блоки или глиняный кирпич
  • Толщина кладки
  • Тип блоков — сплошной или пустотелый.В случае пустотелого пространства архитектор должен указать, требуется ли несущая функция.
  • Плотность материала или спецификация, если блок будет нормального веса, легкого веса или AAC
  • Приблизительная толщина и тип отделки каменной стены — штукатурка, плитка, тяжелые фасадные элементы и любые отступы от стены.

Примечание: По умолчанию инженер-строитель рассматривает штукатурку толщиной 12 мм на каждой стороне, однако архитектор должен сообщить все, что отличается от этого.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *