Размеры газобетона: какие бывают размеры и формы блоков

какие бывают размеры и формы блоков

В последнее время наиболее рациональным выбором при возведении домов становится газобетон. Объясняется это в первую очередь его отличными техническими характеристиками, удобными размерами и правильной геометрической формой.

Данный материал входит в группу ячеистых бетонов и представляет собой камень, имеющий пористую структуру. Производится газобетон автоклавным и неавтоклавным способом.

Неавтоклавные блоки получают путем заливания смеси, состоящей из портландцемента, извести, песка, алюминиевого порошка и воды, в специальную форму. В течение 10-12 часов происходит затвердевание бетона, после чего блоки извлекают из кассет. Отклонение в размерах блока может достигать  5 мм.

Полное застывание автоклавного газобетона производится в условиях повышенных температур. Такая обработка требует дополнительных производственных затрат электроэнергии и производственных мощностей. При этом стоимость газобетона автоклавного типа увеличивается.

Однако есть у данного материала и неоспоримые преимущества – более высокие показатели прочности, низкая теплопроводность, отклонения в размерах — не более 1 мм.

Размер блока из газобетона

При разработке проекта будущего дома, при расчете таких основных параметров как прочность и теплоизоляция, а также выборе кладки следует обязательно учитывать размеры блоков из газобетона.

С изменением формы и параметров материала, могут меняться и его характеристики. Установлены определенные стандарты, которых обязаны придерживаться в своей работе компании-производители.

Данный материал может иметь прямоугольную или U-образную форму. Блоки U-образной формы используют в кладке дверных и оконных проемов, а также в закреплении плит перекрытия. Они имеют следующие размеры:

  • Высота – 250 мм.
  • Длина – 500 или 600 мм.
  • Ширина — 200-400 мм.

Прямоугольные газоблоки являются стандартными и должны иметь следующие размеры:

  • Высота – 200 или 250 мм.
  • Длина – 600 или 625 мм.
  • Ширина – 100-400 мм.

В строительстве внутренних перегородок чаще всего используются газоблоки шириной 100-150 мм, в возведении наружных стен — шириной 200, 240, 300 или 400 мм.

В зависимости от степени нагрузки на стеновые конструкции эти параметры могут изменяться. К примеру, если ожидаются повышенные нагрузки на внутренние перегородки, следует использовать блоки с большей шириной.

От чего зависят габариты газоблоков?

Параметры материла определяются исходя из теплоизоляционных и прочностных характеристик, а также с учетом удобства и пропорциональности кладки, возможности упрощения производства.

Основополагающим критерием выступает ширина, которая напрямую связана с теплоизоляцией и прочностью. Чаще всего она равняется 300 мм, но в случае больших или меньших нагрузок она может изменяться. Длина и высота подбираются из расчета кратности типовых габаритов строений и удобства проведения кладки.

Подбор параметров материала должен производиться с четом нагрузок на стеновые конструкции и требований по теплоизоляции, а также исходя из рациональных соображений, дабы исключить использование более дорогостоящего материала при отсутствии такой необходимости. Очень важны и такие составляющие как хранение и транспортировка газобетонных блоков, удобство работы с материалом, стоимость, сроки строительства. Кладка газобетона блоками больших размеров является более трудоемкой, что может увеличить сроки строительства и негативно отразиться на качестве.

Размеры газобетонных блоков для несущих стен, марки, советы по выбору

По своим характеристикам газобетон подходит как для кладки несущих конструкций, так и возведения изоляционных перегородок. При выборе конкретной марки и размеров изделия отталкиваются от назначения и условий эксплуатации объекта строительства. Толщину стен, разделяющих разные температурные зоны, определяет теплотехнический расчет. Но главным требованием является обеспечение соответствующей несущей способности, а именно выдержки весовой и механической нагрузки. Нормы, зависящие от типа перегородки или перекрытия, являются минимально допустимыми, уменьшать их нельзя.

Оглавление:

  1. Разновидности газоблоков
  2. Особенности выбора изделий для разных конструкций
  3. Полезные рекомендации

Виды газобетонных блоков

В зависимости от формата и типа поверхности различают обычные прямоугольные варианты с гладкими стенками, аналогичные с системами захвата или «шип-паз», Т-образные для монтажа перекрытий, U-образные для закладки армопояса, дверных или оконных проемов. Прочностные характеристики газобетона определяются его плотностью и пористостью, как и теплоизоляционные свойства. Выделяют следующие марки:

1. От D350 до D500 – теплоизоляционные, оптимальные для возведения газобетонных перегородок или внутренней утепляющей прослойки. Выделяются высокой пористостью и имеют самый низкий коэффициент теплопроводности из всех разновидностей.

2. D500-D900 – конструкционно-теплоизоляционные, востребованные в частном строительстве, в том числе для кладки наружных стен и несущих перегородок.

На практике для легких построек используют газоблоки от М400, но лишь при условии их качественной автоклавной обработки и надежной защиты от внешней влаги.

3. D900-D1200 – конструкционные, с повышенной прочностью.

Типовой размер газобетонного блока для несущей стены: 600 мм по длине (у некоторых производителей – 625), в пределах 200-300 по высоте, и от 75 до 500 по ширине. Данные значения приведены для прямых и пазогребневых изделий, к стеновым обычно относят превышающие 300 мм в ширину, остальные – к перегородочным, хотя встречаются и исключения. Самыми востребованными считаются 600×300×200 и 625×300×250 мм, вес варьируется в пределах 17-40 кг, одна штука замещает не менее 17 кирпичей.

Выбор газоблоков для кладки несущих стен

Рекомендуемый минимум:

Назначение конструкции, дополнительные условия Оптимальная марка газоблоков Толщина стены из газобетона, мм
Несущие наружные стены и внутренние перегородки в частных домах D600 300
Нежилые помещения: хозпостройки, гаражи, летние кухни D400 и D500 200
Несущие наружные в домах без внешнего утепления D500 360
Цокольные этажи и подвалы, при условии обязательной и качественной гидроизоляции

 

D600

 

300-400

(меньше – для внутренних подвальных ненесущих стен)

Межквартирные перегородки D500 и D600 200-300
Утепляющие прослойки D300
От 300
Внутренние ненесущие перегородки, возводимые с целью разделения жилых зон и звукоизоляции 100-150

Требуемый класс (и, соответственно, марка) газобетона также зависит от этажности. Допустимый минимум для одноэтажных легких построек составляет В2,0, в пределах 3-х этажей – В2,5, В3,5. Чем выше здание, тем жестче нормативы к прочности блоков, при строительстве частного дома выше двух армирование (закладка монолитной ленты по всему периметру) в верхней части стены из газобетона обязательно. Самонесущие перегородки разрешается строить из В2,0. В целях экономии их обычно выкладывают толщиной в пределах 100-150 мм. Рост ширины перегородки возможен в двух случаях: при повышенных требованиях к шумозащите и при планировании размещения на них подвесных конструкций: полок, мебели, пролетов или тяжелой техники. Допустимый минимальный предел – 200 мм.

Дополнительные учитываемые факторы при выборе толщины стен из газобетона

Указанные размеры актуальны исключительно при использовании материла автоклавной обработки, изготовленного в заводских условиях. Их качество можно и нужно проверять визуально и на ощупь: правильные изделия имеют гладкие стенки без сколов и внешних дефектов, они ни в коем случае не раскрашиваются. Блоки, не прошедшие пропаривание под давлением, уступают в прочности и не обеспечат требуемую несущую способность. Также по умолчанию они используются при строительстве домов в средней полосе, для конструкций, эксплуатируемых при нормальной влажности. При необходимости возведения в бассейнах, ванных, банях, подвалах применяются усиленные меры гидроизоляции.

Для исключения ошибок на стадии составления проекта следует провести прочностной и теплотехнический расчет размеров несущих конструкций с учетом их ожидаемой нагрузки и климатических условий. Коэффициент теплопроводности газобетона зависит от марки: от 0,072 Вт/м·°C у блоков D300, до 0,12 и выше у D600.

Взаимосвязь очевидна: чем плотнее и прочнее изделия, тем хуже их изоляционные способности. При равной средней температуре окружающего воздуха зимой разница между требуемым минимумом толщины стен, способных обеспечить нужное сопротивление потерям тепла, у марок с отличием в удельном весе от 100 кг/м3 достигает 1/3.

Требования к несущим конструкциям повышаются при строительстве домов в оконными проемами с большой площадью, эксплуатируемыми кровлями, высокой этажностью. В этом случае возможны несколько вариантов: использование конструктивных блоков с повышенной прочностью (более дорогих, что не всегда выгодно) или вертикальное армирование. Задействование монолитного ж/б каркаса с закладкой менее прочных, но хорошо держащих тепло элементов, считается разумной альтернативой. Но такие проекты требуют привлечения специалистов, они более сложны в реализации.

для строительства дома, несущих, наружных стен

Объекты из такого материала сегодня встречаются достаточно часто. Блоки отличаются легкостью и надежностью, обладают определенными достоинствами, если сравнивать их с простым бетоном либо кирпичным материалом. В первую очередь строители выделяют хорошие теплоизоляционные свойства, которые достигаются добавлением в сырье алюминиевой пудры и пластификаторов. Но есть противоположная сторона медали – не очень высокая прочность.

Поэтому следует выбирать оптимальные размеры газобетонных блоков. Кроме того, при строительстве не требуется дополнительная мера, как армирование стен из газосиликатных блоков.

Газобетонный блок – что это такое

Это камень искусственного происхождения, который изготавливается из ячеистого бетонного материала. С пеноблоками его путать не следует.

В первом варианте пустоты возникают из-за происходящих внутри химических процессов, а во втором – от добавления предварительно приготовленной пены.

Довольно часто газобетон и газосиликат считают одним и тем же материалом. Но по факту второй тип считается подвидом первого. Основные компоненты, используемые в изготовлении, в каждом из случаев одинаковы. Различия заключаются в их пропорциональном соотношении и технологических особенностях производства. От этого материалы отличаются характеристиками по показателям плотности, прочности и способности проводить тепло.

В производстве газобетона используют:

  • цемент и песок;
  • известь;
  • чистую воду;
  • алюминиевую пудру в качестве газообразоваателя.

Во время соединения воды, алюминия и извести начинается выделение водорода, от чего в бетонной массе формируется большое количество пор, которые в определенных марках составляют около восьмидесяти процентов всего объема. Чем больше пустот, тем меньшей прочностью обладает блок, зато весит меньше. Здесь следует добавить, что и теплопроводность блоков оставляет желать лучшего.

Бетон разливается по формам и затвердевает, либо предварительно направляется в автоклав. Там под воздействием высокого температурного режима и давления материал набирает нужную прочность. Такая технология изготовления используется для получения блоков, идущих на строительство жилых объектов.

Размеры газобетона

Разрабатывая проектное решение на строительство дома и рассчитывая основные параметры по прочности и теплоизоляции, а так же выбирая кладку, необходимо в обязательном порядке определиться с размером газоблока для строительства дома.

При изменении форм и параметров блоков могут меняться характеристики. Утверждены ГОСТы, по которым производители обязаны изготавливать данный материал.

Блоки бывают U-образные и прямоугольные. Первый вариант применяется для устройства оконных и дверных проемов, с его помощью крепятся элементы перекрытий.

Размеры газобетона U-блоков следующие:

  • по высоте – 25 см;
  • по длине – 50 или 60 см;
  • по ширине – от 20 до 40 см.

Прямоугольные формы материала считаются стандартными, размеры газобетонных блоков в этом случае будут следующими:

  • в высоту – 20 либо 25 см;
  • в длину – 60 или 62.5 см;
  • в ширину – от 10 до 40 см.

При строительных работах по возведению внутренних стен в большинстве случаев применяют газоблочный материал, ширина которого составляет десять – пятнадцать сантиметров, а вот размеры газобетонных блоков для несущих стен по ширине могут составлять 20, 24, 30 и даже 40 см.

Если возводятся перегородки или устраиваются теплоизоляционные прослойки, рекомендуется использовать блоки с небольшими размерами по толщине и с максимальным количеством внутренних пор. А вот к несущим конструкциям следует брать блоки с максимальным показателем плотности и прочности.

Если говорить про недостатки, то основных будет всего два:

  • высокое влагопоглощение;
  • низкий показатель прочности.

Низкий уровень прочности материала не окажет влияния на дом, если соблюдены все технологические особенности строительных работ.

Имеющиеся в блоке поры отлично удерживают тепло и изолируют посторонние шумы. Но одновременно с этим пустотные участки понижают прочность материала. По этой причине газобетон рекомендуется использовать для несущих стен, если строится объект в один – два этажа. В противном случае нижние ряды кладки могут деформироваться.

Газобетон способен «дышать» и пропускать водяные пары. Но поры одновременно с этим представляют собой отличный резервуар, в котором скапливается влага. Если гидроизоляция плохая, блок промокает, что существенно увеличивает показатель его теплопроводности. В конечном итоге энергетическая эффективность этого строительного материала мгновенно исчезает.

По своей стоимости газобетон значительно ниже кирпичного материала, древесины и прочих конкурентов. Но при этом помните, что придется нести дополнительные расходы на гидроизоляционный слой и чистовую отделку фасада.

Ячеистый блок, не имеющий защиты с улицы, прослужит не долго. Вода, попавшая в стены, будет способствовать потерям тепла и во время морозов разрушать блоки.

Виды материала

Технологические особенности изготовления блоков разделяются на несколько способов:

  • автоклавные – такой метод еще называют синтезным процессом твердения. Застывание происходит в автоклавной установке под воздействием высокой температуры и давления;
  • неавтоклавные – гидратационного остывания. Процесс происходит в среде с насыщенными парами, при этом применяется прогрев электрическими устройствами.

По основному вяжущему компоненту блоки разделяются на:

  • цементные – в составе состоит пятьдесят процентов этого материала;
  • известковые – содержат повышенное количество негашеной извести;
  • шлаковые – более половины сырья состоит из шлака и гипса;
  • зольные – в них находится большой процент высокоосновной золы.

Отдельной группой выделяют смешанный блок, в состав которого входят известь, цементную массу и шлак.

Советы от профессионалов

Если вы решили строить здание из такого материала, следует воспользоваться некоторыми рекомендациями:

  • монтаж блоков выполняется специальным клеем. При создании шва необходимо пользоваться кельмой;
  • для устройства штроб лучше всего воспользоваться болгаркой и диском, имеющим алмазное напыление;
  • чтобы ускорить процесс строительных работ, разрешается при создании оконных и дверных проемов применять специальные блоки, имеющие подходящие формы;
  • во время кладки блоков необходимо пользоваться строительным уровнем. Это позволит контролировать ровность поверхности, избежать в последующем деформационных проявлений. При подгонке элементов хорошо помогает аппарат для шлифовки;
  • вести кладку одновременно с двух углов не рекомендуется;
  • резать газобетонные блоки лучше всего специальной пилой;
  • перед началом строительства на фундаментную основу накладывается гидроизоляционная прокладка.

Изучив технические характеристики, свойства и габариты блоков, вы сможете правильно выбрать материал, из которого построите недорогое, но вполне комфортное помещение.

Сколько блоков газобетона в 1 кубе: вес и размеры

При помощи газоблоков можно строить долговечные здания высотой до 16 м. Сегодня популярность газоблоков стремительно растет. На современном рынке стройматериалов представлены блоки, плотность которых составляет D600, D700. Так как в строительстве высотных зданий автоклавный ячеистый бетон начинает шире использоваться, то и плотность газоблоков в будущем будет увеличиваться. Газобетон – стройматериал, в котором не содержатся вредные добавки. Его использование не вредит окружающей среде. Материал огнеупорен, морозоустойчив, не подвергается гниению, коррозии, обладает хорошими гидрофобными характеристиками. Внутри помещений, построенных из газобетона, создается определенный микроклимат.

В жаркое время в таких строениях прохладно, а в зимние месяцы – тепло. Блок из этого строительного материала содержит около 60 процентов мелких пузырьков воздуха, что обеспечивает звукоизоляцию и необходимый температурный режим в помещении. Это свойство блоков определяет их удельный вес. Объем стройматериала измеряется в кубе. Речь идет об условном обозначении стройматериала с внутренними размерами 1 м на 1 м. Размеры могут быть и другими, важно, чтобы произведение трех величин (ширина, высота, длина) было равно единице.

Размеры (с примерами)

Производители стройматериалов выпускают два вида газобетонного блока:

  • прямоугольной формы;
  • в виде буквы U (такие изделия часто применяются для создания перемычек).

Стандартные газоблоки бывают таких размеров:

  • длина – 600 или 625 миллиметров;
  • высота – 200 либо 250 миллиметров;
  • ширина – 85-400 миллиметров.
Стандартные размеры прямоугольных блоков.

Вышеуказанные параметры являются самыми распространенными, однако ширину стройматериалов можно изменить. Благодаря небольшому весу газобетонные изделия легко поддаются обработке, поэтому их размер можно с легкостью изменить. Блоки, выпускаемые в форме буквы U, выпускается в следующих параметрах:

  • высота – 250 миллиметров;
  • длина – 500 или 600 миллиметров;
  • ширина – 200-400 миллиметров.

При покупке блока необходимого размера нужно учитывать параметры стенок и помещения (квадратные метры). Также необходимо рассчитать, сколько штук газоблоков вам понадобится для кладки в несколько метров. Кроме того, важно принимать во внимание назначение конструкций. В частности, для возведения наружных бетонных стенок подойдут газоблоки, минимальная ширина которых составляет 200 миллиметров. Для проведения работ внутри помещения часто используется блок шириной 85 миллиметров.

Вернуться к оглавлению

Вес

На удельном весе газобетонного блока сказываются заполнители, которые используются при их изготовлении. За счет удельного веса материал разделяют на несколько групп:

  1. Особо легкие. В структуре изделий содержится множество (85 процентов) ячеек с воздухом. Зачастую такие строительные материалы используются для утепления зданий. 1 м3 бетона этого вида, как правило, весит менее 500 килограммов.
  2. Легкие. Представляют собой растворы с наполнителями вроде ракушечника или керамзита (газоблоки, пеноблоки). Вес кубометра стройматериала составляет 500-1 800 килограммов, – все зависит от плотности стройматериала. Наиболее тяжелым компонентом смеси является песок.
  3. Тяжелые. Этот вид изделий считается более распространенным, чем все остальные. В состав раствора входят гравий, щебенка. Именно эти компоненты определяют, сколько будет весить блок. В большинстве случаев кубометр стройматериала весит около двух тонн и более. На массу бетона влияют цемент, щебенка, песок.
  4. Особо тяжелые. Такая смесь считается самой редкой. В растворе весом две с половиной-три тонны основную его массу составляет заполнитель крупных размеров.
Вернуться к оглавлению

Что влияет на вес газоблока?

Вес блока зависит от плотности.

Вес газоблока будет зависеть от плотности. Эта величина указана на марке. К примеру, обозначение D600 указывает на то, что плотность газобетона составляет 600 килограммов на кубометр. Таким образом, в 1м3 насчитывается 600 килограммов газобетона. Если известно значение плотности, рабочие могут высчитать массу одной или нескольких штук газоблоков. Для проведения расчетов нужно узнать, сколько газоблоков насчитывается в одном кубометре. К примеру, одно изделие марки D500, размеры которого составляют 200 на 300 на 600 миллиметров, весит около 18 килограммов.

Вернуться к оглавлению

Плотность

Наиболее распространенными среди строителей стали стеновые газобетонные изделия. Их принято применять для возведения несущих стен и конструкций. Так как они постоянно выдерживают значительные нагрузки, их плотность должна соответствовать марке D400 или D500.

Вернуться к оглавлению

Размеры

Самый распространенный размер газобетона.

Газобетон считается стеновым, когда толщина бетонной кладки превышает 20 сантиметров. Размеры кладки 20 или 25 сантиметров чаще всего встречаются в монолитно-каркасном и одноэтажном строительстве (сооружения, для которых не нужно особое энергосбережение). При проведении монолитно-каркасных строительных работ специалисты часто пользуются газобетонными изделиями, толщиной в 25 сантиметров. В итоге при отоплении, а также плотности бетона D500 такая толщина стеновой кладки по энергосбережению сравнима с толщиной кирпичной кладки толщиной в один м. Самыми распространенными считаются блоки высотой 20 миллиметров, шириной 30 сантиметров и длиной 60 миллиметров.

Вернуться к оглавлению

Расчет веса блока

Для определения удельного веса одного куба газобетона необходимо высчитать количество газоблоков в кубе. Нужно один куб поделить на объем изделия. Таким образом, можно рассчитать нужное значение. После этого количество следует умножить на массу единицы. Получившаяся цифра и есть вес куба материала.

Вернуться к оглавлению

Сколько блоков газобетона в 1м3 (пример расчета)

Если вам необходимо рассчитать, сколько газоблоков в одном кубе, нужно произвести два действия. Прежде всего, следует измерить параметры одного газоблока и определить объем изделия в кубометрах. После этого единицу необходимо разделить на число, полученное ранее. К примеру, если параметры составляют 300 на 250 на 625 миллиметров, то для расчета объема одного газоблока, необходимо высчитать произведение всех сторон изделия в метрах. Получается: 0,3*0,25*0,6 = 0,04 кубометра. Затем разделим один кубометр на объем газоблока: 1:0,04 = 21.3…штук. Таким образом в одном кубе 21 штука газоблоков.

Чтобы определить размеры газобетонных изделий, можно зайти на интернет-сайты их производителей, – там можно найти таблицы, в которых указаны все значения. Узнав, сколько именно штук газоблоков насчитывается в одном кубометре, вы можете приступать к расчетам количества стройматериала для строительства. Все зависит от параметров будущего сооружения. Чтобы сделать необходимые подсчеты материала, кроме его количества важно учитывать вес. Таким образом, зная число газоблоков и вес одного кубометра материала, вы сможете рассчитать общую массу.

Вернуться к оглавлению

Вывод

Использование современных строительных материалов помогает создавать надежные и долговечные конструкции с хорошими эксплуатационными характеристиками. К таким стройматериалам относится газобетон. Из него конструируются газоблоки, которые обладают звукоизоляционными, теплоизоляционными свойствами и небольшим весом.

Масса блоков позволяет в значительной степени упростить кладку.

Виды газобетонных блоков, размеры газобетона. Выбор газобетона для строительства дома — stn-house.ru

/ Советы / Виды блоков из газобетона

С момента получения первых ячеистых бетонов в конце XIX и запатентованного автоклавного газобетона в начале XX века производство газоблоков активно развивалось. Применение высокоточного оборудования в сочетании с простотой обработки газобетона привело к производству газоблоков разных форм, марок и брендов. Если вы хотите узнать, какой газобетон лучше для строительства вашего дома, познакомьтесь с его видами и областью применения для каждого из них.

Виды газобетона по типу стен

Все газоблоки можно разделить на стеновые и перегородочные в зависимости от того, для стен какого типа их используют.

Стеновые блоки газобетона более толстые, так как они предназначены для возведения внешних стен. Их толщина находятся в диапазоне 25-50 см.

Газоблоки для перегородок и перемычек. Первые из них используют для создания внутренних перегородок. Длина и высота этих блоков обычно такая же, как у стеновых, а толщина может быть в несколько раз меньше (10-15 см). Вторые предназначены для создания перемычек в стенах разного типа. Так как их конструкцию часто укрепляют арматурным каркасом, вес таких блоков может быть большим.

Виды газоблоков по форме и размерам

Газоблок типа «паз-гребень». У таких газобетонных блоков с одной стороны идет один или несколько гребней, а с другой стороны находятся соответствующие им пазы. Благодаря наличию системы «паз-гребень» блоки укладываются с большой точностью, а вместе их соединения образуется так называемый замок. Это избавляет от необходимости использовать клей, что сокращает время работы и снижает затраты на материалы. Отсутствие клея дает еще одну выгоду — без него не образуются мостики холода, что улучшает теплоизоляционные свойства дома. Такие блоки могут иметь специальные выемки ручки для захвата, что облегчает процесс их эксплуатации.

Прямые газоблоки. Блоки такой формы используют как для внешних, так и для внутренних стен, поэтому они могут быть разных размеров. Прямые блоки также могут иметь могут иметь ручки для захвата.

U-образные блоки. Газобетон этой формы используется для создания армопоясов, различных перемычек, колон и других конструкций. Например, при создании перекрытия дверного проема U-образные блоки кладут на подготовленную опалубку и проклеивают с помощью клея для соответтсвющего материала (газобетона). В получившийся желоб устанавливают арматуру и заливают бетон. Плюсом такой конструкции из газобетона является малый по сравнению с железобетоном вес и хорошие теплоизоляционные свойства.


Дугообразные блоки. Такой газобетон применяют для возведения конструкций округлой формы. Это могут быть оригинальные дизайнерские перегородки, лестницы, башни и прочее. Конструкции плавных форм придают дому особый уют.


Перемычки. Их используют для создания перемычек, поэтому изготавливают из бетона высоких марок (см. далее) и могут дополнительно армировать.


Виды газобетонных блоков по типу производства:

Автоклавные блоки. Такие газоблоки затвердевают в автоклавах под высоким давлением насыщенных паров. Полученный таким способом материал отличается высокой прочностью, высокой геометрией и идеально подходит для несущих стен. Однако расплатой за высокие качества является высокая цена.

Неавтоклавные блоки. Такой газобетон может сохнуть в специальных сушильных камерах или в естественных условиях. Благодаря этому неавтоклавные блоки можно делать прямо на месте стройки. Это менее прочный материал, но и цена его заметно ниже, чем у автоклавного газобетона. Как строительный материал, в Московской области, он практически не применяется, поскольку кустарные способы производства блоков — это не профессионально и не технологично. В наше время можно купить по хорошей цене блок автоклавного твердения по очень выгодной цене, например в зимнее время.

Виды газоблоков по маркам

На газоблоках можно встретить различную маркировку. Начнем с обозначения, в котором присутствует буква D. Она обозначает плотность бетона и может находиться в диапазоне D200–D1200. Чем выше цифра, тем прочнее материал. Однако с приобретением прочности теплоизоляционные свойства газобетона ухудшаются, что естественно, так как в более плотном веществе меньше пор.


Блоки разной плотности делятся на группы:

Теплоизоляционные. Это блоки марок D200–D350, отличающиеся низкой теплопроводностью. Так как они достаточно хрупки, их используют только для ненесущих внутренних стен и теплоизоляции.

Конструкционно-теплоизоляционные. С их помощью можно строить несущие стены или создавать перегородки с высокими теплоизоляционными свойствами. Это марки D500–D600.

Конструкционные. Эти блоки не могут похвастать такими высокими теплоизоляционными свойствами, как предыдущие, но зато отличаются высокой прочностью. С их помощью можно создавать высокие здания. Эти блоки обозначают марками D700–D1200.

Помимо этого, есть еще несколько параметров, характеризующих газобетонные блоки. Это прочность на сжатие (обозначается буквой В) и марка прочности (обозначается М). Первая величина измеряется в МПа, а вторая в кг/см2, чтобы покупателю было удобнее рассчитывать объем закупаемого материала в удобных для него единицах.


Понимание, чем один вид газобетона отличается от другого и для чего применяется, поможет вам сделать правильный выбор газоблоков для строительства дома.

Фундамент частного дома подвергается особым рискам, так как ему приходится выдерживать подвижки грунта, высокую нагрузку и агрессивное воздействие окружающей среды. Чтобы защитить его от возможных

Вокруг керамических блоков давно не утихают споры, так как мнения о них самые разные: от восторженных до негативных. Если вы задумали построить дом из керамических блоков, советуем ориентироваться

Существуют два основных типа каменных коттеджей: из природного камня и камня искусственного. Для каждого из них существуют свои плюсы и минусы.

стандарт u газоблока для перегородок, размеры газобетона для строительства дома, ширина перегородочного

Строительство из блоков газобетона на сегодняшний день невероятно популярно. На стороне газоблоков множество преимуществ, о которых речь пойдет немного позже. Одной из первоочередной задачей при проектировке будущего здания станет определение стандартных размеров главного используемого материала. Исходя из этих данных, можно избежать многочисленных трудоемких процессов подрезки блоков, а значит, существенно сократить продолжительность и стоимость строительства.

Почему стоит выбрать такой материал

Информации на эту тему можно встретить предостаточно. Положительных сторон использования газоблоков существенно больше, нежели недостатков. Успешно конкурируя на строительном рынке с традиционными и более современными материалами, газобетонные изделия прочно заняли свою нишу и вошли в наш обиход. В чем причина такой популярности? Попробуем разобраться подробней.

Какова плотность газобетона для несущих стен можно узнать из данной статьи.

Преимущества газоблоков

  • Экологичность, при производстве не используются заведомо опасные для жизни и здоровья человека вещества.
  • Точная геометрия блоков позволит существенно снизить затраты на клеящий состав, а также облегчит монтажные работы.
  • Ячеистая структура превосходно держит тепло.
  • Легкий вес, для сравнения вместо укладки одного блока весом 30 кг понадобиться не менее 22 кирпичей, суммарный вес которых составит около 80 кг.
  • Пожаробезопасность — процесс изготовление газобетона исключительно из минерального негорючего сырья. Такой состав сможет выдерживать открытый огонь на протяжении около трех часов без серьезных деформаций.
  • Легкость дальнейшей обработки позволит воплотить в реальность любой проект. При необходимости газобетону можно придать любую форму обычной ножовкой. В дальнейшем не возникнет проблем с установкой коммуникаций и креплением мебели.

Как использовать клей для блоков из газобетона указано в статье.

На видео – размер блока газобетона:

Вместе с тем существуют и некоторые недостатки материала, с которыми также придется считаться. Главным образом это необходимость наружной облицовки. Делать это надо не только из соображений эстетической привлекательности здания, но и для его продолжительной эксплуатации. Дело в том, что под воздействием неблагоприятных погодных условий и температурных колебаний, газобетон может подвергаться разрушениям. Избежать этого поможет оштукатуривание поверхности или облицовка фасадными материалами.

Вес газобетонного блока 200х300х600 составляет параметры описанные в статье

Виды газобетонных избелий

Классификация видов газобетонных изделий предусматривает следующее ранжирование:

  • материалы для возведения несущих и внешних стен, 
  • перегородочный вариант. 

Как уже видно из названия, главным критерием отбора будет именно назначение материала.

Стеновые блоки из газобетона имеют ширину от 250 мм, в зависимости от климатической зоны проживания и назначения постройки. Для несущих конструкций можно использовать блоки с габаритами от 375 мм, остальные пустить на внешние стены здания.

О том имеют ли стены из газобетонных блоков плюсы и минусы, и если да, то какие конкретно можно узнать прочитав данную статью.

Перегородочные блоки с газобетона

Перегородочные стеновые блоки более тонкие, от 200 до 250 мм. Область их применения также довольно широка. Помимо прямого назначения — возведение внутренних промежуточных стен, с их помощью можно соорудить хозяйственные постройки. Особые требования к таким зданиям менее строги, поэтому такой вариант подойдет идеально, а бюджетная стоимость и скорость возведения станут приятным дополнением.

По конфигурации отличают монолитные блоки и в виде буквы U. Первая разновидность наиболее популярна и востребована. Блоки в форме «U» обычно используются для внутренних перегородок, перемычек или нежилых помещений. Длина и высота всех блоков идентична.

Отличие газобетона от пенобетона что лучше использовать при строительстве описано в данной статье.

Размеры для строительства дома

На видео – размеры газобетона для строительства дома:

Габариты готовых изделий

Данные о большинстве стандартных габаритов газобетонных блоков приведены далее в сравнительной таблице. Стоимость указана ориентировочная исключительно в ознакомительных целях.

О том каковы технические характеристики газобетона можно узнать из данной статьи.

Стандарты размера

Стандартные размеры газоблоков:

№ п/п: Вид по назначению: Габариты изделия: Особенности:
Ширина: Высота: Длина:
1. Перегородочный блок. 85 250 625 Прямоугольная форма, относительно малая толщина, не подходит для внешних стен.
2. 100 250 625
3. 150 250 625
4. 150 500 625
5. Стеновой блок. 200 250 625 Основной строительный материал.
6. 240 250 625
7. 250 250 625
8. 300 250 625
9. 375 250 625
10. 400 250 625
11. Стеновой блок. 240 250 625 Торцевой карман – вырез для захвата.
12. 250 250 625
13. 300 250 625
14. 375 250 625
15. 400 250 625
16. Стеновой блок. 240 250 625 Паз – гребень с захватными карманами.
17. 250 250 625
18. 300 250 625
19. 375 250 625
20. 400 250 625

Маркировка D означает увеличенную плотность структуры газобетона. Обычно это 350–700 кг/м³. Существует марка плотностью и свыше 700, обычно для этого материала дополнительная теплоизоляция не требуется, только косметическая отделка и декорирование.

О том какие размеры у газобетонного блока можно узнать из данной статьи.

Основные производители и цена

На отечественном рынке представлено множество вариантов газобетонных конструкций. Сложность изготовления этого материала автоматически делает невыгодной любую фальсификацию. Стоимость подходящего оборудования довольно значительна, поэтому если речь идет о недоброкачественном товаре обычно это связано с изменениями конфигурации.

Следует отметить, что небольшая погрешность все – таки допускается и она легко маскируется финишной отделкой, поэтому обычно проблем с качеством газоблоков нет. Выбирая проверенного производителя также можно быть уверенным в исключительной безопасности материала и гарантированных прочностных характеристиках.

О том какие блоки для строительства дома использовать лучше всего и по какой цене можно узнать прочитав данную статью.

Краткий обзор наиболее хорошо себя зарекомендовавших торговых брендов приведен далее. При недоступности такой покупки можно использовать и продукцию местных фирм, чья стоимость будет даже ниже. Главное, перед покупкой удостоверится в хорошем качестве товара, и учесть все нюансы строительства.

Ориентировочная стоимость газоблоков различных производителей:

№ п/п: Производитель: Тип блоков: Цена, $:
1. Aeroc (Россия). Перегородочный. От 0,78/штука.
2. Aeroc (Россия). Стеновой блок с паз – гребнем и захватными карманами. От 32,5 за м³.
3. Aeroc (Россия). U – блок. От 2,5/штука.
4. UDK TBM (Украина). Стеновые обычные. От 40 за м³.
5. Stonelight. Перегородочный блок. От 33 за м³.
6. Stonelight. Стеновые блоки. От 38 за м³.
7. Stonelight. U – блок. От 2,7/штука.
8. Hetten Перегородочный блок. От 31 за м³.
9. Hetten Стеновые блоки. От 34 за м³.

Газоблоки в современном строительстве — универсальный и практичный материал. Большая экономичность и менее продолжительный монтаж таких зданий порадует своей оперативностью, а привлекательный внешний вид обеспечит наружная отделка и декорирование «на свой вкус».

О том какое есть отличие между пеноблоком и газосиликатным блоком можно узнать из данной статьи.

Существует несколько подходящих размеров готовых блоков, которые как нельзя лучше соответствуют основному назначению — возведению жилых домов. Экологичность и легкий вес материала создадут все возможные удобства для комфортного возведения и проживания.

Узнать все технические характеристики газосиликатных блоков можно прочитав данную статью.

Стоимость и доступность этого материала будет отличаться в разных регионах, но проблем с приобретением быть не должно вследствие широкой распространенности газобетонных блоков.

Размер СИБИТа, ЦЕНА, Размер Блока СИБИТ 100, 200, 300, 400, Технические характеристики газобетона СИБИТ

Размеры и технические характеристики «СИБИТа» для чего?- перед тем как планировать строительство любой застройщик, строитель, проектировщик должен определиться с выбором основных строительных материалов, а также хорошо знать их размеры, технические характеристики, цену для того чтобы сделать точный расчет по количеству, технической, экономической составляющей будущего проекта. Размер «СИБИТа» является достаточно стабильным и точным, благодаря применению современных технологий и оборудования на заводе «СИБИТ», поэтому при выборе блоков и других изделий «СИБИТ» Вы можете быть уверенным в их качестве.  

Разброс размеров по ширине: Перегородочные блоки 100-150мм. Стеновые блоки 200-400мм.
Для того чтобы в дальнейшем нам было легко разбираться в указанных размерах завода «СИБИТ» разберем пример: Размер СИБИТа 625/200/250мм (первая цифра 625мм — длина она всегда стоит на первом месте, вторая 200мм — ширина, третья 250мм — высота). Возможные отклонения геометрического параметра не более 2мм.

Перейти в раздел > ЦЕНА НА СИБИТ СИБИТ ЭТО САМЫЙ ДЕШЕВЫЙ СИБИТ


Таблица размеров газобетонных блоков СИБИТ

Стеновые блоки 200, 240, 300, 400 — Размеры, Вес, Плотность «СИБИТа»
БЛОК СТЕНОВОЙ 200 БЛОК СТЕНОВОЙ 240 БЛОК СТЕНОВОЙ 300 БЛОК СТЕНОВОЙ 400




размер мм. 625/200/250
размер мм. 625/240/250
размер мм. 625/300/250
размер мм. 625/400/250
вес блока от — 19.5 кг вес блока от — 30 кг
вес блока от — 29.5 кг
вес блока от — 39.1 кг
плотность от D-500
плотность от D-500
плотность от D-500
плотность от D-500
Объем подд. 0,75м3
Объем подд. 0,75м3
Объем подд. 0,75м3
Объем подд. 0,75м3
Штук в поддоне 24
Штук в поддоне 20
Штук в поддоне 16
Штук в поддоне 12
М2 в поддоне 3,75
М2 в поддоне 3,13
М2 в поддоне 2,5
М2 в поддоне 1,88
Перегородочные блоки 100, 120, 150 — Размеры, Вес, Плотность «СИБИТа»
БЛОК ПЕРЕГОРОДОЧНЫЙ 100 БЛОК ПЕРЕГОРОДОЧНЫЙ 120 БЛОК ПЕРЕГОРОДОЧНЫЙ 150 ПРАЙС ЛИСТ




размер мм. 625/100/250
размер мм. 625/120/250
размер мм. 625/150/250
вес блока от — 11.2 кг вес блока от — 13.5 кг
вес блока от — 16.8 кг
плотность от D-600
плотность от D-600
плотность от D-600
Объем подд. 0,75м3
Объем подд. 0,75м3
Объем подд. 0,75м3
Штук в поддоне 48
Штук в поддоне 40
Штук в поддоне 32
М2 в поддоне 7,5
М2 в поддоне 6,25
М2 в поддоне 5
Поддон с готовой продукцией — Размеры, Вес, Плотность «СИБИТа»
ПОДДОН СИБИТа ПОДДОНЫ СИБИТа


Поддон с газобетоном Сибит
размеры 1.0/0.625/1.305 м.
Объем поддона = 0,75м3.  
Вес поддона «СИБИТа» — Перегородочные блоки = 540-565 кг.
Вес поддона «СИБИТа» — Стеновые блоки = 470-675 кг.  

Завод упаковывает готовую продукцию на деревянный поддон с защитной упаковкой из полиэтилена с нанесенным фирменным стилем завода, так же вы можете встретить и обычную прозрачную упаковку поддонов с продукцией. Размеры поддона с газобетоном всегда одинаковы и не зависят от выбранных изделий покупателем, разница только в количестве блоков размещаемых на поддоне. 

Условные обозначения размеров: (длина — L = 1000 мм.), (ширина — B = 625 мм.), (высота — H = 1350 мм.) 
Для того чтобы точно определить вес поддона нужно перейти в этот раздел


Физико-технические характеристики «СИБИТа»

Теплопроводность, теплоизоляция газобетона «СИБИТ»= 0.11Вт/мС в не содержащем влаги изделии. Теплопроводность — способность образцов материала передавать высокую температуру от одной его части к другой при тепловом перемещении частиц. Теплопроводность напрямую зависит от плотности газобетона, его структуры, эксплуатационной влажности. Показатель теплопроводности измеряется уровнем тепла, проходящим через модель материала равной 1м2, при различных температурах расположенных друг напротив друга плоскостях образца изделия.

Паропроницаемость газобетона «СИБИТ» = 0.17г/м. Процесс аккумулирования воды в полости материала, позволяющий свободно пропускать или препятствовать движению частиц влаги внутри образцов.

 

Плотность газобетонных блоков «СИБИТ» — обозначается буквой D, измеряется цифрами от 500-700, кг на один м3, чем выше цифра, тем выше плотность «СИБИТа», т.е. выше способность выдерживать большую нагрузку.

Класс по прочности на сжатие газобетона «СИБИТ» — обозначается буквой В, измеряется в МПа или кг/см2, чем выше цифра, тем выше прочность на сжатие газобетона.

Марка морозостойкости газобетона «СИБИТ» — обозначается буквой F, измеряется цифрами от 35-250, означает количество циклов замораживания и оттаивания газобетона. Нормой считается показатель начинающийся с 35. Средняя марка морозостойкости «СИБИТа» F100.

Огнестойкость, пожаро-технические свойства газобетона «СИБИТ» — промежуток времени от начала термического воздействия на материал до полной утраты его физико-технических характеристик. Предел огнестойкости принято устанавливать временем. Автоклавный газобетон считается негорючим (НГ) материалом. Изделия из автоклавного газобетона могут выдерживать влияние огня в течении временного промежутка 3-7 часов испытаний. При тестировании образцов газобетона было установлено, что при повшении температуры до 400С, увеличивается его прочность на 85%, а при температурах от 400 до 700С, прочность изделий снижается до исходного уровня. 

Обрабатываемость газобетона «СИБИТ» — автоклавный газобетон свободно поддается обработке при помощи ручных инструментов.

Экологичность газобетона «СИБИТ» — автоклавный газобетон считается экологически чистым материалом, прошедший многочисленные пробы и испытания.

Сейсмостойкость газобетона «СИБИТ» — согласно заключению «Научно-исследовательскому центру Строительство «, проводившего испытания автоклавного газобетона, использование блоков в качестве заполнения с основой из каркаса может быть рекомендовано для сооружений разной этажности в зонах с сейсмичностью 7-9 баллов.


Данные интегрированы с официального сайта «СИБИТ»

Автоклавный газобетонный блок, размер (дюймы): 600 x 200 x 100 мм, 36 рупий / штука

Автоклавный газобетонный блок, размер (дюймы): 600 x 200 x 100 мм, 36 рупий / штука | ID: 14143659891

Спецификация продукта

Тип блока Блок AAC
Для использования в перегородках
Размер (дюймы) 600 x 200 x 100 мм

Описание продукта

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 2010

Юридический статус Фирмы Физическое лицо — Собственник

Характер бизнеса Производитель

Количество сотрудников от 11 до 25 человек

Годовой оборот Rs.50 лакх — 1 крор

Участник IndiaMART с августа 2012 г.

GST36AMCPB5886F2Z1

Основанная в году 2010 , Devi Industries — чрезвычайно известная в отрасли фирма, которая возникла с видением того, чтобы быть наиболее предпочтительным выбором для клиентов. Форма собственности нашей компании ИП . Головной офис нашей корпорации находится по адресу Хайдарабад, Телангана .Соответствуя постоянно растущим требованиям клиентов, наша компания занимается производством из машины для производства кирпича, машины для производства блоков, бетонного кирпича и бетонного блока . Все предлагаемые нами продукты тщательно производятся под руководством высококвалифицированных диспетчеров с использованием лучшего сырья и инновационных технологий с соблюдением норм качества.

Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

Прямоугольные автоклавные легкие блоки из пенобетона, для боковых стен, размер: 625 x 240 x 90 мм (ДхШхВ), 2300 рупий за кубический метр

Прямоугольные легкие блоки из пенобетона в автоклаве для боковых стен, размер: 625 x 240 x 90 мм (ДхШхВ), 2300 рупий / кубический метр | ID: 5780973288

Спецификация продукта

1

Применение

1

Lite
Размер 625 x 240 x 90 мм (ДхШхВ)
Форма Прямоугольная
Материал Автоклавный пенобетон 80007
Прочность на сжатие 3.5 Н / мм2
Характеристики Легкий
Плотность кг на куб M 550-650 кг / м3
Страна происхождения Сделано в Индии
Марка
Огнестойкость 02 до 06 часов
Индекс звукоизоляции 45 дБ для стены толщиной 200 мм
Теплопроводность 0.24 (ж / к-рн)

Описание продукта

Опираясь на многолетний опыт работы в отрасли, мы предлагаем ассортимент премиум-класса Lightweight AAC Blocks .


Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 2010

Правовой статус компании с ограниченной ответственностью (Ltd./Pvt.Ltd.)

Характер бизнеса Производитель

Количество сотрудников от 26 до 50 человек

Годовой оборот 25-50 крор

Участник IndiaMART с июня 2012 г.

GST24AABCL8807A1ZX

Мы Litecon Industries Pvt. Ltd. » добилась успеха на рынке, выпустив замечательную гамму из блоков из автоклавного пенобетона и раствора для стыковки блоков . Мы — известная и надежная компания, зарегистрированная в 2010 году по адресу Сурат (Гуджарат, Индия) . Предлагаемые нами продукты производятся в соответствии с заранее определенными отраслевыми нормами и проходят испытания, чтобы гарантировать их безупречность. Мы известная фирма, которой руководят опытные люди и которая приобрела огромную клиентуру.

Видео компании

Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

Рынок автоклавного газобетона 2027

ГЛАВА 1: ВВЕДЕНИЕ

1.1.Описание отчета
1.2.Основные преимущества для заинтересованных сторон
1.3.Основные сегменты рынка
1.4.Методология исследования

1.4.1.Первичное исследование
1.4.2.Вторичное исследование
1.4.3.Инструменты и модели аналитика

ГЛАВА 2 : КРАТКОЕ ИЗЛОЖЕНИЕ

2.1. Основные выводы исследования
2.2. Перспективы CXO

ГЛАВА 3: ОБЗОР РЫНКА

3.1. Определение и объем рынка
3.2. Основные выводы

3.2.1. Основные факторы воздействия
3.2.2 .Верхние паковочные карманы

3.3. Анализ пяти сил Портера
3.4. Анализ доли рынка
3.5. Динамика рынка

3.5.1. Драйверы

3.5.1.1. Выгодные характеристики AAC, такие как огнестойкость, теплоизоляция и легкий вес
3.5.1.2. Снижение общих затрат на строительство
3.5.1.3. Повышение экологической эффективности по сравнению с традиционным кирпичом

3.5.2. Сдерживание

3.5.2.1. Высокая зависимость от замещающих материалов
3.5.2.2. Необходимость армирования для несущих нагрузок

3 .5.3. Возможность

3.5.3.1. Необходимость упругой конструкции

3.6. Анализ воздействия COVID-19

ГЛАВА 4: РЫНОК АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПО ВИДУ ПРОДУКЦИИ

4.1. Обзор

4.1.1. Рынок размер и прогноз, по типу продукта

4.2. Блоки

4.2.1. Основные тенденции рынка, факторы роста и возможности
4.2.2. Размер рынка и прогноз, по регионам
4.2.3. Анализ рынка, по странам

4.3.Другие

4.3.1.Основные рыночные тенденции, факторы роста и возможности
4.3.2.Размер и прогноз рынка, по регионам
4.3.3.Анализ рынка, по странам

ГЛАВА 5: РЫНОК АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПО КОНЕЧНЫМ ПОЛЬЗОВАТЕЛЯМ

5.1.Обзор

5.1.1.Размер рынка и прогноз по конечным пользователям

5.2.Жилой

5.2.1.Основные тенденции рынка, факторы роста и возможности
5.2.2.Размер и прогноз рынка по регионам
5.2.3. Анализ рынка по странам

5.3. Нежилое

5.3.1. Основные тенденции рынка, факторы роста и возможности
5.3.2. Объем и прогноз рынка, по регионам
5.3.3. Анализ рынка, по странам

ГЛАВА 6: АВТОКЛАВИРОВАННЫЙ ПЕТРОБЕТОН (AAC) РЫНОК, ПО ПРИЛОЖЕНИЮ

6.1. Обзор

6.1.1. Объем и прогноз рынка, по приложениям

6.2. Стены

6.2.1. Основные рыночные тенденции, факторы роста и возможности
6.2.2. Объем и прогноз рынка по регионам
6.2.3. Анализ рынка по странам

6.3. Полы и крыши

6.3.1. Основные рыночные тенденции, факторы роста и возможности
6.3.2. Объем и прогноз рынка, по регионам
6.3.3. Анализ рынка, по странам

6.4. Прочие

6.4. .1.Основные рыночные тенденции, факторы роста и возможности
6.4.2.Размер рынка и прогноз по регионам
6.4.3.Анализ рынка по странам

ГЛАВА 7: РЫНОК АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) ПО РЕГИОНАМ

7.1. Обзор

7.1.1. Объем и прогноз рынка по регионам

7.2. Северная Америка

7.2.1.Основные тенденции и возможности рынка
7.2.2.Размер рынка и прогноз по типу продукта
7.2.3.Размер и прогноз рынка по конечным потребителям
7.2.4.Размер рынка и прогноз , по приложению
7.2.5. Анализ рынка, по странам

7.2.5.1.США

7.2.5.1.1. Размер и прогноз рынка по типам продукта
7.2.5.1.2. Размер и прогноз рынка, по конечным пользователям
7.2.5.1.3. Размер и прогноз рынка, по приложениям

7.2.5.2 .Canada

7.2.5.2.1.Размер рынка и прогноз, по типу продукта
7.2.5.2.2.Размер рынка и прогноз, по конечному пользователю
7.2.5.2.3.Размер рынка и прогноз, по приложению

7.2.5.3.Мексика

7.2.5.3.1.Размер рынка и прогноз по типу продукта
7.2.5.3.2.Размер и прогноз рынка, по конечным пользователям
7.2.5.3.3.Размер и прогноз рынка по приложениям

7.3.Европа

7.3.1.Основные тенденции рынка, факторы роста и возможности
7.3.2.Размер и прогноз рынка по видам продукции
7.3.3.Размер рынка и прогноз, по конечному пользователю
7.3.4.Размер рынка и прогноз, по приложению
7.3.5.Европа Размер рынка и прогноз, по странам

7.3.5.1.Германия

7.3.5.1.1. Объем и прогноз рынка по типу продукта
7.3.5.1.2. Размер и прогноз рынка, по конечному пользователю
7.3.5.1.3. Размер и прогноз рынка, по приложению

7.3.5.2.UK

7.3.5.2. 1.Размер рынка и прогноз по типу продукта
7.3.5.2.2.Размер и прогноз рынка по конечному пользователю
7.3.5.2.3. Размер рынка и прогноз, по приложению

7.3.5.3. Франция

7.3.5.3.1. Размер рынка и прогноз, по типу продукта
7.3.5.3.2. Размер рынка и прогноз, по конечному пользователю
7.3.5.3.3.Размер рынка и прогноз, по приложению

7.3.5.4.Остальная Европа

7.3.5.4.1.Размер и прогноз рынка по типу продукта
7.3.5.4.2.Размер рынка и прогноз, по конечному пользователю
7.3.5.4.3. Размер рынка и прогноз, по приложению

7.4. Азиатско-Тихоокеанский регион

7.4.1. Основные рыночные тенденции, факторы роста и возможности
7.4.2. Размер рынка и прогноз, по типу продукта
7.4.3. Размер и прогноз рынка, по конечному пользователю
7.4.4. Размер и прогноз рынка, по приложению
7.4.5.Размер рынка и прогноз по странам

7.4.5.1.Китай

7.4.5.1.1.Размер и прогноз рынка по типу продукта
7.4.5.1.2.Размер и прогноз рынка по конечным пользователям
7.4.5.1.3.Размер и прогноз рынка по приложению

7.4.5.2.Япония

7.4.5.2.1. Размер рынка и прогноз, по типу продукта
7.4.5.2.2. Размер и прогноз рынка, по конечному пользователю
7.4.5.2.3. Размер и прогноз рынка, по приложению

7.4.5.3. Индия

7.4.5.3.1. Размер рынка и прогноз, по типу продукта
7.4.5.3.2. Размер и прогноз рынка, по конечному пользователю
7.4.5.3.3. Размер рынка и прогноз, по приложению

7.4.5.4.Rest Азиатско-Тихоокеанского региона

7.4.5.4.1. Размер рынка и прогноз по типу продукта
7.4.5.4.2. Размер и прогноз рынка, по конечным потребителям
7.4.5.4.3.Размер рынка и прогноз, по приложениям

7.5.LAMEA

7.5.1.Основные рыночные тенденции, факторы роста и возможности
7.5.2.Размер и прогноз рынка по типу продукта
7.5.3.Рынок размер и прогноз, по конечным пользователям
7.5.4. Размер и прогноз рынка, по приложениям
7.5.5. Размер и прогноз рынка, по странам

7.5.5.1. Латинская Америка

7.5.5.1.1. Размер рынка и прогноз, по типу продукта
7.5.5.1.2. Размер рынка и прогноз, по конечному пользователю
7.5.5.1.3.Размер рынка и прогноз, по приложению

7.5.5.2. Средний Восток

7.5.5.2.1.Размер рынка и прогноз, по типу продукта
7.5.5.2.2.Размер рынка и прогноз, по конечному пользователю.
7.5.5.2.3. Размер и прогноз рынка, по приложениям

7.5.5.3. Африка

7.5.5.3.1. Размер рынка и прогноз, по типу продукта
7.5.5.3.2. Размер рынка и прогноз, по конечный пользователь
7.5.5.3.3.Размер рынка и прогноз, по приложениям

ГЛАВА 8: КОНКУРЕНТНЫЙ ЛАНДШАФТ

8.1.Введение

8.1.1.Позиционирование игроков на рынке, 2019 г.

ГЛАВА 9: ПРОФИЛИ КОМПАНИИ

9.1.AERCON AAC

9.1.1. Обзор компании
9.1.2. Ключевые руководители
9.1.3. Снимок компании
9.1.4. Портфель продукции

9.2. AKG GAZBETON

9.2.1. Обзор компании
9.2.2. Ключевые руководители
9.2.3. Обзор компании
9.2.4. Портфель продукции

9.3.BAUROC AS

9,3 .1. Обзор компании
9.3.2. Ключевые руководители
9.3.3. Обзор компании
9.3.4. Портфель продукции

9.4. BALLARPUR INDUSTRIES LIMITED (BILTECH BUILDING ELEMENTS LIMITED)

9.4.1. Обзор компании
9.4.2. Ключевые руководители
9.4.3. Обзор компании
9.4.4 .Операционные бизнес-сегменты
9.4.5. Портфель продукции
9.4.6. Показатели бизнеса

9.5. HIL LIMITED (BIRLA AEROCON)

9.5.1. Обзор компании
9.5.2. Ключевые руководители
9.5.3. Снимок компании
9.5.4. Операционные бизнес-сегменты
9.5.5.Продукция
9.5.6.Расходы на НИОКР
9.5.7.Результаты бизнеса

9.6.CSR LTD.

9.6.1. Обзор компании
9.6.2. Ключевые руководители
9.6.3. Обзор компании
9.6.4. Операционные бизнес-сегменты
9.6.5. Портфель продукции
9.6.6. Эффективность бизнеса

9.7.FORTERRA PLC

9.7.1. Обзор компании
9.7.2. Ключевые руководители
9.7.3. Обзор компании
9.7.4. Операционные бизнес-сегменты
9.7.5. Портфель продукции
9.7.6. Эффективность бизнеса

9.8.H + H INTERNATIONAL A / S

9.8.1. Обзор компании
9.8.2. Ключевые руководители
9.8.3. Обзор компании
9.8.4. Операционные сегменты бизнеса
9.8.5. Продуктовый портфель
9.8.6. Эффективность бизнеса
9.8.7. Ключевые стратегические шаги и разработки

9.9.JK LAXMI CEMENT LTD.

9.9.1. Обзор компании
9.9.2. Ключевые руководители
9.9.3. Обзор компании
9.9.4. Операционный бизнес-сегмент
9.9.5. Портфель продукции
9.9.6.Расходы на НИОКР
9.9.7. Эффективность бизнеса

9.10.XELLA INTERNATIONAL GMBH

9.10.1. Обзор компании
9.10.2. Ключевые руководители
9.10.3. Обзор компании
9.10.4. Портфель продукции
9.10. 5. Эффективность бизнеса
9.10.6. Ключевые стратегические шаги и разработки

СПИСОК ТАБЛИЦ

ТАБЛИЦА 01. ГЛОБАЛЬНОЕ СРАВНЕНИЕ ПРОМЫШЛЕННОСТИ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ ПО КВАРТАЛАМ (% ИЗМЕНЕНИЯ) ТИП ПРОДУКТА, 2019-2027 гг. (МЛН $)
ТАБЛИЦА 03.ДОХОД НА РЫНКЕ АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) ПО РЕГИОНАМ, 2019–2027 (МЛН. $)
ТАБЛИЦА 04. ПОЖАРНАЯ УСТОЙЧИВОСТЬ ЭЛЕМЕНТОВ AAC
ТАБЛИЦА 05. 2027 (МЛН. Долл. США)
ТАБЛИЦА 06. ВЫРУЧКА ГЛОБАЛЬНОГО РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПОКАЗАТЕЛИ КОНЕЧНЫХ ПОЛЬЗОВАТЕЛЕЙ, 2019-2027 гг. (Млн. Долл. США) 2027 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 08. ДОХОДЫ РЫНКА АВТОКЛАВИРОВАННОГО ПЕРЕДНЕГО БЕТОНА (AAC) ДЛЯ НЕЖИЛЫХ ОБЪЕКТОВ, ПО РЕГИОНАМ, 2019–2027 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 09.МИРОВОЙ РЫНОК АВТОКЛАВИРОВАННОГО ПЕРИТИЧЕСКОГО БЕТОНА (AAC), ПО ПРИМЕНЕНИЮ, 2019-2027 гг. (МЛН. $)
ТАБЛИЦА 10. РЫНОК АВТОКЛАВИРОВАННОГО ПЕРИСТИЧЕСКОГО БЕТОНА (AAC) ПО РЕГИОНАМ, 2019–2027 (МЛН. $)
ТАБЛИЦА 11. ДОХОДЫ РЫНКА БЕТОНА (AAC) ОТ ПОЛОВ И КРОВЕЛЬ, ПО РЕГИОНАМ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 12. ДОХОДЫ РЫНКА АВТОКЛАВНОГО ПЕТРОБЕТОНА (AAC) ДЛЯ ДРУГИХ РЕГИОНОВ, ПО РЕГИОНАМ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 13. ВЫРУЧКА МИРОВОГО РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПО РЕГИОНАМ, 2019–2027 гг., МЛН $)
ТАБЛИЦА 14.Выручка рынка автоклавного пенобетона (AAC) в Северной Америке, по видам продукции, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 15. Выручка от рынка автоклавного пенобетона (AAC) в Северной Америке, по конечным потребителям, 2019–2027 гг. (Млн долл. США) 16. Выручка рынка автоклавного пенобетона (AAC) в Северной Америке, в разрезе приложений, 2019–2027 гг. (МЛН долл. США)
ТАБЛИЦА 17. Выручка рынка автоклавного пенобетона (AAC) в Северной Америке, по странам, в 2019–2027 гг. (
долл. США) 18. США ВЫРУЧКА РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПО ВИДАМ ПРОДУКЦИИ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 19.Выручка рынка автоклавного пенобетона (AAC) в США, ПОКАЗАТЕЛИ КОНЕЧНЫХ ПОЛЬЗОВАТЕЛЕЙ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 20. Выручка рынка автоклавного пенобетона (AAC) в разрезе приложений, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 21. Выручка рынка автоклавного пенобетона (AAC) в Канаде, по видам продукции, 2019–2027 гг. (Млн долл. США)
ТАБЛИЦА 22.CAVED ВЫРУЧКА РЫНКА ПЕРЕДНЕГО БЕТОНА (AAC), ПОКАЗАТЕЛИ КОНЕЧНОГО ПОЛЬЗОВАТЕЛЯ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 23. ДОХОД НА РЫНКЕ АВТОКЛАВНОГО ПЕРИОДИЧЕСКОГО БЕТОНА (AAC) КАНАДА, ПО ПРИМЕНЕНИЮ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 24.Выручка рынка автоклавного пенобетона (AAC) в Мексике, по видам продукции, 2019–2027 (МЛН. Долл. США)
ТАБЛИЦА 25. Выручка на рынке автоклавного пенобетона (AAC) в Мексике, по конечным потребителям, 2019–2027 гг. (26 млн. Долл. США)
таблица. Выручка рынка автоклавного пенобетона (AAC) в Мексике, по областям применения, 2019–2027 (МЛН. Долл. США)
ТАБЛИЦА 27. Выручка на европейском рынке автоклавного пенобетона (AAC), по видам продукции, 2019–2027 гг. (Млн долл. США)
(млн долл. США)
ВЫРУЧКА РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) ПО КОНЕЧНЫМ ПОЛЬЗОВАТЕЛЯМ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 29.Выручка европейского рынка автоклавного пенобетона (AAC) в разрезе приложений, 2019–2027 гг. (МЛН $)
ТАБЛИЦА 30. Выручка европейского рынка автоклавного пенобетона (AAC), по странам, 2019–2027 гг. Выручка рынка пенобетона (AAC), по видам продукции, 2019–2027 гг. (Млн долл. США)
ТАБЛИЦА 32. Выручка рынка автоклавного бетона (AAC) в Германии, по конечным потребителям, 2019–2027 гг. (Млн долл. США)
ТАБЛИЦА 33. АВТОКЛАВИРОВАНИЕ ГЕРМАНИИ ВЫРУЧКА РЫНКА ПЕРИОДИЧЕСКОГО БЕТОНА (AAC) ПО ПРИМЕНЕНИЮ, 2019–2027 гг. (МЛН $)
ТАБЛИЦА 34.Выручка рынка автоклавного пенобетона (AAC) в Великобритании, по видам продукции, 2019–2027 (МЛН. Долл. США)
ТАБЛИЦА 35. Выручка от рынка автоклавного пенобетона (AAC) в Великобритании, по конечным потребителям, 2019–2027 гг. (Млн. Долл. США)
ТАБЛИЦА 36. Выручка на рынке автоклавного пенобетона (AAC) во Франции, в разрезе приложений, 2019–2027 гг. (МЛН $)
ТАБЛИЦА 37. Выручка от рынка автоклавного пенобетона (AAC) во Франции, по видам продукции, 2019–2027 гг. (Млн долл. США)
ТАБЛИЦА ВЫРУЧКА РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПОКАЗАТЕЛИ КОНЕЧНЫХ ПОЛЬЗОВАТЕЛЕЙ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 39.Выручка на рынке автоклавного пенобетона (AAC) во Франции, в разрезе приложений, 2019–2027 (МЛН. Долл. США)
ТАБЛИЦА 40. Выручка от рынка автоклавного пенобетона (AAC) в Европе, по видам продукции, 2019–2027 гг. ($ 41 млн)
ДОХОД НА РЫНКЕ АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) ОСТАТОК, ПОКАЗАТЕЛИ КОНЕЧНЫХ ПОЛЬЗОВАТЕЛЕЙ, 2019–2027 гг. (МЛН ДОЛЛ. США)
ТАБЛИЦА 42. ДОХОДЫ РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) ЕВРОПЫ, ПО ПРИМЕНЕНИЮ, 2019–2027 гг. (МЛН долл. США)
ТАБЛИЦА 43. ДОХОДЫ НА РЫНКЕ АЗИАТСКО-ТИХООКЕАНСКОГО АВТОКЛАВНОГО ПЕТРОБЕТОНА (AAC), ПО ВИДАМ ПРОДУКЦИИ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 44.ВЫРУЧКА РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) АЗИАТСКО-ТИХООКЕАНСКОГО БЕТОНА (AAC), ПОКАЗАТЕЛИ КОНЕЧНЫХ ПОЛЬЗОВАТЕЛЕЙ, 2019–2027 гг. (МЛН ДОЛЛ. ТАБЛИЦА 46. ДОХОДЫ НА РЫНКЕ АВТОКЛАВИРОВАННОГО ПЕРИТИЧЕСКОГО БЕТОНА (AAC) В АЗИАТСКО-ТИХАНИИ, ПО СТРАНАМ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 47. Выручка рынка автоклавного пенобетона (AAC) КИТАЯ, ПО ВИДАМ ПРОДУКЦИИ, 2019–2027 гг. (Долл. США)
ТАБЛИЦА 48. ДОХОДЫ РЫНКА КИТАЙСКОГО ПЕРИОДИЧЕСКОГО БЕТОНА (AAC) ПО КОНЕЧНЫМ ПОЛЬЗОВАТЕЛЯМ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 49.Выручка рынка автоклавного пенобетона (AAC) в Китае, в разрезе приложений, 2019–2027 (МЛН. Долл. США)
ТАБЛИЦА 50. Выручка от рынка автоклавного пенобетона (AAC) в Японии, в разбивке по видам продукции, 2019–2027 гг. (Млн. Долл. США)
ТАБЛИЦА ДОХОД НА РЫНКЕ АВТОКЛАВИРОВАННОГО ПЕРИТИЧЕСКОГО БЕТОНА (AAC), ПОКАЗАТЕЛИ КОНЕЧНЫХ ПОЛЬЗОВАТЕЛЕЙ, 2019–2027 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 52. ДОХОДЫ НА РЫНКЕ АВТОКЛАВИРОВАННОГО ПЕРИТИЧЕСКОГО БЕТОНА (AAC) В ЯПОНИИ, ПО ПРИМЕНЕНИЮ, 2019–2027 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 53. Выручка рынка пенобетона (AAC) ПО ВИДАМ ПРОДУКЦИИ, 2019–2027 гг. (МЛН $)
ТАБЛИЦА 54.ВЫРУЧКА РЫНКА АВТОКЛАВИРОВАННОГО ПЕРИТИЧЕСКОГО БЕТОНА (AAC) В ИНДИИ, ПОКАЗАТЕЛИ КОНЕЧНЫХ ПОЛЬЗОВАТЕЛЕЙ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 55. ДОХОДЫ НА РЫНКЕ АВТОКЛАВИРОВАННОГО ПЕРИТИЧЕСКОГО БЕТОНА (AAC) В ИНДИИ, ПО ПРИМЕНЕНИЮ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 56. ВЫРУЧКА РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) АЗИАТСКО-ТИХООКЕАНСКОГО БЕТОНА, ПО ВИДАМ ПРОДУКЦИИ, 2019–2027 гг. (МЛН ДОЛЛ. МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 58. ДОХОДЫ РЫНКА ОСТАТОЧНОГО АВТОКЛАВИРОВАННОГО ПЕРИОДИЧЕСКОГО БЕТОНА (AAC) ПО ПРИМЕНЕНИЮ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 59.Выручка рынка автоклавного пенобетона (AAC) LAMEA, ПО ВИДАМ ПРОДУКЦИИ, 2019–2027 (МЛН. ДОЛЛАРОВ)
ТАБЛИЦА 60. ДОХОДЫ НА РЫНКЕ LAMEA АВТОКЛАВИРОВАННОГО ПЕРИТИЧЕСКОГО БЕТОНА (AAC), ПОКАЗАТЕЛИ КОНЕЧНОГО ПОЛЬЗОВАТЕЛЯ, 2019–2027 гг. (Млн. Долл. США)
ТАБЛИЦА. Выручка рынка автоклавного пенобетона (AAC) LAMEA, ПО ПРИМЕНЕНИЮ, 2019–2027 (МЛН. ДОЛЛ. ВЫРУЧКА РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПО ВИДАМ ПРОДУКЦИИ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 64.Выручка рынка автоклавного пенобетона (AAC) в ЛАТИНСКОЙ АМЕРИКЕ, ПОКАЗАТЕЛИ КОНЕЧНЫХ ПОЛЬЗОВАТЕЛЕЙ, 2019–2027 гг. (МЛН ДОЛЛ. .Доходность рынка автоклавного пенобетона (AAC) на среднем востоке, по видам продукции, 2019–2027 гг. (Млн долл. США)
ТАБЛИЦА 67. ДОХОД НА РЫНКЕ АВТОКЛАВИРОВАННОГО пенобетона на среднем востоке (AAC), по конечным потребителям, 2019–2027 гг. (
долл. США) ТАБЛИЦА 68. ДОХОДЫ РЫНКА АВТОКЛАВИРОВАННОГО ПЕРЕДНЕГО БЕТОНА (AAC) НА БЛИЖНЕМ ВОСТОКЕ, ПО ПРИМЕНЕНИЮ, 2019–2027 гг. (МЛН. Долл. США)
ТАБЛИЦА 69.Выручка рынка автоклавного пенобетона (AAC) в Африке, по видам продукции, 2019–2027 гг. (МЛН долл. США)
ТАБЛИЦА 70. Выручка рынка автоклавного пенобетона (AAC) в Африке, по конечным потребителям, 2019–2027 гг. (ТАБЛИЦА 71 долл. США)
. Выручка рынка автоклавного пенобетона (AAC) в Африке, в разрезе приложений, 2019–2027 (МЛН. Долл. США)
ТАБЛИЦА 72. AERCON AAC: ОСНОВНЫЕ ИСПОЛНИТЕЛИ
ТАБЛИЦА 73.AERCON AAC: ОБЗОР КОМПАНИИ
ТАБЛИЦА 74. AERCON AAC: ПРОДУКТЫ
.AKG GAZBETON: ОСНОВНОЙ ИСПОЛНИТЕЛЬ
ТАБЛИЦА 76.AKG GAZBETON: ОБЗОР КОМПАНИИ
ТАБЛИЦА 77.AKG GAZBETON: ПОРТФЕЛЬ ПРОДУКЦИИ
ТАБЛИЦА 78.BAUROC: ОСНОВНЫЕ ИСПОЛНИТЕЛИ
ТАБЛИЦА 79.BAUROC: ОБЗОР КОМПАНИИ
ТАБЛИЦА 80.BAUROC: ПОРТФЕЛЬ ПРОДУКЦИИ
ТАБЛИЦА 81.BILT: КЛЮЧЕВЫЕ ИСПОЛНИТЕЛИ КОМПАНИИ
ТАБЛИЦА 82.BILTECH BUILDABLE TABLE 83. .BILT: ОПЕРАЦИОННЫЕ СЕГМЕНТЫ
ТАБЛИЦА 84. ЭЛЕМЕНТЫ ЗДАНИЯ BILTECH: ПОРТФЕЛЬ ПРОДУКЦИИ
ТАБЛИЦА 85.HIL: ОСНОВНЫЕ ИСПОЛНИТЕЛИ
ТАБЛИЦА 86.HIL: КОМПАНИЯ SNAPSHOT
ТАБЛИЦА 87.HIL: ОПЕРАЦИОННЫЕ СЕГМЕНТЫ
ТАБЛИЦА 88.HIL 89: ПОРТ ПРОДУКТА
.CSR LTD .: КЛЮЧЕВЫЕ ИСПОЛНИТЕЛИ
ТАБЛИЦА 90.CSR LTD .: КОМПАНИЯ SNAPSHOT
ТАБЛИЦА 91.CSR LTD .: ОПЕРАЦИОННЫЕ СЕГМЕНТЫ
ТАБЛИЦА 92.CSR LTD .: ПОРТФЕЛЬ ПРОДУКТОВ
ТАБЛИЦА 93. FORTERRA PLC: ОСНОВНЫЕ ИСПОЛНИТЕЛИ
ТАБЛИЦА 94.FORTERRA PLC: ОБЗОР КОМПАНИИ
ТАБЛИЦА 95. FORTERRA PLC: ОПЕРАЦИОННЫЕ СЕГМЕНТЫ
ТАБЛИЦА 96. FORTERRA PLC: ПОРТФЕЛЬ ПРОДУКТОВ
ТАБЛИЦА 97.H + H INTERNATIONAL A / S: КЛЮЧЕВЫЕ ИСПОЛНИТЕЛИ
ТАБЛИЦА 98.H + H INTERNATIONAL A / S: ОБЗОР КОМПАНИИ
ТАБЛИЦА 99. H + H INTERNATIONAL A / S: ОПЕРАЦИОННЫЕ СЕГМЕНТЫ
ТАБЛИЦА 100.H + H INTERNATIONAL A / S: ПОРТФЕЛЬ ПРОДУКЦИИ
ТАБЛИЦА 101.JK LAXMI CEMENT: ОСНОВНЫЕ ИСПОЛНИТЕЛИ
ТАБЛИЦА 102.JK LAXMI CEMENT: ОБЗОР КОМПАНИИ
ТАБЛИЦА 103.JK LAXMI CEMENT: ОПЕРАЦИОННЫЙ СЕГМЕНТ
ТАБЛИЦА 104.JK LAXMI CEMENT: ПОРТФЕЛЬ ПРОДУКЦИИ
ТАБЛИЦА 105.XELLA: КЛЮЧЕВЫЕ ИСПОЛНИТЕЛИ
ТАБЛИЦА 106.XELLA: ОБЗОР КОМПАНИИ
ТАБЛИЦА 107.XELLA: ПОРТФЕЛЬ ПРОДУКЦИИ

СПИСОК ЦИФРОВ ПО СЕГМЕНТАЦИИ
РИСУНОК 03.ОСНОВНЫЕ ВЛИЯЮЩИЕ ФАКТОРЫ
РИСУНОК 04. НАИБОЛЬШИЕ ИНВЕСТИЦИОННЫЕ КАРМАНЫ
РИСУНОК 05. УМЕРЕННАЯ ПЕРЕГОВОРНАЯ СПОСОБНОСТЬ ПОСТАВЩИКОВ
РИСУНОК 06. 08. УГРОЗА ОТ НИЗКИХ ДОХОДОВ
РИС. 09. СОГЛАСОВАНА С ВЫСОКОЙ ИНТЕНСИВНОСТЬЮ КОНКУРЕНЦИИ
РИСУНОК 10. АНАЛИЗ РЫНОЧНЫХ АКЦИЙ
РИС. КАЛЬЦИЕВЫЕ КЛАДКИ И КИРПИЧ
РИСУНОК 12.МИРОВОЙ РЫНОК АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПО ВИДАМ ПРОДУКЦИИ, 2019–2027 гг.
РИСУНОК 13 СРАВНИТЕЛЬНЫЙ АНАЛИЗ ДОЛИ РЫНКА БЛОКОВ АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) ПО СТРАНАМ, 2019 и 2027 гг. ДРУГИХ РЫНКОВ АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПО СТРАНАМ, 2019 и 2027 гг. (%)
РИСУНОК 15. ГЛОБАЛЬНЫЙ РЫНОК АВТОКЛАВИРОВАННОГО ПЕРИТИЧЕСКОГО БЕТОНА (AAC), ПО КОНЕЧНЫМ ПОЛЬЗОВАТЕЛЯМ, 2019–2027 гг.
РИСУНОК 16. РЫНОК ЖИЛОГО БЕТОНА (AAC), ПО СТРАНАМ, 2019 и 2027 гг. (%)
РИСУНОК 17.СРАВНИТЕЛЬНЫЙ АНАЛИЗ ДОЛИ РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) ДЛЯ НЕЖИЛОГО БЕТОНА, ПО СТРАНАМ, 2019 и 2027 гг. (%) АНАЛИЗ РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) ПО СТРАНАМ, 2019 и 2027 гг. (%) )
РИСУНОК 21.СРАВНИТЕЛЬНЫЙ АНАЛИЗ ДОЛИ РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) В ДРУГИХ СТРАНАХ, 2019 и 2027 гг. (%)
РИСУНОК 22. ГЛОБАЛЬНЫЙ РЫНОК АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), ПО РЕГИОНАМ, 2019–2027 гг.
РИСУНОК 23.U.S. Выручка рынка автоклавного пенобетона (AAC), 2019–2027 (МЛН. Долл. США)
РИСУНОК 24. Выручка рынка автоклавного пенобетона (AAC) в Канаде, 2019–2027 гг. (Млн. Долл. США)
РИС. , 2019–2027 (МЛН. ДОЛЛАРОВ)
РИСУНОК 26. ВЫРУЧКА РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), 2019–2027 гг. (МЛН. Долл. США)
РИСУНОК 27.Выручка рынка автоклавного пенобетона (AAC) в Великобритании, 2019–2027 гг. (Млн. Долл. США)
РИСУНОК 28. Выручка от рынка автоклавного пенобетона (AAC) во Франции, 2019–2027 гг. (Млн. Долл. США) ) РЫНОЧНАЯ ДОХОДКА, 2019–2027 гг. (МЛН. Долл. США)
РИСУНОК 30. РЫНОЧНАЯ ДОХОДА НА РЫНКЕ КИТАЯ АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC), 2019–2027 гг. (МЛН долл. США)
РИСУНОК 31. МЛН. ДОЛЛАРОВ)
РИСУНОК 32. ВЫРУЧКА РЫНКА АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) INDIA, 2019–2027 гг. (МЛН ДОЛЛАРОВ)
РИСУНОК 33.Остаточная выручка рынка автоклавного пенобетона (AAC) в Азиатско-Тихоокеанском регионе, 2019–2027 гг. (МЛН. Долл. США)
РИСУНОК 34. РЫНОК АВТОКЛАВИРОВАННОГО ПЕТРОБЕТОНА (AAC) в ЛАТИНСКОЙ АМЕРИКЕ Выручка в 2019–2027 гг. (В миллионах долл. США)
ДИНАМИКА 35. РЫНОК ПЕРИОДИЧЕСКОГО БЕТОНА (AAC), 2019–2027 гг. (МЛН. $)
РИСУНОК 36. ДОХОДЫ НА РЫНКЕ АВТОКЛАВИРОВАННОГО ПЕРИОДИЧЕСКОГО БЕТОНА (AAC) в Африке, 2019–2027 гг. (МЛН. $)
РИСУНОК 37. ПОЛОЖЕНИЕ ИГРОКА НА РЫНКЕ, 2019 г. : ВЫРУЧКА, 2017–2019 гг. (МЛН. Долл. США)
РИСУНОК 39. НАБОР: ДОЛЯ ВЫРУЧКИ ПО СЕГМЕНТАМ, 2020 г. (%)
РИСУНОК 40.НАГРУЗКА: ДОЛЯ ДОХОДОВ ПО РЕГИОНАМ, 2020 (%)
РИСУНОК 41.HIL: РАСХОДЫ НА НИОКР, 2018–2020 гг. (МЛН ДОЛЛ. ПО СЕГМЕНТАМ, 2020 г. (%)
РИСУНОК 44.HIL: ДОЛЯ ВЫРУЧКИ ПО РЕГИОНАМ, 2020 г. (%)
РИСУНОК 45.CSR LTD: ЧИСТЫЕ ПРОДАЖИ, 2018–2020 гг. (МЛН. $)
РИСУНОК 46.CSR LTD: ДОЛЯ ДОЛЯ ДОХОДА ПО СЕГМЕНТАМ, 2019 г. (%)
РИСУНОК 47.CSR LTD .: ДОЛЯ ВЫРУЧКИ ПО РЕГИОНАМ, 2019 г. (%)
РИСУНОК 48. FORTERRA PLC: ВЫРУЧКА, 2017–2019 гг. (МЛН. Долл. США)
РИСУНОК 49.FORTERRA PLC: ДОЛЯ ВЫРУЧКИ ПО СЕГМЕНТАМ 2019 (%)
РИСУНОК 50.H + H INTERNATIONAL A / S: ВЫРУЧКА, 2018–2020 гг. (МЛН долл. США)
РИСУНОК 51.H + H INTERNATIONAL A / S: ДОЛЯ ВЫРУЧКИ ПО СЕГМЕНТАМ 2020 ( %)
РИСУНОК 52.H + H INTERNATIONAL A / S: ДОЛЯ ВЫРУЧКИ ПО РЕГИОНАМ, 2020 г. (%)
РИСУНОК 53.JK LAXMI CEMENT: РАСХОДЫ НА НИОКР, 2018–2020 гг. (МЛН. Долл. США)
РИСУНОК 54.JK LAXMI CEMENT: ДОХОД , 2018–2020 (МЛН. Долл. США)
РИСУНОК 55.XELLA: ВЫРУЧКА, 2017–2019 гг. (МЛН. Долл. США)

Объем рынка автоклавного газобетона достигнет 28 долл. США.41

Ванкувер, Британская Колумбия, 26 апреля 2021 г. (GLOBE NEWSWIRE) — Согласно последнему анализу Emergen Research, ожидается, что объем мирового рынка автоклавного пенобетона достигнет 28,41 млрд долларов США при постоянном среднегодовом темпе роста 5,3% в 2028 году. Устойчивый рост доходов на рынке можно объяснить растущим спросом на более экологичные строительные материалы и гибкостью в переработке и повторном использовании отходов, образующихся при производстве AAC. Кроме того, производство автоклавного газобетона потребляет гораздо меньше энергии по сравнению с производством других строительных материалов.Кроме того, во время производства в воздух, воду или землю не выделяются токсичные загрязнители, поскольку автоклавный газобетон производится из натурального сырья, а также продукты AAC в три раза по объему, чем используемое сырье, что делает эти продукты чрезвычайно ресурсосберегающими. эффективный и экологичный.

Получите БЕСПЛАТНЫЙ образец копии с оглавлением @ https://www.emergenresearch.com/request-sample/639

Некоторые ключевые моменты из отчета

  • Ключевые участники автоклавного газированного бетонный рынок включает Aercon AAC, UAL Industries Ltd., Mannok, H + H International A / S, JK Lakshmi Cement Ltd., Xella Group, Biltech Building Elements Ltd., CSR Ltd., Eastland Building Materials Co. Ltd. и Buildmate Projects Pvt. Ltd.
  • В декабре 2020 года Bigbloc Construction Ltd. объявила об увеличении на 25% производственных мощностей M / s Starbigbloc Building Material Pvt. Ltd., которая является дочерней компанией Bigbloc Construction Ltd.
  • По типу продукции, сегмент блоков составил наибольшую долю выручки в 2020 году. Блоки AAC помогают сократить время строительства примерно на 20%, а также значительно сокращается количество стыков стен.Кроме того, более легкие блоки AAC позволяют упростить установку и более быстрое строительство, а также обеспечивают повышенное использование, поскольку менее 5% блоков повреждаются из-за трещин. Эти блоки обладают исключительными теплоизоляционными свойствами, что способствует снижению затрат, связанных с HVAC. Кроме того, блоки AAC обеспечивают улучшенную звукоизоляцию, что делает их идеальным выбором для больниц, школ, гостиниц, многоквартирных домов, офисов и других зданий, требующих звукоизоляции.
  • Правительства стран по всему миру делают упор на развитие общественной инфраструктуры, которая, как ожидается, будет способствовать росту спроса на автоклавный газобетон. Ожидается, что рост строительства коммерческих зданий, офисных помещений, отелей, ресторанов, магазинов, промышленных зданий, больниц и школ будет в значительной степени поддерживать рост рынка в ближайшем будущем.
  • Рынок автоклавного газобетона в Европе составил вторую по величине долю выручки в 2020 году благодаря строгим законодательным нормам в области устойчивого строительства и популярности таких сертификатов, как LEED и BREEAM.

Проверьте наши цены @ https://www.emergenresearch.com/select-license/639

Emergen Research сегментировала глобальный рынок автоклавного газобетона по типу продукта, применению, и регион:

  • Тип продукта Перспективы (выручка, млрд долларов США; 2018–2028 гг.)
    • Блоки
    • Панели облицовки
    • Балки и перемычки
    • Стеновые панели
    • Панели крыши
    • 7
    • Прочее
    • 7 Прогноз по приложению (доход, млрд долларов США; 2018–2028 гг.)
      • Жилой сектор
      • Нежилой

    Щелкните, чтобы получить доступ к исследованию отчета, прочтите основные моменты отчета и просмотрите прогнозируемые тенденции: https: // www.Emergenresearch.com/industry-report/autoclaved-aerated-concrete-market

    • Региональный прогноз (доход, млрд долларов США; 2018–2028 годы)
      • Северная Америка
        1. США
        2. Канада
        3. Мексика
      • Европа
        1. Германия
        2. Великобритания
        3. Франция
        4. Италия
        5. Испания
        6. BENELUX
        7. Остальные страны Европы
      • Азиатско-Тихоокеанский регион
        1. Китай
        2. Индия
        3. Япония
        4. Южная Корея
        5. Латинская Америка
          1. Бразилия
          2. Остальная часть Латинской Америки
        6. Ближний Восток и Африка
          1. Саудовская Аравия
          2. ОАЭ
          3. Южная Африка
          4. Израиль
          5. Остальная часть МЭА
        7. 907 в наших связанных отчетах:

          Рынок сферического графита 9072 Размер 3 был оценен в 2435 долларов США.8 миллионов в 2019 году и, по прогнозам, к 2027 году достигнет 9 598,8 миллиона долларов США при среднегодовом темпе роста 18,6%. На рынке сферического графита наблюдается двузначный рост, связанный с его все более широким использованием в производстве литий-ионных аккумуляторов.

          Рынок бихромата натрия Объем рынка был оценен в 759,2 миллиона долларов США в 2019 году и, по прогнозам, достигнет 1 242,4 миллиона долларов США к 2027 году при среднегодовом темпе роста 6,3%. На рынке бихромата натрия наблюдается высокий спрос, связанный с его растущим применением в пигментах, отделке металлов, получении соединений хрома, дублении кожи и консервантах для древесины.

          Рынок звукоизоляции Размер был оценен в 12,94 млрд долларов США в 2019 году и, по прогнозам, достигнет 19,64 млрд долларов США к 2027 году при среднегодовом темпе роста 5,3%. На рынке звукоизоляции наблюдается высокий спрос, связанный с ее все более широким применением в строительстве, автомобилестроении, авиакосмической промышленности и производстве.

          О Emergen Research

          Emergen Research — это маркетинговая и консалтинговая компания, которая предоставляет синдицированные отчеты об исследованиях, индивидуальные отчеты об исследованиях и консалтинговые услуги.Наши решения ориентированы исключительно на вашу цель — обнаруживать, нацеливать и анализировать изменения в поведении потребителей по демографическим характеристикам и отраслям, а также помогать клиентам принимать более разумные бизнес-решения. Мы предлагаем исследования рынка, обеспечивающие релевантные и основанные на фактах исследования в различных отраслях, включая здравоохранение, точки соприкосновения, химические вещества, типы и энергетику. Мы постоянно обновляем наши исследовательские предложения, чтобы наши клиенты были в курсе последних тенденций, существующих на рынке. Emergen Research имеет сильную базу опытных аналитиков из различных областей знаний.Наш отраслевой опыт и способность разработать конкретное решение любых исследовательских задач дает нашим клиентам возможность получить преимущество над своими конкурентами.

          Свяжитесь с нами:

          Эрик Ли

          Специалист по корпоративным продажам

          Emergen Research | Веб: www.emergenresearch.com

          Прямая линия: +1 (604) 757-9756

          Эл. Почта: [email protected]

          Facebook | LinkedIn | Twitter | Блоги

          Прочитать полный пресс-релиз : https: // www.Emergenresearch.com/press-release/global-autoclaved-aerated-concrete-market


          (PDF) Экспериментальное исследование характеристик пор и расчет фрактальной размерности поровой структуры ячеистого бетонного блока

          [13] B. Mou, X Ли, QY Qiao, BJ He и ML Wu, «Сейсмическое поведение угловых соединений рамы

          при двухосном циклическом нагружении

          », Engineering Structures, vol. 196, article 109316, 2019.

          [14] X. He, J. Yin, J. Yang, Q.Лян и С. Ву, «Влияние влажной дневной циркуляции

          на механические свойства и структуру пор автоклавного газобетона

          », Материалы в Технологии, т. 53,

          нет. 2, pp. 177–182, 2019.

          [15] А. Надим, С. А. Мемон, Т. Ю. Ло, «Качественный и

          количественный анализ и идентификация недостатков в микроструктуре микроструктуры летучей золы и метакаолина. высокопрочный бетон

          после воздействия повышенных температур »,

          Строительные материалы, т.38, pp. 731–741,

          2013.

          [16] А. Надим, С. А. Мемон и Т. Я. Ло, «Характеристики бетона из золы

          и метакаолина при повышенных температурах»,

          Строительство и строительство Материалы, т. 62, pp. 67–76, 2014.

          [17] М.М. Влахович, М.М. Савич, С.П. Мартинович, Т.Д. Болянац,

          и Т.Д. Волков-Хусович, «Использование анализа изображений для испытания серобетона на пригодность по стандарту du-

          . и портландцемент con-

          крит, Материалы и дизайн, т.34, pp. 346–354, 2012.

          [18] А. Габриэле, Д. Р. Лоса, Р. Деян, З. Иван и Б. Стефано,

          «От фрактальной геометрии к фрактальному анализу», Прикладная математика —

          матик, т. 7, вып. 4, pp. 346–354, 2016.

          [19] Л. Чжао, В. Ван, З. Ли и Я. Ф. Чен, «Микроструктура и фрактальные размерности пор

          повторно используемого теплоизоляционного бетона», Тестирование материалов, т. 57, нет. 4, стр. 349–359, 2015.

          [20] А. М. Хаммад и М. А. Исса, «Фрактальная размерность как

          мера шероховатости траекторий разрушения бетона», Ad-

          усовершенствованные материалы на основе цемента, вып.1, вып. 4, pp. 169–177,

          1994.

          [21] DM Guo, JP Zuo, H. Zhang и H. Xu, «Механика распространения трещины

          в высокоэффективном бетоне и ее фрактальные измерения

          на основе по наблюдениям за КТ », Журнал Китайского керамического общества

          , вып. 37, с. 1607–1612, 2009.

          [22] И. В. Волвенко, «Многомерное пространство интегральных

          характеристик биоценотических комплексов: самоподобие или

          масштабная инвариантность его структуры», Русский журнал Морской

          Биология, т.38, нет. 7, pp. 509–519, 2012.

          [23] Х. Вендт, Г. Дидье, С. Комбрексель и П. Абри, «Мульти-

          самоподобие вариативного хадамара: проверка фрактальной связности»,

          Physica D-Нелинейные явления, т. 356, стр. 1–36, 2017.

          [24] А.К. Сидху и Дж. С. Сивиа, «Новый дизайн широкополосной мультифрактальной антенны с квадратным ковром Серпинского типа

          »,

          Applied Computational Electromagnetics Society Journal,

          vol. . 33, стр.873–879, 2018.

          [25] У. Сонг, Д. Ван, Дж. Яо и др., «Фрактальная характеристика

          на основе многомасштабного изображения для структуры пор сланца, имеющая значение

          для точного прогнозирования газопроницаемости. Топливо, т. 241,

          pp. 522–532, 2019.

          [26] С. Эбрахими, М.Б. Таваколии и Ф. Сетудех, «Система определения Iris —

          , основанная на фрактальных измерениях с использованием улучшенного подсчета ящиков

          », Журнал информатики и инженерии —

          neering, vol.32, стр. 275–290, 2019.

          [27] С.М. Пригарин, К. Хан, Г. Винклер, «Сравнительный анализ

          двух численных методов измерения хаусдора ff

          размерности дробного броуновского движения», Сиб.

          Журнал вычислительной математики, т. 11, вып. 2, pp. 201–218,

          2008.

          [28] Х. Динг, Л. Ян, Л. Донг Цзэ, Х. Чао и Л. Линь, «3D

          методы численного моделирования для описания реальных агрегат

          форм // Строительные материалы.3, pp. 339–344,

          2017.

          [29] RD Peng, HP Xie и Y. Ju, «Метод вычисления фрактальной размерности

          для двумерного цифрового изображения», Journal of China

          University of Mining. И технологии, т. 33, pp. 19–24, 2004.

          [30] RD Peng, YC Yang, Y. Ju, LT Mao и YM Yang,

          «Вычисление фрактальной размерности пор горных пород на основе

          серых изображений CT. Китайский научный бюллетень, т. 56, нет. 31,

          pp. 3346–3357, 2011.

          [31] Янг Янг, Р. Д. Пэн и Х. В. Чжоу, «Вычисление фрактальной размерности

          для цифрового изображения в трехмерном пространстве», Journal of

          China University of Mining & Technology, vol. 2, pp. 251–258,

          2009.

          [32] С. Ян и Л. Я. Шао, «Оценка фрактальных размерностей

          изображений на основе MATLAB», Journal of China University of

          Mining & Technology, vol. . 35, pp. 478–482, 2006.

          [33] S. S. Jin, J. X. Zhan, C.З. Чен и В. Л. Чен, «Исследование фрактальной характеристики поры

          цементного раствора», журнал Building

          Materials, vol. 1, pp. 92–97, 2011.

          [34] X. Zhang, TH Huang, YJ Zhang, H. Gao и M. Jiang,

          «Анализ пористой структуры бетона Image-pro plus»,

          Журнал строительных материалов, вып. 1, pp. 177–182, 2015.

          [35] К. Чжан и С. Ван, «Исследование структуры пор яичной скорлупы

          на основе теории фракталов», Journal of Food Agriculture

          & Environment, vol. .10, pp. 517–520, 2012.

          [36] В. Марселино, В. Кнудде, С. Ванстиландт и Ф. Каро, «Оценка

          методов анализа 2D-изображений для измерения микропористости почвы

          , Европейский журнал почвоведения, т. 58, нет. 1,

          pp. 133–140, 2007.

          [37] И. Альфонсо, А. Белтран, М. Абатал и др. «Фрактальная размерность

          Определение пор горных пород путем многомасштабного анализа изображений

          полученные с использованием OM, SEM и XCT, ”Fractals-Complex Ge-

          Ometry Patterns and Scaling in Nature and Society, vol.26,

          нет. 5, article 1850067, 2018.

          [38] К. Дэн, Д. Пань, X. Ли и Ф. Инь, «Искровые испытания для измерения содержания углерода

          в углеродистой стали на основе числа фрактальных ящиков —

          ing. , ”Измерение, т. 133, pp. 77–80, 2019.

          [39] Л. Х. Ю, Х. Оу и К. П. Дуан, «Исследование объема пор

          фрактальной размерности и ее связи со структурой пор и прочностью

          в цементном тесте с перлитом. добавка », Журнал

          Материаловедение и инженерия, вып.25, pp. 201–204, 2007.

          [40] C. Xie, QC Wang, S. Li и B. Hui, «Зависимость фрактальной размерности пор

          от структуры пор и прочности на сжатие

          бетона под давлением. различное соотношение воды и связующего и состояние отверждения

          », Бюллетень Китайского керамического общества, т. 34,

          pp. 3695–3702, 2015.

          [41] К. М. Панг и В. Шаохуа, «Характеристика пустот и влияние

          на свойства пенобетона», Журнал строительных материалов,

          т.20, pp. 93–98, 2017.

          Достижения в гражданском строительстве 11

          Блок AAC Стандартный размер и цена в Индии

          Что такое блок AAC? | каков размер прямоугольного блока AAC в Индии? | Размер блока AAC | стандартный размер блока AAC | цена стандартного блока AAC

          Что такое блок AAC?

          Блок AAC — автоклавный газированный, легкий, сборный пенобетон, является экологически чистым и сертифицированным зеленым строительным материалом, подходящим для производства бетонных блоков, таких как блоки, которые являются легкими, несущими и обладают высокими изоляционными свойствами. .

          Блок

          AAC состоит из кварцевого песка, кальцинированного гипса, извести, цемента, воды и алюминиевого порошка. Продукты AAC отверждаются под действием тепла и давления в автоклаве.

          ◆ Вы можете подписаться на меня на Facebook и подписаться на наш канал Youtube

          Вам также следует посетить: —

          1) что такое бетон, его виды и свойства

          2) Расчет количества бетона для лестницы и его формула

          Из этой статьи мы знаем, каков размер прямоугольного блока AAC в Индии? AAC Размер блока измеряется в двух миллиметрах и дюймах.Обычный размер блока ACC в мм составляет 600 мм × 200 мм × 100 мм, а в дюймах — 24 ″ × 8 ″ × 4 ″ (длина × высота × ширина).

          Каков размер прямоугольного блока AAC в Индии?

          Мы знаем, что он выпускается в виде длинного листа бетона, и его можно разрезать по желаемой форме и размеру с помощью машины для резки бетона, поэтому для строительных работ доступны различные размеры блоков AAC.

          Блоки

          AAC автоклавированные пористые, легкие, сборные, пенобетон — это экологически чистый и сертифицированный экологически чистый строительный материал, подходящий для изготовления бетонных блоков, таких как блоки, которые являются легкими, несущими и обладают высокими изоляционными свойствами.

          ◆ ПОСМОТРЕТЬ ВИДЕО: БЛОК AAC

          Значение блоков AAC

          Значение блоков AAC заключается в том, что его продукты отверждаются под действием тепла и давления в автоклаве, и в смеси блока AAC и твердого материала присутствует воздух, хорошая прочность на сжатие, такая как бетон, поэтому его называют блоком AAC (газобетон в автоклаве).

          Стандартный размер блока AAC и цена в Индии

          Фактический размер блока AAC остается на 10 мм меньше номинального размера для регулировки толщины строительного шва, в Индии используются блоки AAC различных размеров, в которых их длина составляет около 24 дюймов, их высота составляет около 8 дюймов, а их ширина должна быть в диапазоне от 3 до 12 дюймов.

          Их имя обозначается их толщиной, например, блок AAC имеет толщину 4 дюйма, известную как полный 4-дюймовый CMU, толщину 5 дюймов, известный как полный 5-дюймовый CMU, толщину 6 дюймов, известный как полный 6-дюймовый CMU, толщину 8 дюймов, известный как полный 8 ″ CMU, толщина 10 дюймов, известная как полная 10 ″ CMU, и толщина 12 дюймов, известная как полная 12 ″ CMU.

          Стандартный размер блока AAC

          Размер блока AAC в Индии: — в Индии, обычный размер блока AAC составляет 600 мм × 200 мм × 100 мм (24 ″ × 8 ″ × 4 ″) по отношению к их длине × высоте × толщине.Это стандартный, идеальный, лучший и нормальный размер блока AAC в Индии.

          Размер блока AAC в мм

          Размер блока AAC в мм : — Стандартный размер спецификации блока AAC составляет 600 мм в длину, 200 мм в высоту и 100 мм в ширину, представленных как 600 × 200 × 100 в мм по отношению к их длине × высоте × ширине.

          Размер блока AAC в см

          Размер блока AAC в см : — Стандартный размер спецификации блока AAC составляет 60 см в длину, 20 см в высоту и 10 см в ширину, представленный как 60 × 20 × 10 в см по отношению к их длине × высоте × ширине.

          Размер блока AAC в дюймах

          Размер блока AAC в дюймах : — Стандартный размер спецификации блока AAC составляет 24 дюйма в длину, 8 дюймов в высоту и 4 дюйма в ширину, представленных как 24 × 8 × 4 дюйма по отношению к их длине × высоте × ширине.

          Размер блока AAC в футах

          Размер блока AAC в футах : — Стандартный размер спецификации блока AAC составляет 2 фута в длину, 0,66 фута в высоту и 0,33 фута в ширину, представленных как 2 × 0.66 × 0,33 фута относительно их длины × высоты × ширины.

          AAC Размер блока в кубических метрах

          Размер блока AAC в кубических метрах : — обычно размер блока AAC составляет 60 см в длину, 20 см в высоту и 10 см в толщину 0,012 кубического метра, для размера 600 × 200 × 125 мм получается 0,015 м3 для размера 600 × 200 × 150 мм — 0,018 м3, размер 600 × 200 × 175 мм — 0,021 м3, размер 600 × 200 × 200 мм — 0,024 м3, размер 600 × 200 × 225 мм — 0,027 м3 и размер 600 × Блоки AAC 200 × 250 мм дают 0.030 м.куб.

          Цена блока AAC в Индии

          Цена блока AAC: — он будет варьироваться от места к месту и в зависимости от размера, как правило, цена блока AAC в Индии колеблется в пределах рупий. От 3200 до 3500 на кубический метр. Эта цена блока AAC включает в себя транспортные расходы, погрузку-разгрузку с GST. Блок AAC также продается в следующих штуках: —

          Цена блока AAC

          Другие размеры блока AAC в Индии

          Форма блока AAC — прямоугольная, имеющая три измерения длины, высоты и ширины.Стандартный размер блока ACC в Индии в мм составляет 600 мм × 200 мм × 100 мм, используемый в строительной линии. Теперь различные размеры блока AAC следующие: длина × высота × ширина

          ● Размер 3 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 075 мм (24 ″ × 8 ″ × 3 ″)

          ● Размер 4 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 100 мм (24 ″ × 8 ″ × 4 ″)

          ● Размер 6-дюймового полного блока CMU или AAC составляет 600 мм × 200 мм × 150 мм (24 ″ × 8 ″ × 6 ″).

          ● Размер 8 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 200 мм (24 ″ × 8 ″ × 8 ″)

          ● Размер 10 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 250 мм (24 ″ × 8 ″ × 10 ″)

          ● Размер 12 ″ полного блока CMU или AAC составляет 600 мм × 200 мм × 300 мм (24 ″ × 8 ″ × 12 ″).

          В строке построения также используется блок ACC другого размера, а не этот стандартный размер, но в этой статье упоминается только стандартный размер блоков ACC.

          Экспериментальное исследование характеристик пор и расчет фрактальной размерности поровой структуры ячеистого бетонного блока

          Важно контролировать и прогнозировать макроскопические свойства с помощью параметров структуры пор материалов на основе цемента. Микроскопическая пористая структура бетона имеет множество характеристик, таких как размеры и беспорядочное распределение.Для описания пористой структуры бетона необходимо использовать теорию фракталов. Чтобы установить взаимосвязь между характеристиками пористой структуры ячеистого бетона и пористостью, коэффициентом формы, площадью поверхности пор, средним диаметром пор и средним диаметром, фрактальная размерность пористой структуры использовалась для оценки характеристик пористой структуры ячеистого бетона. . Рентгеновские компьютерные томографические (КТ) изображения пористой структуры газобетона были получены с помощью рентгеновского трехмерного микроскопа серии XTh420.Характеристики пористости газобетонного блока изучали согласно Image-Pro Plus (IPP). На основе исследования методов измерения фрактальной размерности предложенная программа MATLAB автоматически определила фрактальную размерность изображений пористой структуры газобетонного блока. Результаты исследования показали, что небольшие поры (20 мкм м ~ 60 мкм мкм) газобетонного блока составляют большую долю по сравнению с большими порами (60 мкм м ~ 400 мкм мкм или более) Судя по распределению диаметров пор, структура пор газобетонного блока имеет очевидные фрактальные особенности, а фрактальная размерность изображений поровой структуры газобетонного блока, по расчетам, находится в диапазоне 1.775–1.805. Фрактальная размерность пор сильно коррелирует с фрактальными характеристиками пор газобетонных блоков. Фрактальная размерность поровой структуры линейно увеличивается с пористостью, коэффициентом формы и площадью поверхности пор. Фрактальная размерность поровой структуры уменьшается с увеличением среднего размера пор и среднего диаметра. Таким образом, фрактальная размерность поровой структуры, которая рассчитывается программой MATLAB на основе теории фракталов, может быть принята в качестве интегративного оценочного индекса для оценки характеристики поровой структуры газобетонного блока.

          1. Введение

          Благодаря постоянному продвижению политики энергосбережения и сокращения выбросов, газобетонные блоки широко используются в строительстве из-за их низкой плотности, теплоизоляционных свойств, звукоизоляционных свойств, антисейсмических свойств и простоты обработки. . Признано, что эти макроскопические свойства газобетонных блоков зависят от его пористой структуры [1–3]. Газобетон — это разновидность материалов на цементной основе. Внутренняя пористая структура газобетонных блоков имеет сложную форму, большое количество и сложную связь пор.Кроме того, поры и микротрещины в цементном бетоне могут вызвать разрушение конструкций. Следовательно, необходим действующий метод, позволяющий эффективно охарактеризовать сложность и неравномерность пористой структуры газобетонных блоков. В последние годы были найдены хорошие методы улучшения характеристик цементных бетонов. Многие исследователи уделяют этому исследованию много энергии и добились хороших результатов. Одним из важных методов является то, что добавление кремнистой летучей золы в цементные бетоны может изменять микроскопическую структуру пор и макроскопические свойства [4, 5].С целью изучения пористой структуры газобетонного блока в исследование была введена теория фракталов. Многие исследования [6–11] показали, что пористая структура бетона имеет явную фрактальность. Анализ микроскопической структуры пор имеет большое значение для изучения ее макроскопических свойств [12] и создания трехмерной численной модели конкретной структуры [13].

          В настоящее время параметры поровой структуры сложно охарактеризовать количественно обычными методами из-за сложности и неоднородности структуры пор.Исследования [14–17] показали, что изображения структуры пор были обработаны с помощью Image-Pro Plus (IPP), и с его помощью можно было легко получить параметры структуры пор по сравнению с порозиметрией с проникновением ртути (MIP). Параметры структуры пор пористого бетона в основном включают пористость, коэффициент формы, площадь поверхности пор, средний размер пор и средний диаметр. Многие исследования показали, что пористость и площадь поверхности пор важны для прочности бетона на сжатие, а средний размер пор и средний диаметр являются факторами распределения диаметра пор.Фактор формы пористой структуры влияет на формирование внутренних каналов пор в бетоне. Таким образом, необходимо изучить параметры пористой структуры, чтобы скорректировать макроскопические свойства газобетона.

          С дальнейшим развитием исследований пористой структуры все больше и больше теорий и методов вводятся в исследование пористой структуры пористых материалов. В 1960-х годах французский математик Мандельброт [18] предложил фрактальный метод решения проблемы длины британской береговой линии и предоставил эффективные средства для изучения взаимосвязи между микроструктурой и макроскопическими свойствами пористых материалов.Многочисленные исследования [8, 19] показали, что внутренняя пористая структура бетона имеет сильные фрактальные характеристики. Хаммад и Исса [20] и Гуо и др. [21] изучили трещины на поверхности излома бетона и обнаружили, что трещины обладают значительными фрактальными характеристиками. Чем больше фрактальная размерность, тем выше трещиностойкость поверхности излома. Двумя уникальными особенностями изображений фрактальных объектов являются самоподобие и масштабная инвариантность [22, 23]. Одна из наиболее важных особенностей — самоподобие, что означает, что каждая часть фрактальных объектов геометрически подобна целому.Расчет фрактальной размерности — один из основных факторов, влияющих на практическое применение теории фракталов. Были предложены различные типы методов расчета фрактальной размерности, такие как метод коврового покрытия [24], метод измерения подсчета ящиков [25], метод дифференциальной размерности с подсчетом ящиков [26], метод размерности Хаусдорфа [27], метод размерности емкости, Метод размерности броуновского движения [28] и метод спектральных чисел. Этими методами рассчитываются фрактальные размерности поверхности поры, объема поры и оси поры.Среди этих методов расчета фрактальной размерности метод размерности ящика является наиболее распространенным методом анализа фрактальной размерности бетона. В конкретном процессе подачи заявки необходимо проанализировать физическое количество объекта исследования. Рассчитанная фрактальная размерность имеет практическое и исследовательское значение. Peng et al. В [29–31] изучались методы расчета фрактальной размерности двумерных и трехмерных цифровых изображений и расчета фрактальной размерности пор горных пород.Ян и Шао [32] реализовали вычисление фрактальной размерности двумерных цифровых изображений с помощью программы MATLAB. Jin et al. В [33] получены зависимости между фрактальной размерностью поровой поверхности и характеристическими параметрами пор цементного раствора на основе метода МИП и фрактальной модели. Параметры пористой структуры бетона отражают сложность пористой структуры.

          Пористая структура газобетонного блока не будет повреждена и полностью сохранится рентгеновской компьютерной томографией (КТ).КТ-изображения срезов блоков из газобетона содержат много информации о структуре пор по сравнению с данными, измеренными с помощью метода MIP. Таким образом, MATLAB используется для обработки изображений срезов пористой структуры газобетонных блоков в данном исследовании. Программа Fraclab была введена для расчета фрактальной размерности изображений поровой структуры. Вычисленное программой значение сравнивается с теоретическим значением по фрактальной размерности фрактальных изображений. Взаимосвязь между фрактальной размерностью поровой структуры и характеристическими параметрами пор изучается на основе программного расчета в данном исследовании, который используется для установления взаимосвязей между характеристическими параметрами пор и макроскопическими свойствами газобетонных блоков.

          2. Экспериментальная
          2.1. Материалы

          Газобетонные блоки были предоставлены Zhejiang Hangshi Building Materials Company. В таблице 1 приведены рабочие параметры газобетонного блока.


          Материалы Объемная плотность в сухом состоянии (кг · м −3 ) Средняя прочность на сжатие (МПа) Прочность на последующее замерзание (МПа) · Теплопроводность (Вт) (м · К) −1

          Газобетонный блок 619 5.2 3,4 0,153

          Образцы блоков из газобетона были разрезаны на кубики размером 50 мм × 50 мм × 50 мм с помощью режущего аппарата для рентгеновской компьютерной томографии (КТ). , без видимых следов пилы на поверхности образца. В процессе резки необходимо контролировать стабильность полотна режущей пилы, чтобы обеспечить плоскостность режущей плоскости и избежать повреждения структуры пор.

          2.2. КТ-изображения образца

          КТ-изображения образца газобетонного блока были протестированы с использованием рентгеновского трехмерного микроскопа серии XTh420 в лаборатории компьютерной томографии Университета Чжэцзян. На рис. 1 показан рентгеновский трехмерный микроскоп серии XTh420 и изображение среза пористой структуры образца. В таблице 2 приведены рабочие параметры оборудования. Расстояние среза газобетонного блока в исследовании составляет 0,04 мм.



          Параметры устройства Максимальное напряжение (кВ) Максимальный ток ( μ A) Максимальная мощность (Вт) Фильтр (Cu) (мм) Разрешение ( мкм м) Проникновение образца (см)

          Размер параметра 320 1000 320 1∼4 5∼1250
          58

          Испытательные этапы следующие: (1) образец помещается на держатель образца рентгеновского трехмерного микроскопа серии XTh420; (2) испытательный прибор подает напряжение и включает рентгеновское излучение; (3) запускается программное обеспечение для испытаний, вводится основная информация об образце, и образец поворачивается на 360 градусов; (4) тестовая программа рассчитывает цифровую матрицу изображений; (5) Выводятся КТ-изображения образца в оттенках серого.Наконец, было получено 1205 КТ-изображений газобетонных блоков. В статье анализируются параметры характеристик пор по данным Image-Pro Plus (IPP), а также взаимосвязь фрактальной размерности пор и характеристик структуры пор на основе компьютерных томографов образца блока из пенобетона.

          3. Методы
          3.1. Характеристики структуры пор Аналитический метод

          Как видно из рисунка 1 (b), форма пор блока газобетона является сложной, а количество пор велико.Стандартными статистическими методами трудно охарактеризовать структуру пор. Для решения этой проблемы с помощью программы IPP было проведено исследование компьютерных томографов структур пористого блока газобетона. Он может получить следующие характерные параметры структуры пор: характеризующую пористость, коэффициент формы поры, площадь поверхности пор и средний диаметр. Конкретные шаги и методы обработки изображений здесь не описываются. Вы можете обратиться к соответствующей литературе [34–36] для дальнейшего исследования.На рисунке 2 показан процесс обработки изображений IPP.


          3.2. Фрактальная модель, основанная на методе размерности ящика

          Метод измерения размерности ящика [37, 38] является одним из классических методов расчета фрактальной размерности изображений. Сначала изображение преобразуется в двоичную форму, и преобразованное в двоичное изображение изображение помещается на плоскость. Квадратное изображение со стороной r используется для покрытия всего изображения. В случае постоянного изменения размера квадратной сетки r подсчитывается количество N ( r ) квадратных сеток, покрывающих интересующее изображение, соответствующее каждому размеру r .Если соотношение между размером ячейки r и количеством ящиков N ( r ) соответствует следующей формуле: где c — константа, а D — количество ящиков. В прикладном процессе можно измерить и рассчитать ряд данных, соответствующих [ r , N ( r )]. Для подбора формулы используется метод наименьших квадратов:

          Можно получить размер изображения D = b при подсчете квадратов.

          3.2.1. Расчет фрактальной размерности на основе MATLAB

          Фрактальная размерность изображений пористой структуры газобетонного блока была рассчитана с использованием программы MATLAB на основе метода измерения прямоугольника. Исходное изображение должно быть предварительно обработано MATLAB, чтобы улучшить качество изображения. Предварительно обработанное изображение преобразуется в двоичную цифровую матрицу. Мы можем использовать цифровую матрицу преобразованного двоичного изображения, когда исследуемая интересующая часть в двоичном изображении является белой.Если изображенная исследуемая часть бинаризованного изображения после обработки изображения является черной, нам нужна преобразованная в двоичную форму цифровая матрица после того, как изображение инвертируется. На рисунке 3 показаны результаты обработки бинаризации изображения кривой Коха с помощью MATLAB.


          Программа Fraclab вызывается в командной строке MATLAB, и программа автоматически вычисляет инвертированное двоичное изображение. Программа автоматически определяет максимальный и минимальный размер коробки и количество коробок.Размер прямоугольника — это значение фрактальной размерности D = 1,2356 изображения кривой Коха, вычисленное программой.

          3.2.2. Программа проверки расчетов

          Таблица 3 показывает сравнение результатов расчета. Из таблицы 3 видно, что рассчитанное относительное отклонение для фрактального изображения составляет максимум 3,05%, а минимальное отклонение составляет 0,49%. Относительное отклонение программы для фрактальной размерности треугольника Шерпинского и квадрата Шерпинского равно 1.22% и 0,998%. Относительное отклонение фрактальной размерности, рассчитанной для кривой Коха, составляет 2,01%. Причина отклонения может заключаться в том, что детальное изображение угла кривой Коха недостаточно четкое. Численное отклонение поля изображения, вычисленное MATLAB, составляет менее 4%. Таким образом, его можно использовать для расчета и анализа фактической фрактальной размерности изображения.


          Регулируемое фрактальное изображение Размер изображения Теоретический расчет фрактальной размерности Программа MATLAB расчет фрактальной размерности Относительная погрешность (%)
          610835 2 1.939 3,05
          328663 1 1.0211 2,11
          214 219 1,2618 1,2365 0,491
          219 274 1,585 1,5656 1,22
          244 244 1,8928 1,9117 0.998

          4. Результаты экспериментов и обсуждение
          4.1. Характеристики пористой структуры

          Чтобы полностью изучить характеристики пористой структуры образца газобетонного блока, для анализа были взяты пять изображений срезов пористой структуры в верхней, средней и нижней частях образца. Данные по параметрам измерения структуры пор, рассчитанные на основе IPP, были статистически проанализированы следующим образом.Таблицы 4–6 соответственно соответствуют параметрам, характеризующим поровую структуру верхней, средней и нижней частей образца газобетонного блока. Взяв в качестве примера таблицу 4, можно увидеть, что коэффициент формы пор в газобетонном блоке составляет 2,91, а диаметр Ферета равен 67,23. Общий процент площади пор 62%. По стереологическому принципу за характеристическую пористость газобетонного блока можно принять 62%. По статистике характерных параметров пористой структуры в верхней, средней и нижней частях газобетонного блока результаты показывают, что пористость газобетонного блока составляет 64.33% по данным IPP. Видно, что неправильная форма структуры пор внутри газобетонного блока занимает большой процент, что в основном обусловлено режимом газообразования в процессе производства газобетонного блока. Эти параметры могут обеспечивать эталонные индексы для контроля структуры пор, соотношения сырья и контроля качества пористых материалов.


          Образец Коэффициент формы На площадь (объект./ всего) Feret (среднее)

          1 # верхняя 3,33 0,60 45,97
          2 # верхняя 2,71 000 0,61 3 # верхний 1,74 0,69 35,81
          4 # верхний 1,89 0,63 137,65
          5 # верхний 4,87 0,596
          Среднее 2,91 0,62 67,23


          Площадь образца всего) Feret (среднее)

          1 # средний 4,95 0,57 75,69
          2 # средний 3.23 0,64 55,99
          3 # средний 3,35 0,64 65,37
          4 # средний 3,47 0,64
          0,70 39,15
          Среднее значение 3,38 0,64 60,74

          000 900 Площадь (объект/ всего)
          Feret (среднее)

          1 # нижний 2,01 0,70 43,41
          2 # нижний 2,04 000 0,69 3 # нижний 4,51 0,64 93,53
          4 # нижний 4,49 0,64 93,27
          5 # нижний 2,53 0.68 55,91
          Среднее значение 3,12 0,67 65,45

          4.2. Распределение диаметра пор

          Распределение диаметра пор может описывать форму распределения размеров внутренней пористой структуры газобетонного блока. В ходе исследования для анализа были взяты пять изображений срезов пористой структуры в верхней, средней и нижней частях образца. Данные о распределении диаметров пор определяли по 15 срезам изображений структуры поры КТ.Все изображения срезов структуры пор взяты из одного сканируемого образца. Выборка выборки соответствует исследованиям литературы [34]. Гистограмма распределения среднего диаметра построена для представления диаграммы распределения диаметра пор блока из газобетона на основе пятнадцати изображений срезов структуры пор. Рисунки 4–6 показывают распределение пор по размерам в верхней, средней и нижней частях газобетонного блока и имеют аналогичные тенденции. Поры (20 мкм мкм ~ 60 мкм мкм) называются макроскопическими капиллярными порами.Из диаграммы распределения пор по размеру трех частей видно, что на мелкие поры (20 мкм мкм ~ 60 мкм мкм) газобетонного блока приходится большой процент по сравнению с большими порами (60 мкм. м ~ 400 мкм м и более). Макроскопические капиллярные поры обычны во внутренней части газобетонного блока.




          4.3. Фрактальная размерность изображений структуры пор

          Значения фрактальной размерности изображений структуры поры 1205 были рассчитаны и подсчитаны с помощью программы MATLAB.Фрактальная размерность изображений пористой структуры блока из пенобетона составляет от 1,775 до 1,805, а средняя фрактальная размерность составляет 1,789.

          На рисунке 7 показано, что фрактальная размерность изображений поровой структуры уменьшается с увеличением глубины среза. Фрактальная размерность исходного изображения пористой структуры больше, чем на следующих изображениях. Это связано с неровной поверхностью резания из-за пилы из твердого сплава. Фрактальная размерность изображений срезов пористой структуры распределена по двум полосам.Необходимо найти и изучить взаимосвязь между параметрами структуры поры и фрактальной размерностью поры. Мы ожидаем использовать фрактальную размерность пор для эффективной оценки сложности и неравномерности структуры пор газобетонных блоков.


          Всего для обработки было выбрано 25 КТ-изображений (по одному на каждые 50 листов) и получены соответствующие параметры структуры пор. Фрактальная размерность изображений поровой структуры, рассчитанная с помощью программы MATLAB, и характеристические параметры поровой структуры, рассчитанные с помощью IPP, показаны в таблице 7.Соотношения между фрактальной размерностью и характеристическими параметрами показаны на рисунках 8–12.

          00 7847 000700070008 00 00 00 9957000 9957000 9957000 9957000 9957000 9957000 99570009 7914

          Серийный номер изображения среза Фрактальная размерность пор Площадь поверхности пор (мм 2 ) Средний диаметр (мм) Фактор формы Пористость Средний размер пор (мм)

          TOP001 1.8013 576,43 0,0979 2,7408 72,00 0,0720
          TOP051 1,7909 630,31 0,1190 0007 0007 0007 0,1189 2,0649 66,32 0,1067
          TOP151 1,7882 305,77 0,1315 2.0131 64,41 0,1307
          TOP201 1,7875 325,77 0,1373 1,8923 62,63 0,1330 0007 0007 0007 0007 0007 0,0860
          TOP301 1,7983 591,38 0,1122 2,5251 71,41 0,0931
          TOP351 127,96 0,1687 1,7471 59,08 0,1813
          TOP401 1.7828 115,99 0,1684
          0008 0008 0008 0,1746 1,6972 57,80 0,1897
          TOP501 1,7836 101,35 0,1845 1.6799 57,39 0.2017
          TOP551 1.7955 673,84 0,1369 2,2237 67,32 0,1306 0007 0009 0,2139
          TOP651 1,7968 673,20 0,1398 2,1855 67,19 0,1330
          TOP701 7933 689,55 0,1406 2,1390 66,25 0,1345
          TOP751 1.7822 77,28 0,1958 00070007 0007 0009 0.2004 1.6857 56.97 0.2238
          TOP851 1.7929 668,68 0,1417 2.2726 67.60 0.1373
          TOP901 1.7798 154.53 0.1894 1.7849 58.44 0.2095 0,2156
          TOP1001 1,7925 591,57 0,1229 2,6484 71,50 0,1078
          TOP1051 1 .0008 235,43 0,1769 1,9227 61,80 0,1912
          TOP1101 1,7905 314,21 0,1643 2,0033 63,68 0,1744
          TOP1151 1,7940 665,94 0,1561 2,2238 67,46 0,1561
          TOP1201 1,7938 257,03 0.1834 2,1431 65,25 0,1995






          4.3.1. Взаимосвязь между фрактальной размерностью пор и пористостью

          Пористость газобетонного блока является одним из фатальных макроскопических показателей эффективности. Макроскопические характеристики газобетонного блока зависят от пористости, например, проницаемости, теплоизоляции и звукоизоляции.Таким образом, изучение пористости газобетонных блоков способствует дальнейшему развитию исследований его макроскопических характеристик. Рисунок 8 показывает, что фрактальная размерность поры линейно увеличивается с пористостью. Как видно из рисунка 8, существует хорошая корреляция между пористостью и фрактальной размерностью пор, а коэффициент регрессии R 2 0,8359 указывает на сильную корреляцию между фрактальной размерностью пор и пористостью. Пористость увеличивается с увеличением фрактальной размерности поровой структуры.Фрактальная размерность представляет собой сложность изображений структуры пор [33]. Это указывает на то, что пространственная занятость поровой структуры увеличивается с увеличением пористости. И множество структур пор, которые перекрываются и пересекаются, приводят к более сложным формам структуры пор. Результаты согласуются с взглядами Yu et al. [39] и Xie et al. [40]. Из наших результатов можно отметить, что метод расчета фрактальной размерности полезен. Результаты предыдущих работ показали, что пористость является основным фактором, влияющим на проницаемость и теплоизоляционные свойства газобетонных блоков.Чтобы соответствовать требованиям к теплоизоляционным свойствам газобетонных блоков, многие компании исследуют новый состав смеси из газобетонных блоков, который держится в секрете от внешнего мира. Обычная пористость газобетонных блоков, которую предлагали многие компании, составляет 65% ∼85%. Из приведенного выше анализа фрактальная размерность пор сильно коррелирует с пористостью. Следовательно, пористость газобетонного блока можно косвенно оценить по фрактальной размерности изображений структуры пор.Для эффективного прогнозирования проницаемости газобетонного блока следует использовать фрактальную размерность пор.

          4.3.2. Взаимосвязь между размером фрактала поры и фактором формы

          Фактор формы также является одним из важных параметров характеристики структуры поры. Это важный показатель, позволяющий определить, близка ли форма поровой структуры к кругу. Форма структуры пор играет важную роль в формировании внутренних каналов пор пористых материалов.Он предусматривает, что коэффициент формы сферы равен 1, и чем больше значение, соответствующее коэффициенту формы, тем выше степень отклонения от сферы. На рисунке 9 показано, что коэффициент линейной корреляции R 2 между фрактальной размерностью и коэффициентом формы достигает 0,8054. По мере увеличения фрактальной размерности поровой структуры фактор формы поровой структуры также увеличивается. Это указывает на то, что форма структуры поры больше отклоняется от круглой формы, что аналогично соотношению между фрактальной размерностью поры и пористостью, приведенным в разделе 4.4.1. Результаты предыдущих работ показали, что коэффициент формы имеет тенденцию к уменьшению с увеличением плотности бетона [41]. По принципу, чем больше плотность, тем больше круговая структура пор газобетонного блока. Следовательно, фрактальную размерность пор можно использовать для характеристики степени отклонения структуры поры от круглой формы. То есть фрактальная размерность пор имеет тенденцию к уменьшению с увеличением плотности газобетонного блока. Таким образом, фрактальная размерность пор позволяет оценить плотность газобетонного блока.Наконец, его можно использовать в качестве эталона для последующего определения формы поперечного сечения трехмерного порового канала газобетонного блока и установления порового канала газобетонного блока.

          4.3.3. Взаимосвязь между фрактальной размерностью пор и площадью поверхности пор

          Многие исследования показали, что площадь поверхности пор связана со степенью гидратации пенобетона. По мере увеличения площади поверхности пор увеличивается и степень гидратации газобетона.Степень гидратации газобетона также связана с прочностью бетона на сжатие. Это показывает, что прочность бетона быстро увеличивается на ранней стадии и медленно на более поздней стадии. То есть прочность на сжатие линейно увеличивается с площадью поверхности пор. На рисунке 10 показано, что коэффициент линейного уравнения R 2 между фрактальной размерностью поры и площадью поверхности поры достигает 0,7241. Это указывает на то, что фрактальная размерность поры хорошо коррелирует с площадью поверхности поры.В случае одинаковой пористости, чем меньше площадь поверхности пор, тем меньше количество пор с малым диаметром пор и тем меньше шероховатость поверхности пор. Шероховатость и распределение пор по размерам на поверхности пор можно оценить по фрактальной размерности пор. Прочность на сжатие линейно увеличивается с фрактальной размерностью пор в сочетании с приведенным выше анализом. Наконец, прочность на сжатие газобетонного блока можно оценить по фрактальной размерности пор.

          4.3.4. Взаимосвязь между фрактальным размером поры и средним размером пор и средним диаметром

          Средний размер пор и средний диаметр — это параметры, которые характеризуют средний размер поровой структуры и обычно применяются к распределению пор по размерам. На средний диаметр пор газобетонного блока влияет множество факторов, в том числе сырье, технологические параметры и условия твердения. Из таблицы 7 можно найти интересный феномен, заключающийся в том, что размер среднего диаметра пор является прерывистым.Причина в том, что изображения структуры пор содержат макроскопические поры, и макроскопические поры будут появляться и исчезать непрерывно с увеличением глубины среза. Таким образом, необходимо установить взаимосвязь фрактальной размерности пор и среднего диаметра пор. Таким образом, необходимо исследование взаимосвязи параметров структуры пор и фрактальной размерности пор. На рисунках 11 и 12 показано, что коэффициент корреляции линейного уравнения R 2 между фрактальной размерностью поры и средним размером поры и средним диаметром равен 0.6426 и 0,6155. Средний размер пор и средний диаметр демонстрируют ту же тенденцию изменения с увеличением фрактальной размерности. Другими словами, средний размер пор и средний диаметр демонстрируют очевидную тенденцию к уменьшению с увеличением фрактальной размерности. Этот вывод согласуется с результатами, опубликованными в литературе Jin et al. [33]. Из наших результатов можно отметить, что метод расчета фрактальной размерности полезен. Согласно теории фракталов, чем больше фрактальная размерность поры, тем меньше средний размер отверстия и тем сложнее пространственное распределение пор в газобетонном блоке.Это указывает на то, что количество мелких отверстий увеличивается. В случае одинаковой пористости газобетонного блока, чем больше средний диаметр пор и средний диаметр, тем меньше количество отверстий и тем толще стенка пор соответствующей структуры пор. Результаты показывают, что фрактальная размерность пор может описывать распределение пор по размерам, а также открывает путь для последующего изучения взаимосвязи между фрактальной размерностью и капиллярным давлением воды.

          5. Выводы

          В данной работе исследованы параметры структуры пор на основе IPP и представлен метод расчета фрактальной размерности согласно MATLAB. Исследованы взаимосвязи между фрактальной размерностью поровой структуры и параметрами поровой структуры. Основываясь на экспериментальных результатах этого исследования, можно сделать следующие выводы: (1) Небольшие поры (20 мкм м ~ 60 мкм мкм) газобетонного блока составляют большой процент по сравнению с большими порами ( 60 мкм м ~ 400 мкм м или более) от распределения диаметров пор.(2) Фрактальная размерность пор газобетонного блока составляет от 1,775 до 1,805. (3) Фрактальная размерность пор газобетонного блока сильно коррелирует с пористостью и фактором формы поры. (4) Фрактальная размерность пор газобетонного блока хорошо коррелирует с площадью поверхности пор. Размер фрактальной размерности пор может эффективно характеризовать шероховатость и распределение пор по размерам на поверхности пор. (5) Корреляция между фрактальной размерностью пор газобетонного блока и средним диаметром пор и средним диаметром является общей.Фрактальную размерность пор можно использовать в качестве показателя для оценки среднего размера пор и распределения их диаметров. Когда фрактальная размерность пор больше, средний размер пор меньше, а когда пористость больше, структура пор ухудшается.

          Доступность данных

          Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.

          Конфликт интересов

          Авторы заявляют об отсутствии конфликта интересов.

          Выражение признательности

          Это исследование финансировалось Чжэцзянским проектом фундаментальных исследований в области общественного благосостояния (LGF8E080016) и Китайской ассоциацией инженерной строительной стандартизации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *