Как рассчитать состав бетона: Расчет состава бетона на 1 м3

Расчет состава тяжелого бетона — Доктор Лом

Теоретические расчеты железобетонных конструкций — это конечно хорошо, но без правильно приготовленного, уложенного и уплотненного бетона большого смысла в таких расчетах нет.

Конечно же самый лучший способ — это купить готовую бетонную смесь (БСГ) на ближайшем бетонном заводе или заказать доставку и изготовление бетонной смеси в автобетоносмесителе — миксере. Или купить сухую бетонную смесь (БСС). Преимущества сухой или готовой к применению бетонной смеси, приготовленной централизованным способом очевидны. Такая бетонная смесь будет иметь максимально возможную однородность, удобоукладываемость, требуемую дозировку компонентов, что в итоге обеспечит прочность бетона максимально близкую к расчетной.

Однако такая возможность есть далеко не всегда. То ли бетонный завод далеко, то ли слухи о низком качестве бетона этого завода распространяются намного дальше радиуса обслуживания. А иногда в больших объемах бетона просто нет необходимости.

В таких случаях бетон приготовляется непосредственно на строительной площадке. И тогда основными дозаторами компонентов в лучшем случае становятся ведро, лопата или мастерок, а в худшем дозировка компонентов выполняется просто на глаз или по заветам никому точно не известного, но всем хорошо знакомого мастера, сыпавшего на ведро песку два ведра щебня, полведра цемента и заливавшего все это половиной ведра воды и таким образом приготовлявшего бетон любой марки. При такой дозировке может получиться как бетон класса В15 так и бетон класса В25. Почему, узнаем чуть ниже, а пока рассмотрим основные методы подбора состава бетона.

На сегодняшний день существует два основных метода расчета состава бетонной смеси: простой и сложный.

Суть простого метода сводится к тому, чтобы сильно не париться и приготовлять бетонную смесь, воспользовавшись одной из подобных таблиц:

Таблица 256.1. Примерные пропорции для бетонной смеси на цементе М400

И хотя в подобных таблицах не указывается количество воды, а в данном случае и примерные пропорции при использовании цемента М500, тем не менее подобные таблицы имеют очень хорошую наглядность. А если помнить, что водоцементное отношение В/Ц составляет 0.4-0.7, т.е. на каждый литр цемента добавляется 0.4-0.7 литра воды, а если используется цемент М500, то количество цемента нужно умножить на поправочный коэффициент 0.88, с использованием такой таблицы проблем не будет.

Также можно воспользоваться одним из калькуляторов, широко представленных в сети, но для этого желательно знать, что такое удобоукладываемость, осадка конуса, время набора проектной прочности и другие полезные вещи, которые следует учитывать при расчете состава бетона.

Сложный метод расчета подразумевает учет всех возможных характеристик будущих заполнителей, частично упомянутых выше. Дело в том, что точный расчет бетона, являющегося композитным анизотропным материалом — достаточно сложная задача, одних СНиПов и ГОСТов, посвященных расчету бетона — десятки, если не сотни, и потому строительными нормами рекомендуется производить предварительный расчет состава бетона, затем изготавливать пробные партии бетона по данному составу, подвергать бетон после набора прочности необходимым испытаниям и после этого вносить корректировки в расчет. Все это делается для того, чтобы подобрать оптимальный состав бетона, при требуемой прочности и удобоукладываемости. Ведь когда речь идет о тысячах кубометров, экономия 5-10 кг цемента на 1 м

3 является значительной. Понятное дело, что когда строится небольшой дачный домик силами двух мужиков, приезжающих на дачу только на выходные, никто такими глупостями заниматься не будет. Погружаться на несколько дней в тонкости точного расчета, пока цемент в кладовке подмокает и портится, а соседи так и норовят растащить щебень и песок — занятие приводящее не к экономии, а к растранжириванию строительных материалов.

Предлагаемый мной метод расчета не является ни точным, ни простым, ни сложным, но на мой взгляд позволяет относительно быстро рассчитать пропорции бетонной смеси для ее приготовления на строительной площадке с максимальным учетов различных особенностей заполнителей. Если нет большого желания читать всю статью, то достаточно посмотреть пример расчета состава бетонной смеси, выделенный в тексте коричневым цветом. Но сначала

Состав бетона. Общие понятия.

Похоже, что знанием о пропорциях бетонной смеси обладали наши далекие предки и если бы сказители больше внимания уделяли не идеологии, а технологии, то расчет бетонной смеси не представлял бы больших проблем. Основанием для такого предположения является сказка, в которой повествуется о том, как хозяин несколько раз накормил работника сначала мясом, затем кашей, а в конце, напоив его вином, не выдержал и спросил: «Как же так получилось, что после каждого блюда ты говорил, что сыт, а еще и добрый литр вина выпил?» На что работник ответил очень образно, а именно: принес ведро, насыпал в него камней до краев и спросил: «Это ведро полное?» «Да» — ответил хозяин.

Затем работник принес песку, всыпал его в ведро и спросил: «Это ведро полное?» «Да» — ответил хозяин. Затем работник принес воды, влил ее в ведро и спросил: «А теперь это ведро полное?» «Да» — ответил хозяин. К сожалению авторы сказки пропустили цемент, не указали фракцию щебня и вообще пропорции компонентов, поэтому теперь каждый раз приходится рассчитывать состав бетонной смеси.

Под тяжелым бетоном как правило подразумевается «бетон конструкционный на цементных вяжущих, на плотных заполнителях, плотной структуры, естественного твердения». Именно такой бетон как правило замешивается на строительной площадке для заливки фундамента, стягивающего пояса, монолитной плиты перекрытия или перемычек. В состав бетонной смеси для приготовления тяжелого бетона входят 4 основных компонента: цемент (Ц) — вяжущее, вода (В) — затворитель, песок (П) — мелкий заполнитель, щебень (Щ) или гравий (Г) — крупный заполнитель. Всего то и нужно — определить количество каждого из компонентов в будущем бетоне и сделать это не так уж и сложно, главное — понимать, зачем каждый из компонентов нужен, и почему столько внимания уделяется пропорциям компонентов.

 

Бетон — это искусственный камень, который должен обладать требуемыми проектным расчетом качествами. Одно из главных качеств бетона — прочность, точнее расчетное сопротивление сжатию. В состав бетона входят натуральные камни — щебень или гравий, получаемые путем добычи и обработки горных пород — крупные заполнители. Они как раз и обеспечивают необходимый запас по прочности. Другими словами, чем больше прочность зерен щебня, тем больше общая прочность бетона. Все остальные компоненты — цемент, вода и песок — нужны для того, чтобы должным образом скрепить зерна щебня и получить таким образом монолитную конструкцию. Таким образом бетон напоминает каменную кладку на цементно-песчаном растворе (а исторически бетон и появился в результате совершенствования каменной кладки). При этом цементно-песчаный раствор также должен обладать определенной прочностью, чтобы обеспечить требуемую прочность бетона.

Цемент после затворения водой постепенно образует искусственный камень. Процесс этот происходит очень долго, а люди долго ждать не любят, поэтому при изготовлении бетона следует учитывать, когда бетон должен набрать проектную прочность. Чаще всего бетон рассчитывается на проектную прочность в возрасте 28 суток, но иногда, если нет большой спешки, то можно рассчитывать бетонную смесь с учетом того, что проектная прочность будет достигнута через 90 и даже через 180 дней. В этих случаях цемента потребуется меньше.

Многие виды цементов, используемых в гражданском строительстве, являются усадочными, т.е. объем цементного камня со временем будет уменьшаться и цементный камень будет трескаться. Чтобы минимизировать образование трещин и тем самым увеличить прочность цементного камня, добавляется мелкий заполнитель — песок.

Кроме вышеуказанных компонентов в состав бетона для обеспечения других требуемых качеств, например, морозостойкости или жаропрочности, могут входить разного рода минеральные или химические добавки. Количество этих добавок при расчете бетонной смеси также следует учитывать.

Одним из важнейших качеств бетонной смеси является удобоукладываемость. Чем более пластичной будет смесь, тем проще будет ее уложить и уплотнить и тем меньше будет вероятность наличия воздушных пустот, значительно снижающих общую прочность бетона. Удобоукладываемость зависит от состава и свойств заполнителей, но чем больше будет содержание воды, тем лучше будет удобоукладываемость. Однако при слишком большом количестве воды смесь будет расслаиваться, а значит полученный бетон будет очень неоднородным и общая прочность бетона будет меньше расчетной. Минимальное количество воды, необходимой для обеспечения требуемой удобоукладываемости называется водопотребностью.

Существует классификация бетонных смесей в зависимости от удобоукладываемости. Согласно ГОСТ 7473-94 «Смеси бетонные. Технические условия» бетонные смеси делятся на три основных группы: подвижные (П), жесткие (Ж) и сверхжесткие (СЖ). При приготовлении бетонной смеси на строительной площадке нет смысла использовать жесткие и сверхжесткие смеси, вполне достаточно подвижных смесей.

Каждая группа дополнительно подразделяется на марки. Для подвижных смесей приняты следующие марки по удобоукладываемости с соответствующей осадкой конуса:

Таблица 256.2. Марки по удобоукладываемости (согласно ГОСТ 7473-94)

Осадка конуса означает, на сколько сантиметров просядет через некоторое время после снятия конуса бетонная смесь. Для проверки в заводских и лабораторных условиях используется специальный стандартный конус, размеры которого должны соответствовать ГОСТ 10181.1-81 «Смеси бетонные. Методы определения удобоукладываемости». Стандартный конус должен иметь верхний диаметр ~ 10 см, нижний диаметр ~ 20 см, высоту ~ 30 см и специальные ручки для удобства снимания. А есть еще и увеличенный конус. Однако в условиях строительной площадки необходимости в столь точных приборах нет и если уж так необходимо приблизительно определить осадку конуса, то можно воспользоваться обычным металлическим ведром без дна. Для этого в перевернутое ведро, установленное на металлический лист так, чтобы ведро как можно плотнее примыкало к листу, насыпается в три захода приготовленная бетонная смесь, каждый слой смеси уплотняется, затем ведро аккуратно снимается и определяется осадка конуса.

Так как и щебень и песок могут иметь разные размеры зерен, к тому же форма зерен редко приближается к правильной геометрической, и зерна заполнителя имеют различную шероховатость, игольчатость, лещадность, и т.п., то и количество цемента, необходимого для того, чтобы прочно скрепить эти зерна, требуется разное количество. А еще и щебень и песок практически никогда не являются идеально чистыми, а по вполне понятным технологическим причинам имеют некоторое количество примесей. Чем таких примесей больше, тем хуже будет сцепление зерен и потому цемента при большом количестве примесей потребуется больше.

В итоге следует определить пропорции воды, цемента, щебня и песка (В:Ц:Щ:П) с учетом вышеперечисленных факторов. Сделать это достаточно точно позволяют накопленный практический опыт и теоретические наработки. Учеными и инженерами, не одно десятилетие занимавшимися изучением свойств бетона, составлены разного рода таблицы и графики, позволяющие сделать расчет достаточно просто и быстро. Как пример, таблица 256.1.

А теперь рассмотрим следующую ситуацию:

На стройплощадке есть бетономешалка — гравитационный бетоносмеситель, с объемом бака -140 литров, объемом готовой смеси 70 л, цемент в мешках, пролежавший более года со дня изготовления, песок, щебень с максимальными размерами зерен около 40 мм, ведра, лопаты

Дозирование компонентов будет производиться не по массе, а по объему, в качестве дозатора будет использоваться 10-литровое ведро.

Требуется залить бетоном перемычку длиной 3 м, шириной 0.4 метра и высотой 0.21 м. Объем арматуры составит 3.14х0.0182х4х4/4 = 0.0041 м3. Тогда объем бетона для такой перемычки составит 3х0.4х0.21 — 0.04 = 0.248 ≈ 0.25 м3. Если будет использоваться также поперечная арматура и конструктивное армирование верхнего слоя, то бетона потребуется еще меньше, но не будем так уж глубоко влезать в детали. Расчетом определен требуемый класс бетона для перемычки В25, а также рабочая арматура — 4 стержня d=18 мм. Подробности устройства опалубки и выставления арматуры здесь не рассматриваются предполагается, что все это уже сделано.

 

Возможная последовательность расчета.

Так как прочность конструкции намного важнее возможного перерасхода материалов, то при замешивании бетона на строительной площадке можно выполнять подбор состава в следующей последовательности:

1. Проверка щебня и определение количества щебня.

В данном случае под проверкой щебня подразумевается не тщательное определение чистоты щебня и состава примесей, а лишь приблизительная оценка размеров и формы зерен. Дело в том, что при бетонировании монолитных железобетонных конструкций существуют ограничения по размеру зерен: для всех армированных конструкций — не более 0.75 наименьшего расстояния в свету между стержнями арматуры, для монолитных плит — не более 0.5 высоты плиты. Есть и другие ограничения, но к условиям на небольшой стройплощадке они отношения не имеют, а потому здесь не упоминаются. Введены данные ограничения с вполне разумной целью — упростить укладку и уплотнение бетонной смеси и тем самым обеспечить требуемое расчетное сопротивление.

 В перемычке предусмотрена несущая арматура 4 стержня диаметром 18 мм, расстояние а = 3 см, расстояние между осями крайних стержней при ширине перемычки 40 см составит 40 — 3х2 = 34 см, тогда расстояние между осями стержней 34/3 = 12 см, в свету 12 — 1.8 = 10.2 см. Максимальный размер зерен для бетонирования такой перемычки составит 10.2х0.75 = 7.65 см.

Вывод:

имеющийся на стройплощадке щебень с максимальными размерами зерен 40 мм для бетонирования перемычки подходит.

На первый взгляд определить приблизительно количество щебня до смешного просто. Так как бетон — это насыпной щебень + песок, цемент и вода, то для приготовления 0.25 м3 потребуется около 25 10-литровых ведер щебня

Дело в том, что чем крупнее заполнитель, тем больше воздуха будет в ведрах, поэтому в зависимости от размера зерен во фракции используемого крупного заполнителя можно использовать поправочные коэффициенты. Значение таких коэффициентов нигде не оговаривается, потому как кроме размеров зерна следует учитывать еще и форму зерен, также влияющую на пустотность. Тем не менее при дозировке крупного заполнителя ведрами я предлагаю использовать следующие коэффициенты: для щебня фракций до 20 мм — 0.7, для щебня фракции 20-40 мм — 0.8, для щебня фракции до 70 мм — 0.9. Для более крупного заполнителя использовать ведра в качестве дозатора нецелесообразно.

Но вообще количество щебня зависит и от планируемого класса бетона. В среднем значение коэффициента составляет примерно 0.77. Тогда для приготовления 0.25 м3 бетона потребуется около 25х0.77 = 20 10-литровых ведер щебня.

Если щебень достаточно грязный, т.е. имеется большое количество глины, пыли, ила, а также других примесей, то для создания бетона необходимого класса по прочности потребуется больше цемента. Насколько больше, зависит от количества примесей. Так как на стройплощадке никто с навеском щебня и с ситами для определения процентной доли примесей носиться не будет, то для грязного щебня можно брать цемента на 10% больше, а для очень грязного, на 20% больше. Впрочем, сколько именно цемента для бетонирования перемычки нужно, мы сейчас и выясним.

 

2. Определение количества цемента. 

Методов определения количества цемента в бетонной смеси существует немало. Но главное: помнить, расход цемента на 1 м3 бетонной смеси в пределах 200-400 кг считается нормальным. Наиболее простой способ определить количество цемента — воспользоваться СНиП 82-02-95 «Федеральные (типовые) элементные нормы расхода цемента при изготовлении бетонных и железобетонных изделий и конструкций». Сокращенно ТЭН — типовые элементарные нормы. Не то, чтобы этот СНиП очень уж большой, но для приготовления бетона на строительной площадке достаточно знать значения из нескольких таблиц указанного СНиПа:

Таблица 256.3. Базовые нормы расхода цемента (согласно СНиП 82-02-95)

Примечания:

  1. ТЭН следует применять к монолитным и сборно-монолитным конструкциям, возводимым из тяжелых, мелкозернистых и легких бетонов, предназначенных для работы в неагрессивной водной или воздушной среде. Действие ТЭН не распространяется на бетоны класса > В30, а также на специальные виды бетона: особо тяжелые, жаростойкие и жароупорные, декоративные, и на бетоны, предназначенные для работы в химически агрессивных водной и(или) газовой среде.
  2. Цемент должен соответствовать требованиям ГОСТ 10178 -85 «Портландцемент и шлакопортландцемент. Технические условия» или ГОСТ 22266-94 «Цементы сульфатостойкие. Технические условия».
  3. Если для приготовления бетона будет использоваться цемент М500, то базовые нормы, приведенные в таблице 256.3, следует умножить на коэффициент перехода — 0.88. При использовании цемента М300 — 1.13.
  4. Если для приготовления бетона будет использоваться шлакопортландцемент и(или) сульфатостойкий шлакопортландцемент, то базовые нормы, приведенные в таблице 256.3, следует умножить на коэффициент — 1.1.
  5. Если для приготовления бетона будет использоваться пуццолановый портландцемент, то базовые нормы, приведенные в таблице 256.3, следует умножить на коэффициент — 1.08 для бетонов класса до В22.5 включительно. Для бетонов класса В25 и В 30 — на коэффициент 1.15.
  6. Базовые нормы предполагают получение требуемого класса бетона по прочности на сжатие через 28 суток. При расчетах на проектную прочность бетона через 90 и 180 суток базовые нормы расхода цемента умножаются на соответствующие коэффициенты. Если для приготовления бетонной смеси используется портландцемент или быстротвердеющий шлакопортландцемент, то значения коэффициентов составят 0,9 (90 суток) и 0,85 (180 суток). Если будет использоваться шлакопортландцемент, его разновидности или пуццолановый портландцемент, то значения коэффициентов составят 0,82 (90 суток) и 0,77 (180 суток).
  7. Указанные нормы предполагают использование заполнителей (песка и гравия или щебня), соответствующих ГОСТ 26633-91 «Бетоны тяжелые и мелкозернистые. Технические условия», где подробно описаны все возможные качества крупного и мелкого заполнителей, а также допустимое количество разнообразных примесей. Более подробно особенности заполнителей будут рассмотрены ниже.
  8. Указанные нормы следует применять при использовании щебня с максимальными размерами зерен 40 мм, в других случаях при определении количества цемента полученное значение нужно умножить на поправочный коэффициент:

Таблица 256.4. Коэффициенты, учитывающие крупность зерен (согласно СНиП 82-02-95)

В СНиПе даются еще несколько поправочных коэффициентов, но сформулированным в начале статьи условиям на стройплощадке они прямого отношения не имеют и потому не упоминаются.

Раньше расчет велся не по классу бетона, а по марке. Некоторые люди производят такой расчет и сейчас. Перейти от марки бетона к классу или наоборот — несложно. Все тот же СНиП 82-02-95 предлагает для этой цели воспользоваться следующей таблицей:

Таблица 256.5. Соотношение между марками и классами бетона (согласно СНиП 82-02-95)

Но есть еще один важный момент, на который нужно обратить внимание при расчете количества цемента и о котором разного рода СНиПы и пособия молчат по той простой причине, что для крупных строительных объектов такая ситуация малореальна.

Дело в том, что при долгом хранении цемента даже в запечатанных мешках марка цемента постепенно уменьшается, так как полностью ограничить поступление влаги из воздуха практически невозможно. В результате часть цемента затворяется водой и чем дольше цемент хранится без применения, тем доля затворенного водой цемента становится больше, а значит и добавлять такой цемент для получения проектируемого класса бетона нужно больше. За 3 месяца хранения марка цемента может снизиться на 20%, а за год — на 40%. Для цементов более тонкого помола процент снижения прочности может быть еще больше.

Для уточнения количества цемента с учетом времени его хранения можно использовать следующие поправочные коэффициенты: при хранении около 1 месяца коэффициент 1.1, при хранении около 3 месяцев коэффициент 1.2, при хранении около 1 года — 1.4, при хранении около 2 лет — 1.6. Промежуточные значения можно определить интерполяцией. Цемент, хранившийся более двух лет, скорее всего будет мало пригоден для использования, во всяком случае для несущих конструкций такой цемент лучше не использовать.

Таким образом, если на строительной площадке необходимо приготовить 0.252 м
3 бетонной смеси с использованием портландцемента М400, пролежавшего со дня изготовления около 1 года, при этом смесь должна через 28 суток иметь прочность, соответствующую бетону класса В25, при этом будет использоваться щебень с максимальной крупностью зерен 40 мм, то для этого потребуется 380х0.25х1.4 = 134.1 ≈ 130- 135 кг цемента

Точность дозировки, регламентируемая СНиПом, составляет ±1%, но мы на такие мелочи обращать внимания не будем.

Насыпная плотность цемента составляет 1200-1300 кг/м3, это означает, что в 10-литровом ведре поместится 12-13 кг цемента. Для приготовления необходимого объема бетона потребуется 11-12 ведер цемента. Свежего цемента потребовалось бы 380х0.25 = 95 кг или 7-8 10-литровых ведер — именно этот показатель следует использовать при дальнейших расчетах, потому как затворившийся со временем цемент в данном случае будет выступать в роли дополнительного заполнителя, не более.

 

3. Определение количества воды.

Количество воды, добавляемой в сухую бетонную смесь, зависит от множества уже упоминавшихся факторов, в частности, от количества и марки цемента, а также от влажности заполнителей. При приближенных расчетах водоцементное отношение — В/Ц — можно принимать в пределах 0.4-0.7. Чем больше воды, тем более подвижной будет смесь и тем проще будет ее укладывать и уплотнять, но и риск расслоения бетонной смеси будет больше. Также на водоцементное отношение влияет и требуемая марка бетона (класс бетона) по прочности, предварительно примем В/Ц = 0.5 без учета затворившегося цемента, тогда для приготовления бетонной смеси потребуется 95х0.5 = 47.5 литров воды или около 5 10-литровых ведер.

Более точно количество воды с учетом размеров зерен крупного заполнителя и подвижности смеси можно определить по следующему графику:

График 256.1. Расход воды в зависимости от крупности заполнителя и подвижности бетонной смеси (согласно Справочнику строителя под ред. В.Д. Топчия, 1987)

Согласно графика 256.1 при заполнителе — щебне с крупностью зерен до 40 мм, при осадке конуса около 4 см на 1 м3 потребуется около 172 литров воды, а для перемычки 172х0.25 = 43 л.

Если будут использоваться влажные щебень и песок, то воды добавлять нужно меньше, в зависимости от влажности заполнителей.

Как видим, по графику расход воды для приготовления бетона будет меньше, чем при приближенном расчете, но в принципе при приготовлении бетонной смеси в бетономешалке необходимое количество воды определяется по месту, т.е. сначала закидывается щебень, песок и цемент, а затем по мере перемешивания подается вода. В связи с этим сразу заливать весь объем рассчитанной воды в бетономешалку не нужно.

 

4. Определение количества песка

Чтобы определить количество песка в бетонной смеси, когда количество остальных компонентов уже известно, нужно разделить массу каждого компонента на плотность, затем полученные значения сложить и полученный результат вычесть из требуемого объема. Однако можно поступить еще проще и воспользоваться таблицей 256.1.

Согласно указанной таблицы для бетона класса В25 на каждый килограмм цемента нужно 1.9 кг песка и 3.7 кг щебня. Насыпная плотность цемента 1200-1300 кг/м3, насыпная плотность сухого песка 1400-1500 кг/м3, мокрого песка — до 2000 кг/м3, щебня или гравия 1500-1700 кг/м3. Значит, если будет использоваться сухой песок, то его потребуется на каждый литр цемента 1.9х1.2/1.4 = 1.628 ≈ 1.6 литров песка или на каждое ведро цемента 1.6 ведер песка.

Заодно проверим, насколько точной является предлагаемая пропорция цемента и щебня. На каждый литр цемента потребуется 3.7х1.2/1.6 = 2.775 ≈ 2.7 литров щебня или на каждое ведро цемента 2.7 ведер щебня. Сложными расчетами мы получили 25 ведер щебня и 9.5 ведер цемента. Или 25/9.5 = 2.63/1 — отношение по объему, 25х1.6/(9.5х1.2) = 3.5/1 — отношение по массе. По таблице 256.1 соотношение получается 3.7/1, такой результат для условий небольшой строительной площадки считаю вполне приемлемым.

Таким образом для изготовления перемычки объемом 0.25 м
3 потребуется 9.5х1.628 — (135 — 95)/12 = 15.47 — 3.33 = 12.138 ≈ 12 ведер песка.

Здесь мы из общего объема песка вычли объем схватившегося цемента.

 

Расчет замеса на 70 литров

Итого для бетонирования перемычки потребуется около 25 ведер щебня, около 12 ведер песка, около 12 ведер цемента и около 4.5 ведер воды. Наиболее рациональным в данном случае будет сделать 4 замеса, в каждом будет получено 250/4 = 62.5 литров бетонной смеси. В этом случае для каждого замеса потребуется:

~ 6 ведер щебня;

~ 3 ведра песка;

~ 3 ведра цемента;

~ 1.1 ведра воды;

Вот в принципе и все. Возможно соотношение компонентов бетонной смеси в данном случае определено и не достаточно точно, но для проведения работ на небольшой стройплощадке этого будет более чем достаточно. Как замешать бетон на стоительной площадке, рассказывается в отдельной статье.

А еще у Вас есть уникальная возможность помочь автору материально. После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

На главную

9.0 (голосов: 1)
26519
Комментарии:
17-10-2013: Ян

Предполагаю на ведро цемента добавлять 2 ведра известнякового отсева 0-4, 4 ведра известнякового щебня 5-10 и при этом уменшить ВЦ соотношение до 0,4 (5литров воды) путем добавления суперпластификатора MAPEI DN200 — 1% от цемента (120мл).
Как думаете, получится добится повышения прочности бетона M200?


17-10-2013: Доктор Лом

Тут все очень сильно будет зависеть от марки щебня и соотношения фракций отсева. Теоретически на известняковом щебне можно и бетон М300 получить, но на практике нет ничего лучше изготовления пробных образцов для испытания на прочность.
А количество воды скорее увеличивать придется, так как известняк в отличие от гранитного щебня впитывает воду.


05-11-2013: Алла

Отлично!


05-12-2013: Марина

Слишком сложно) А так статья очень хорошая и интересная!
Скажите, приблизительно какой марки будет бетон в сочетании
1 ведро цемента
2 ведра песка
3 три ведра гравия
и минимум воды

СПАСИБО!


05-12-2013: Доктор Лом

Приблизительно М200 — М400.


21-01-2014: kkk

Вы пишите: «А если помнить, что водоцементное отношение В/Ц составляет 0.4-0.7, т.е. на каждый литр цемента добавляется 0.4-0.7 литра воды…» — это в корне не верно!!! Соотношение В/Ц считается по массе! Далее расчеты и практика показывают, что бетон с соотношением щебня 7-8 частей намного крепче, чем с соотношением 4-5 и особенно для низких классов меннее В25 разница составляет 30%.3. Это первое.
Второе: Каким образом частник, например, при постройке сарая будет взвешивать цемент? Напомню, в начале статьи перечислены следующие дозиметры: лопата, ведро, мастерок.
Далее, в таблице даются примерные пропорции компонентов при использовании цемента М400. Как можно получить бетон более высокой марки, уменьшая количество цемента при той же марке цемента, воспользовавшись указанными вами пропорциями, я даже не буду обсуждать.


22-01-2014: kkk

Зря обижаетесь! Вещи нужно называть своими именами, а не придумывать. Относительно бетона — все компоненты которого подбираются по массе и особенно это касается цемента, как самого дорогого и важного компонента. Я например, цемент всегда вешаю, а остальные компоненты беру ведрами, но при этом я точно знаю сколько их соотношение по массе. Теперь что касается щебня, как самого крупного заполнителя бетонного камня, его можно ложить 7-8 и даже 9 частей, если используется вибратор, или вы в состоянии каким либо способом плотно уложить бетонную смесь. Именно увеличенное количество щебня в бетонной массе, но плотно уложенный при этом бетон, позволяет снизить расход цемента при заданной проектной прочности. Вот к примеру выдержка из инета:
Составы бетонов на гранитном щебне и даны результаты испытаний на сжатие в возрасте 7 и 28 диен. Составы 1: 7 и 1 :8 показали большую прочность, чем составы 1:5 и 1:6. Это различие сказывается при больших значениях В/Ц, т. е. при малой прочности цементного камня.
При малых расходах цемента толщина пленки цементного камня наиболее слабой части бетона меньше, чем у бетонов с повышенным расходом цемента; прочность гранитной щебенки- 2 000 кг/см2, а прочность цементного камня при малых В/Ц- около 400 кг/см2.
Насыщение бетонной смеси прочным крупным заполнителем приводит к повышению предела прочности при сжатии. Если принять прочность бетона при составе 1 :5 за 100%, то увеличение прочности для состава 1 :7 составит-33%.
Результаты этих опытов объясняют расхождение коэффициентов в формулах прочности Гипроцемента и ПИИЦемента. Нанесены результаты опытов с бетонами разного состава 1: 6 и 1:9, изготовленными на очень прочных заполнителях без избытка песка. Состав 1 :6 дал меньшие значения прочности и кривая близка к кривой НИИЦемента, а состав 1 :9 показал более высокие прочности, и точки легли ниже нормативной кривой с коэффициентами К = 0,55 и С = 0,5.


22-01-2014: Доктор Лом

Какие обиды, милейший kkk? Вы можете думать и делать на своей стройплощадке все, что вам угодно, это ваше законное право. Но своими высказываниями вы вносите сумятицу в неокрепшие умы читателей данной статьи. Этак человек, чего доброго, может подумать, что в бетон вообще не нужно цемент добавлять, глядишь, крепче будет. А вот этого я уже допустить не могу. Поэтому продолжим:
1. Вы так и не потрудились посчитать, сколько весит литр цемента и литр воды. Специально для вас 1 литр цемента ~ 1.1-1.3 кг, литр воды ~ 1 кг. Когда речь идет о более точном расчете, а не о приблизительных пропорциях, приведенных в первой таблице, это оговаривается и вы должны были обратить на это внимание, если прочитали больше пары абзацев.
2. Далее, напоминаю еще раз, в таблице даются примерные пропорции, более точные значения определяются расчетом.
3. Приведенная вами выдержка вырвана из общего контекста (источник вы не указали) и потому ни о чем мне не говорит, так как при расчете бетонной смеси следует учитывать множество показателей и в частности крупность зерен, геометрическую форму зерен щебня и характер работы элемента.
4. Приведенное вами увеличение прочности на 33% при уменьшении количества цемента теоретически возможно только при определенных размерах и геометрии зерен крупного наполнителя и размерах опытных образцов, испытываемых на прочность при сжатии. И то далеко не факт, что подобное увеличение прочности будет наблюдаться при испытании крупных бетонных элементов на сжатие. И вообще выстраивать теорию увеличения прочности бетона, сравнивая прочность на сжатие гранитной щебенки с прочностью цементного камня на сжатие, типа — чем меньше цементного камня, тем больше общая прочность — не корректно. Гранитная щебенка — это не один гранитный элемент, сам по себе обладающий большой прочностью, а множество элементов — зерен щебенки, и если между ними нет сцепления (а именно цементный камень обеспечивает сцепление), то ваш бетонный элемент изготовленный вообще без цемента — рассыпется без нагрузки, просто под действием собственного веса, не смотря на то, что прочность на сжатие каждого отдельного зерна очень большая (более подробно характер распределения напряжений в сечениях бетонного элемента я за недостатком места рассматривать не буду).
5. Кроме того, очень часто бетонная смесь используется для изготовления железобетона, а железобетонные элементы как правило работают не только на сжатие, но и на растяжение. А задача цементного камня, не просто заполнять пространство между крупным и мелким заполнителем, но и обеспечивать соответствующее скрепление крупного и мелкого заполнителя, что особенно важно для обеспечения совместной работы бетона и арматуры. Напомню, в одной части сечения ж/б элементов под действием нагрузок возникают сжимающие напряжения, а в другой растягивающие. И потому возможное увеличение прочности сжимаемой части даже на 33% (что как я сказал, далеко не факт) никак не компенсирует ухудшение совместной работы арматуры и бетона и даже наоборот. Если арматура не будет должным образом защемлена бетоном, то железобетонный элемент из композитного превратится в два отдельных элемента и суммарная прочность этих отдельных элементов будет значительно меньше, чем прочность композитного элемента и это нужно понимать.
А то, что единую методику определения прочности бетона разработать очень трудно, это я и так знаю. Не даром нормативные документы требуют проверки прочности опытных образцов, изготовленных по одному из возможных вариантов расчета, и внесения изменений в расчетные формулы с учетом полученных результатов испытаний.


22-01-2014: kkk

Ссылка на инет http://stroyfirm.ru/articles/vibrobeton31.html
Статью я вашу прочитал полностью и как видите даже заострил внимание на некоторых ваших не верных высказываниях, поэтому и говорю о них: В/Ц — это отношение по массе, а не по объему! И если вы используете хороший цемент М400 или М50, то в одном литре этого цемента будет не менее 1,3кг — что в пересчете на куб бетона составит перерасход уже не 5-10кг цемента а не менее 50 и более?! — (не забывайте учитывать реальное В/Ц, которое вы заменили в отношении объемом, а не массой цемента). Также приведу здесь еще одну особенность высокого В/Ц по отношению к низкому — это то, что с течением времени бетон с В/Ц 0,7-0,8 становиться в процентном отношении крепче бетона с низким В/Ц. То есть если вы расчитали бетон марки М150 при В/Ц 0,7, то через год его прочность будет уже М250! См. таблицу №3 http://www.baurum.ru/_library/?cat=concreteproperties&id=250
Так зачем же так не обдуманно и не экономно подходить к изготовлению бетона? Почитайте Шепелева «Как построить сельский дом» — он вобще рекомендует ж/б перекрытие толщиной основной плиты 60-70мм делать из бетона марки М150. Проще сначала изготовить пару пробных кубиков 10*10*10 и попробовать раздавить их, чтобы знать что вы сделали!


22-01-2014: kkk

Для бетонов с высокими значениями В/Ц (от 0,6 до 0,8) оптимальными для набора прочности во времени являются условия воздушно-влажностной среды при относительной влажности около 90%, обеспечивающие медленное испарение воды из бетона. Для бетонов с низкими B/Ц (до 0,5) оптимальными для твердения являются условия стопроцентной влажности, обеспечивающие поглощение влаги из окружающей среды.


22-01-2014: kkk

Для тех участников форума, которые хотят приготовить нормальный бетон рекомендую хотя бы вот это:
http://dom.dacha-dom.ru/book-38.shtml
Еще раз повторю, что:
1) цемент для бетона нужно вешать, а не мерить «ведрами, лопатами, мастерками».
2) В/Ц 07-08 более предпочтительно (в том числе и экономически)для тощих бетонов с проектной маркой менее М250 — не через 28 суток, а через 180-360 дней. Если время ждет, будет реальная экономия.


23-01-2014: Доктор Лом

Послушайте, kkk. У вас явно какие-то проблемы с восприятием материала, поэтому отвечу последний раз: статья не заканчивается таблицей 256.1, а только с нее начинается.
Таблица 256.1 является ориентировочной, приводятся в ней ПРИМЕРНЫЕ пропорции.
При расчете количества цемента крупным шрифтом и другим цветом выделено, что в 10 литровом ведре помещается 12-13 кг цемента, когда речь идет о больших замесах и используется фасованный в мешки цемент, то достаточно взглянуть на упаковку, чтобы определить вес цемента в мешке, я думаю, это настолько понятно, что даже как-то неудобно об этом говорить. Но если эта информация слишком сложна для вашего восприятия, то конечно же взвешивайте, никаких возражений. Тогда рекомендую вам взвешивать и все остальные компоненты бетонной смеси, надежней будет.
Вопрос набора прочности и создаваемые условия — это вообще отдельная тема и не нужно за нее цепляться в свое оправдание (этак вы еще про бетонирование в зимних условиях вспомните). Когда вы указывали на увеличение прочности при изменении пропорций, то ни о каких сроках набора прочности не упоминали. А раз не упоминали, то по умолчанию разговор ведется о проектной прочности в возрасте 28 суток, при температуре окружающей среды около +20оС и прочих равных условиях набора прочности. Кроме того, в статье приводятся рекомендуемые нормативами поправочные коэффициенты, позволяющие учесть не только вид цемента, но и ожидаемый срок набора проектной прочности, а ваши 180-360 суток — это немного расплывчато.
Параметры конструкций и классы (марки) бетона определяются расчетом, и расчет следует выполнять, руководствуясь действующими нормативами, а не чьими-то рекомендациями и советами (в том числе и моими). Вот вы привели из Шепелева толщину плиты между балками 60-70 мм, а расстояние между балками не указали, и к чему тогда ваша ссылка на Шепелева, для бла-бла-бла?
Ну и наконец статья о революционных открытиях по изменению пропорций, на которую вы ссылаетесь и которую вы практически полностью привели в своем посте — это просто праздник какой-то, пойду искать трубу.


23-01-2014: kkk

Доктор Лом! — возможно не только я один не правильно понял ваши высказывания — поэтому и написал здесь своё обоснованное видение при изготовлении бетона, для уточнения вашей статьи. Поверьте мне как профессиональному строителю, цемент (главный компонент бетонной смеси) — совсем не сложно взвесить, так же как и воду измерить ведром — это довольно точный расчет в домашних условиях. Что касается песка и щебня, то тут могут быть большие погрешности, собенно в случае с щебнем (гравием) — из приведенных мной ссылок и высказываний это очевидно. Также я считаю не сложным смешивать в домашних условиях две разные фракции: допустим 5-20 гравия с 20-40 щебня. Но самое главное — это довольно плотно уложить бетонную смесь, исходя из повышенного соотношения В/Ц и объемом крупного заполнителя. Моя ссылка на Шепелева не «бла-бла-бла», а еще один факт подтверждающий, что для домашнего домостроения в большинстве случаев достаточно прочности бетона марки М150 — а эта прочность, зависит от времени, поэтому если строите не спеша или нет достаточных средств, то при учете этого можно существенно съэкономить. Еще раз повторю, что я не в коем случае ни хотел вас обидеть, а просто уточнил не которые не понятные мне, и не правильно сказанные вами моменты. Считаю что дальнейшее «противофразирование» между нами не имеет смысла т.к. кто хотел тот услышал… с уважением, ни чего личного, просто факты.


23-01-2014: Доктор Лом

Все возможно.
Именно поэтому я не оставил ваши сообщения без внимания и постарался дать на них ответ. Как видите, ваши сообщения в чистом виде также воспринимаются неадекватно и потому нуждаются в уточнениях. А еще вы можете написать полностью свой рецепт приготовления бетонной смеси и я размещу его. Я вам уже говорил, что с уважением отношусь к любому мнению.
Тем не менее я считаю, что если человек плохо разбирается в тонкостях какого-либо расчета, то лучше пусть считает по максимуму (это относится не только к расчету состава бетона, но и к любому другому инженерному расчету), так как повышенный запас прочности при ошибке в большую сторону — это намного лучше, чем разрушение конструкции при ошибке в меньшую сторону. А если человек все-таки хочет сэкономить на материалах, то ему следует обратиться к специалисту и соответствующим образом заплатить за расчет (причем далеко не факт, что в итоге человек много сэкономит).
По поводу марки тяжелого бетона — для железобетонных конструкций СНиПом рекомендуется применять бетон класса В7.5 (~М100) и выше. А если конструкция рассчитывается на многократно повторяющуюся нагрузку, а именно к таким, по моему мнению, относятся плиты перекрытия, то рекомендуется использовать бетон класса не ниже В15(~М200).
Поэтому, когда бетонная смесь изготавливается для заливки фундамента, проектная нагрузка на который ожидается через несколько лет — это одно, и в этом случае воспользоваться вашими уточнениями вполне можно. А вот когда заливается плита перекрытия и технологической картой предусмотрено продолжение работ максимум через 7 дней после бетонирования и проектом в таком случае должен закладываться более высокий класс бетона — это совсем другое.
Но в целом похоже, что данную статью, следует дополнить другой статьей, посвященной особенностям набора прочности бетонной смеси.


23-01-2014: kkk

Вполне согласен с вашим постом и рад, что мы с вами поняли друг-друга. По моим, рабочим рецептам приготовления бетона самостоятельно в бетономешалке могу сказать следующее:
1) покупать цемент нужно у проверенных поставщиков и проверенных изготовителей, то же самое касается песка и щебня.
2) при приготовлении бетона необходимо использовать пластификатор
3) бетон необходимо укладывать применяя вибратор, хотя-бы бытовой глубинный.
4) после укладки бетона необходимо хотя бы в течении первых 7-10 дней ухаживать за ним (поливать водой, накрывать пленкой, брезентом и т.д.)

Исходя из сказанного выше и так как в нашей местности всегда бывает «мордовцемент», а с остальными производителями эксперементировать не хочется опишу два (самых востребованных) рецепта для фундамента, плит перекрытия и для бетонных стен объектов индивидуального строительства. Приготовление бетона делаем при помощи бытовой бетономешалки 160-180 литров, также есть промышленная, трехфазная на 350 литров — её используем реже, только когда необходимо уложить более 3 кубов бетона за раз. Бригада 3-4 человека, один засыпает в бетономешалку все компоненты, заливает воду и добавляет пластификатор. Остальные подносят щебень,песок,цемент. Один вешает цемент при помощи обычного стрелочного бизмена до 20кг. Рабочими местами меняемся по кругу через 10 бетономешалок. Выход бетона из одного замеса около 75 или 150 литров в зависимости от бетономешалки. Компоненты — цемент, песок, щебень, гравий засыпается 7-ми литровыми оцинкованными ведрами, если это ведро засыпать ровно до краев, то получается 8-мь литров или 12кг. Воду наливаем в 15-ти литровое пластмассовое ведро с литровой меркой. Сначала в бетономешалку выливаем 2/3 — 3/4 части воды, которую рассчитываем исходя из веса цемента. Добавляем пластификатор С3, в последнее время больше используем жидкое мыло — 10 кубиков из обычного медицинского шприйца. Далее засыпаем три 8-ми литровых ведра гравия фракции 5-20. Вот сейчас сыплем цемент. Далее засыпаем в бетономешалку 4-ведра песка. Ну и наконец высыпаем 5 ведер щебня фракции 20-40, добавляя при этом оставшуюся воду — нужно смотреть, чтобы смесь в бетономешалке не была слишком жидкой, чтобы не выплескивалась через край бетономешалки. Щебень и гравий можно насыпать в ведро с небольшой горкой.
Рецепт для ж/б стен (получаемая марка бетона не менее М150):
Портландцемент ЦЕМ I 42,5 Б — 14кг
Вода — 10л
Рецепт для ж/б перекрытия и балок (получаемая марка бетона не менее М200):
Портландцемент ЦЕМ I 42,5 Б — 17кг
Вода — 13л

Эти рецепты проверены временем и в лаборатории, кубики делали 10*10*10, выдерживали в течении суток, а потом помещали в полиэтиленовый пакет на 28-30 суток при окружающей температуре 15-18 градусов, а потом медленно давили прессом. Расчетная марка бетона была на 3-5% меньше реальной…


06-03-2014: Роман

🙂 Читал вашу перепалку дольше чем статью. Да ладно…
Статья посвящена изготовлению бетона в домашних условиях на рабоче-крестьянском подворье… Я как не строитель и не проектировщик, а заодно и мой отец и мой дед и вообще известный мне круг «строителей» делаем так: всё мерим вёдрами и лопатами — три лопаты — ведро. Воду льём на глаз. Это общепринятая реальность, действительность. Как хотите называйте и как хотите относитесь к этому. Смешивается 1 ведро бог знает какого цемента с 2 или 3 (чтоб покрепче :))) ) вёдрами песка, добавляется вода на глаз, а потом сыпем щебень пока не покажется, что хватит. И стоят гаражи 3-х этажные, и дома перекрытые монолитными плитами, построенные ещё в молодость моего деда…
Но! Вот если человек пришёл к вам читать эту статью, значит у него особый случай и он готов потратить время на расчёты этой «ерунды», с которой раньше у него проблем не было. Значит за что-то боится. Вот допустим мне надо балку несущую залить. Сам считал, сам придумывал, теперь не хочу пролететь с бетоном. И вот этот конкретный бетон, на это конкретное изделие я и готов взвесить. Ну может не все компоненты. С другой стороны, действительно — а зачем цемент вешать? На мешке написано. А меньше мешка вы куда будете использовать? Трещины подмазывать? 2 мешка — 100кг. Бетономешалки доступные для простых людей — это замес до 100л… В общем начал я, а закончить не смог. Не видел я строителей с кантырем даже на проф стройке, сейчас скажи кому — засмеют. Людям проще добавить пару лопат цемента на замес, а на большой объём бетон с завода выписывают.


19-06-2014: Дмитрий

ккк привел пропорции двух марок бетона
>Рецепт для ж/б стен (получаемая марка бетона не менее М150):
Портландцемент ЦЕМ I 42,5 Б — 14кг
Вода — 10л
Рецепт для ж/б перекрытия и балок (получаемая марка бетона не менее М200):
Портландцемент ЦЕМ I 42,5 Б — 17кг
Вода — 13л
<
получается для M150 В/Ц — 0.71
для М200 — 0.76
А должно быть по крайней мере наоборот — меньше В/Ц — выше марка. Да и В/Ц — слишком высокий для таких марок. К тому же не учитывается влажность песка, а это еще 1-2 литра воды. Реально получится В/Ц около 0.8.


18-02-2015: денис

нужно залить балку для проёма в 3м, высота балки 40см,шир 20см.Опирание на керамзитобет блоки.На балке сверху будет фронтон из блоков с оконным проёмом.Какого диаметра нужна арматура и сколько прутков?Какая должна быть пропорция для бетона?


18-02-2015: Доктор Лом

Вам сначала нужно рассчитать балку (см. статью «Расчет железобетонной балки»), а там и с пропорциями дело прояснится.


20-03-2016: георгий

доктор лом, статья очень хорошая, хотя бы по-тому, что «на пальцах», расказаны основные принципы приготовления (расчетной) бетонной смеси.
ккк, чем меньше воды, тем выше марка бетона в результате, не иначе. В/Ц =0,7 это верхний предел (0,5-0,7)для невысокой марки бетона. Маленький расход воды-это мало пластичная смесь, чтобы улучшить пластичность , только пластификаторы. Кубики для лаборатории, это правильно! Но, были случаи на больших об»ектах, когда кубики показывали более высокую марку бетона, чем в теле самой конструкции! То есть конструкцию в пленку не закрутишь. Солнце с одной стороны, холодный ветерс другой стороны и т.п.


05-04-2016: Александр

Добрый день. Подскажите, какая ПРИМЕРНО марка бетона у меня получилась при следующих пропорциях:
1) цемент, марки 500 20л.
2) песок 38л.
3) щебень 5-40 60л.
4) Вода 12 л.
+ пластификатор, укладка с вибрированием.


05-04-2016: Доктор Лом

Исходя из таблицы 256.1 и марки цемента, примерно М300.


17-04-2016: Денис

Добрый день а если допустим у меня на 65 литров какую пропорцию соблюдать песка щебня и цемента?


17-04-2016: Доктор Лом

Это будет зависеть от того, какую марку (класс) бетона вы хотите получить. Например для В10 согласно таблице 256.1 потребуется на 10 л цемента 32 л песка и 50 л щебня. Если нужно получить выше класс бетона, например В25, то сначала нужно разделить ваш объем на 41 (65/41 = 1.59), а потом умножить объем цемента, песка и щебня на этот коэффициент. Таким образом для бетона класса В25 вам потребуется около 10х1.59 = 15.9 л цемента, 17х1.59 = 27 л песка и 32х1.59 = 51 л щебня.


13-07-2016: Евгений

Доктор Лом, подскажите пожалуйста можно ли при производстве брусчатки заменить щебень на отсев гравия фракцией 1,2-5мм прилегаемость зерен друг к другу колоссальная!???


13-07-2016: Доктор Лом

Гравий такой же крупный заполнитель, как и щебень. Но все равно перед тем как заниматься массовым выпуском продукции, следует сделать несколько пробных партий и проверить образцы на прочность.


21-07-2016: Евгений

Огромное спасибо, прислушался к вашей рекомендации по пыльности материалов, попробовали при производстве газобетона первым в миксер вводить песок фракция 0,15 — 0,63 и мешать 2минуты, процесс твердения ускорился (как мне показалось)


24-09-2016: даниил

Здравствуйте.
Р. Н. Яковлев в книге «Универсальный фундамент Технология ТИСЭ» пишет, что главная функция крупного заполнителя в бетоне — снижение расхода цемента, а не придание изделию высокой прочности.
Я склонен с ним соглашаться, поскольку, во-первых, кварц довольно прочный материал (т.е. песка достаточно), во-вторых, где тонко там и рвётся. Следовательно, прочность бетона будет задаваться наименее прочным компонентом.
Из Вашей же статьи следует обратное: «В состав бетона входят натуральные камни — щебень или гравий, получаемые путем добычи и обработки горных пород — крупные заполнители. Они как раз и обеспечивают необходимый запас по прочности. Другими словами, чем больше прочность зерен щебня, тем больше общая прочность бетона. Все остальные компоненты — цемент, вода и песок — нужны для того, чтобы должным образом скрепить зерна щебня и получить таким образом монолитную конструкцию.»
Прокомментируйте, пожалуйста.


24-09-2016: Доктор Лом

Ответ будет достаточно простым.
1. Посмотрите в любом справочнике расчетное сопротивление песчаных (крупных, средней крупности, мелких) и скальных грунтов и сравните их. Или например гранита и песчаника. Это сравнение будет не в пользу песчаника и песка. Разница будет в 3-50 раз.
2. Сравните максимально возможную прочность цементно-песчаного раствора и бетона. Сравнение будет не в пользу цементно-песчаного раствора. Разница будет в 4 раза.
3. Комментировать высказывания Р. Н. Яковлева, я не буду. Его книга — это не нормативный документ, а так каждый человек в своем произведении может высказывать свое мнение по тому или иному вопросу, для того эти книги и пишутся.


10-07-2018: Юрий

Здравствуйте, Доктор Лом!
Позвольте обратить внимание на компонент бетонной смеси, а именно — влажность заполнителей для приготовления бетона (в особенности песка). Вы пишете конечно, что необходимо корректировать в зависимости от влажности, но нужны пояснения кмк. Дело в том, что влажность заполнителя считается по его массе и, соответственно при естественной влажности песка в 4% количество воды на 1 м3 бетонной смеси необходимо будет уменьшить примерно на 60-64 литра (при плотности 1600 кг/м3). Это важный момент поскольку влияет на в/ц соотношение смеси. С уважением, Юрий.


Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Расчет состава бетона на м3 марки M100, M200 и М300

Марка бетона и, соответственно, область его применения зависит от состава бетона для фундамента, пропорции которого рассчитываются с учетом требований стандартов «Бетоны. Правила подбора составов» и «Смеси бетонные. Техусловия». Эти нормативные документы положены в основу алгоритма расчета состава бетона калькулятором.

Марка бетона

М100М200М250М300

Порядок расчета соотношения компонентов тяжелого бетона

Ингредиентами бетона являются:

  • цемент, который маркируется, начиная от М50, и до М1000;
  • мелкий заполнитель – песок, может быть крупной, средней и мелкой фракции;
  • крупнозернистый компонент – гравий;
  • вода.

Относительное соотношение составляющих бетонной смеси можно рассчитать, зная количество – объем или вес – бетона и его марку. Для перевода одних единиц в другие используется значение удельного веса компонентов. Значение плотности (удельного веса) можно найти в справочниках.

Исходными данными для расчета пропорций бетонной смеси онлайн-калькулятором являются:

  • вид фундамента. Выкопировка из плана проекта поможет подсчитать периметр стен или длину ленты;

марка бетона. Каждая марка характеризуется своим соотношением компонентов;

  • параметры фундамента: его высота и толщина. При этом учитывается тот факт, что высота надземной части бетонного основания должна равняться его учетверенной толщине.

Программа осуществляет расчет объема фундамента, т. е. кубатуру необходимого бетона, простым умножением длины ленты на толщину и высоту бетонного основания.

Расчет компонентов может иметь незначительную разницу состава от реального, учитывая специфику применяемых ингредиентов – их влажность, загрязненность, неоднородность фракций заполнителей. Пропорции корректируются после производства замеса на пробу.

Расчет необходимых ингредиентов бетона на примере

Для подбора состава бетона пример его расчета основывается на конкретных размерах основания и особенностях бетона. Например, длина фундаментной ленты составляет 54 метра, его толщина – 200 мм, заглубление – 500 мм. Применяется бетон М250. Вычисления производятся в такой последовательности:

  • 1.Определяем объем бетона для укладки в основание будущего дома по формуле:
  • V = L х H х S, м³,
  • где: L – длина ленточного фундамента, м;
  • H – высота, м;
  • S – его толщина, м.
  • 2.Подставляя числовые значения величин, приведенные к одной единице измерения, получаем:
  • V = 54 х 0,5 х 0,2 = 5,4 м³

Используя специальные таблицы марок бетона и класса, основанные на проверенных рецептах соотношения составляющих, марку имеющегося цемента и марку необходимого бетона, производим расчет состава бетона на 1 м³ бетонной смеси.

Существует следующая зависимость марки бетона от марки цемента. Так, если необходим бетон М250, то цемент нужно применить М500, т. е. марка цементного связующего превышает марку бетонной смеси вдвое. Рекомендуемый состав бетона М400 на 1м³ в таблице пропорций включает цемент М400 или М500.

Рассчитывая состав бетона для отмостки, пропорции его составляющих тоже выбирают для смеси М250 (реже – М200, класс В15). Рекомендуемый состав бетона М200 на 1 м³ приводится в таблице.

Маркировка цемента Маркировка бетона Пропорции бетонной смеси по весу (цемент:песок:щебень) Объемный состав бетона (цемент:песок:щебень) Объем бетона, который получится из 10 л цемента
М400 М500 М200 1 : 2,8 : 4,8 1 : 3,5 : 5,6 1 : 2,5 : 4,2 1 : 3,2 : 4,9 54 62
М400 М250 1 : 2,1 : 3,9 1 : 1,9 : 3,4 43
М500 1 : 2,6 : 4,5 1 : 2,4 : 3,9 50
М400 М400 1 : 1,2 : 2,7 1 : 1,1 : 2,4 31
М500 1 : 1,6 : 3,2 1 : 1,4 : 2,8 36

В примере расход смеси М250 на фундамент составляет 5,4 куба бетона. Пропорции ингредиентов в м³(1:2,4:3,9) показывают, что на весь объем необходимо взять одну частьцемента М500; 2,4 частипеска; 3,9 части щебня. Сухих компонентов необходимо – 7,3 части, т. е. на одну часть приходится: 5,4 : 7,3 =0,74 м³. Соответственно:

  • песка необходимо 0,74 х 2,4 = 1,78 м³;
  • щебня нужно 0,74 х 3,9 = 2,89 м³;
  • цемента – 0,74 х 1 = 0,74 м³;
  • воды – половина от количества цемента, т. е. 0,37 м³.

Соотношение весовых частей в бетоне этой же марки 1:2,6:4,5 но на практике каждое ведро ингредиентов взвешивать неудобно. По этой причине, сделав отметки на ведре, можно быть уверенным в точном соблюдении пропорций. Их расчет во многом зависит от размера частиц заполнителей, а проведенные вычисления основываются на усредненных данных.

Как рассчитать объем бетона для фундамента и соотношение компонентов

При самостоятельном строительстве дома нужно учитывать каждую деталь, начиная с разработки проекта дома и заканчивая покупкой необходимого количества строительных материалов. Малейшая ошибка в лучшем случае может сказаться на увеличении стоимости дома, в худшем – поставить под сомнение безопасность его дальнейшей эксплуатации. Существенная статья затрат связана с возведением фундамента, поэтому так важно провести тщательный расчет бетона, его объема и качественных показателей. В этой статье мы поговорим о том, как просто, что называется, своими руками рассчитать требуемый объем бетонной смеси, а также другие важные показатели этого стройматериала, в частности, соотношение компонентов, входящих в состав бетона. Внушительная часть статьи пригодится тем, кто по каким-то причинам решил сам готовить бетонную смесь прямо на строительном участке. Вы убедитесь, что это не так сложно, как может показаться на первый взгляд.

Рассчитываем требуемый объем бетона для разных видов оснований

Первая часть расчета количества бетона на фундамент относительно проста – достаточно лишь вспомнить школьный курс геометрии и, используя данные проекта основания, подсчитать объем по формулам. Мы не будем сильно углубляться в описание этого процесса – все действительно очень просто. Естественно, объем, занимаемый в монолите арматурой, воспринимаем как погрешность (в большую сторону, с запасом).

Чтобы рассчитать количество кубов бетона для плитного фундамента с ребрами жесткости, необходимо знать форму и размеры ребер. Их объем впоследствии суммируется с объемом самой плиты – получают необходимое количество кубометров бетонной смеси. Полученные данные используются в дальнейшем при расчете столбчатого фундамента и других видов оснований.

Расчет состава бетонной смеси

В статье о бетоне для фундамента мы достаточно подробно описывали характеристики бетонной смеси и то, как они сказываются на надежности и прочности возведенного из них монолита. Но представленных там данных явно недостаточно для того, чтобы сделать необходимое количество бетона своими руками. При расчете процентного состава бетонной смеси нет мелочей: нужно учитывать и водоцементное отношение (В/Ц), и характеристики заполнителей (песка и щебня), и марку используемого цемента. С чего же начать?

Допустим, нам необходимо получить бетон марки М300 из портландцемента М400. Смотрим значения, представленные в таблице 1. Из нее видно, что водоцементное отношение равно 0,53. Данные таблицы актуальны для бетонной смеси, приготовленной на основе щебня и песка, модуль крупности которых не превышает 2,5 – компоненты со средним размером зерен. Если же нам необходимо приготовить бетонный раствор без щебеночного заполнителя, то от значения В/Ц необходимо отнять 0,1. В нашем случае получается, что водоцементное отношение будет равно 0,43. Что это значит? В первом случае (В/Ц=0,53) при использовании 50 кг цемента необходимо добавить в смесь 50×0,53=26,5 литра воды, во втором (В/Ц=0,43) – 21,5 л. Но это мы всего лишь пояснили термин «водоцементное отношение». Перейдем к конкретному примеру.

Необходимо получить: 10 кубов бетона М300 с подвижностью П2 (осадка конуса до 50 мм)

Имеется:

  • щебень (максимальный размер зерен – 25 мм), плотность — 2700 кг/м3
  • песок средней фракции, плотность – 2500 кг/м3
  • портландцемент М400, плотность которого в составе водно-цементной массы – 3000 кг/м3

По таблице 1 находим значение В/Ц для получения проектной марки бетона М300. Оно равно 0,53. Смотрим на данные таблицы 2. В ней указано, что при использовании щебня с максимальным размером зерен 25 мм для приготовления одного куба бетона требуется 195 литров воды (или 0,195 м3). Получается, что для 1 куба бетона потребуется:
195/0,53=368 кг цемента
Далее необходимо рассчитать, сколько по объему на кубический метр занимают заполнители (песок и щебень):
1-((368/3000)+0,195)=0,682 м3 или 682 литра
Теперь, пользуясь данными таблицы 2, находим объемное содержание песка в смеси наполнителя. В нашем случае оно равно 46% или просто 0,46. Зная его, несложно рассчитать объем песка:
682×0,46=313,7 литра или 0,314 м3
Отнимаем от общего объема наполнителей объем песка и получаем объем щебня:
682-313,7=368,3 литра или 0,368 м3
Зная объемы наполнителей и плотности, несложно рассчитать их массу. Так, для песка она составит:
0,314×2500=785 кг, для щебня – 0,368×2700=993,6 кг.

Итого, чтобы приготовить один кубометр бетонной смеси проектной марки М300 из портландцемента М400 потребуется:

368 кг цемента, 195 л воды, 785 кг песка, 993,6 кг щебня

Для приготовления десяти кубов полученные значения необходимо умножить на 10. Эти данные используются для корректировки расчета фундамента.  Можно также выразить массовое соотношение цемента, песка и щебня:

368/785/993,6 = 1:2,1:2,7

По таблице 3 удостоверились в том, что расчетная масса цемента не меньше табличных значений, указанных для приготовления бетонной смеси М300 с осадкой конуса до 50 мм (П2) из цемента М400.

Рассчитываем компоненты для одного замеса бетона

Предположим, что в вашем распоряжении имеется строительная бетономешалка с полезным объемом 500 литров. Сколько материалов необходимо на приготовление одного замеса бетона в этом случае? Воспользуемся ранее полученными данными по производственному расходу материалов для получения одного кубометра бетонной смеси:

368 кг цемента, 195 л воды, 785 кг песка, 993,6 кг щебня

Дополнительными данными являются: объемный вес песка, щебня и цемента – 1600 кг/м3, 1500 кг/м3, 1300 кг/м3, соответственно.

Для начала определяем коэффициент выхода бетона: 1/((368/1300)+0,195+(785/1600)+(993,6/1500))=0,613
Далее рассчитываем расход каждого из компонентов на один замес, отталкиваясь от доступной емкости барабана бетономешалки (500 л).
Расход цемента составит: 500×0,613×368/1000=112,8 кг
Расход воды: 500×0,613×195/1000=59,8 кг
Расход песка: 500×0,613×785/1000=240,6 кг
Расход щебня: 500×0,613×993,6/1000=304,5 кг

Представленные в статье расчеты привязаны к конкретным материалам и условиям работы. Мы постарались изложить сам принцип определения процентного состава компонентов для приготовления бетонной смеси с нужными характеристиками. В одной из следующих статей мы поговорим о том, как провести расчет арматуры для фундамента, который не менее важный, чем расчет бетона.

Загрузка…

Онлайн-калькулятор для расчета компонентов бетонной смеси

Неважно, для каких именно целей вам потребовалась бетонная смесь. Если вы решили готовить ее самостоятельно, то без расчета состава не добиться требуемых показателей прочности. Предлагаем вам воспользоваться простым онлайн-калькулятором для вычисления В/Ц, плотности бетона, объема и массы воды, песка, щебня и цемента.

Объем бетона, м3:

Марка (класс) бетона:

М100 | В7,5М150 | В10М150 | В12,5М200 | В15М250 | В20М300 | В22,5М350 | В25М350 | В26,5М400 | В30М450 | В35М550 | В40М600 | В45

Марка цемента:

М300М400М500М600

Крупный заполнитель, мм:

10 мм | Щебень20 мм | Щебень40 мм | Щебень70 мм | Щебень10 мм | Гравий20 мм | Гравий40 мм | Гравий70 мм | Гравий

Мелкий заполнитель, мм:

Мелкий песок (1,1-1,8 мм)Средний песок (2-2,5 мм)Крупный песок (более 2,5 мм)

Подвижность смеси:

 
Помните, что реальная марка бетона при ручном замешивании всегда будет несколько меньше расчетных значений. Это связано с тем, что не всегда работы проводятся в идеальных условиях, а смесь весьма чувствительна к изменению температуры и влажности. Еще нужно учитывать, что готовый бетон можно использовать только в течение 1-2 часов после добавления воды в сухую смесь. Все это время его нужно перемешивать во избежание схватывания.
Пробежимся по параметрам, учитываемым нашим калькулятором:

  • марка цемента. Чем она выше, тем меньше нужно цемента для получения бетона требуемого класса. Помните, что цемент теряет свои характеристики со временем. Поэтому не рекомендуется использовать материал, произведенный более чем за 90 дней до использования;
  • качество заполнителей. Если наполнители – материалы, прочность которых меньше двукратного показателя прочности бетона, то достигнуть планируемой марки бетона не получится. Качество заполнителей определяется процентом мусора и глинистого грунта, которые понижают свойства готового материала;
  • размер и вид заполнителей. От этого показателя во многом зависит расход цемента и воды, т.к. для заполнителей с малыми размерами больше их суммарная площадь поверхности, но меньше поры между ними

Используйте для приготовления бетонной смеси только качественные материалы: чистую воду, свежий цемент – не экономьте при покупке заполнителей. Только в этом случае наш калькулятор оправдает ваши ожидания!

Загрузка…

Понравилась статья? Поделиться с друзьями:

Расчет состава бетона

справка по расчету материалов для бетона


Укажите необходимые пропорции.

E — Требуемое количество бетона. Указывается в кубических метрах.
M — Сколько требуется мешков цемента на 1 кубический метр бетона.
K — Вес одного мешка цемента. В килограммах.

Укажите стоимость материалов в вашем регионе.

Не забудьте пересчитать цены на сыпучие материалы в стоимость по весу, а не по объему.
Пропорции и расход цемента, песка и щебня для приготовления одного куба бетона по умолчанию даны справочно, как рекомендуют производители цемента.
Так же и цены на цемент, песок, щебень могут значительно различаться в различных регионах.

Состав готовой бетонной смеси зависит от размеров (фракций) щебня или гравия, марки цемента, его свежести. Известно, что при длительном хранении цемент теряет свои свойства, а при повышенной влажности качество цемента ухудшается быстрее. Обратите внимание, что цемент в мешках может весить совсем не 50 кг, как на нем написано. Доверяй, но проверяй. Сколько цемента вам насыпали лучше проверить.

Обратите внимание, что стоимость песка и щебня указывается в программе за 1 тонну. Поставщики же объявляют цену за кубический метр песка или щебня или гравия.

Удельный вес песка зависит от его происхождения, например, речной песок тяжелее карьерного.
1 кубический метр песка весит 1200-1700 кг, в среднем — 1500 кг.

Гравий и щебень. По различным источникам вес 1 кубического метра колеблется от 1200 до 2500 кг в зависимости от фракции (размеров). Тяжелее — более мелкий.

Так что пересчитывать цену за тонну песка и щебня вам придется самостоятельно. Или уточнять у продавцов.

Однако расчет все же поможет узнать ориентировочные расходы на строительные материалы для приготовления нужного вам количества бетона.

Чем замешивать, приготовлять бетон?

Если требуется небольшое количество бетонной смеси, то, разумеется можно обойтись своими руками, лопатой и подходящей ёмкостью, например, обычным корытом. Если же необходим более-менее существенный объём, то без механизации процесса уже не обойтись, и на сегодняшний день имеется широкий выбор бетоносмесительного оборудования, как по типу, так и по производительности.

В быту, дачном хозяйстве, особенно при эпизодических работах, целесообразно использовать недорогие гравитационные бетоносмесители (бетономешалки).
Если объём бетонных работ значителен, высока их интенсивность и, в-особенности, если к качеству смеси предъявляются повышенные требования, то такие задачи решают уже бетоносмесители принудительного типа.

В некоторых случаях, когда инертный наполнитель бетонной смеси (щебень, гравий, керамзит и т.п.) имеет небольшой размер фракции, то возможно применение растворосмесителей, в том числе, смесителей турбулентного типа или комбинированных агрегатов — пневмонагнетателей.

Если вопрос выбора вида бетоносмесителя требует более обстоятельного рассмотрения, то рекомендую посмотреть ресурс ПО Стройтехника:

Оборудование для производства бетона, смесители принудительного и гравитационного типа, промышленные бетоносмесительные установки, информационный справочник по оборудованию:
Бетоносмесители и растворосмесители

выбор марки, расчет и таблица

Прочные и надежные плиты перекрытия из бетона можно получить только при четком соблюдении технологии, правильном выполнении замеса и грамотном подборе соотношения компонентов бетонного раствора.

Что влияет на содержание бетона?

Считается, что марки бетона М300-М350 являются оптимальными для строительства любых конструкций. На качество бетонной смеси влияет много факторов. Прочность напрямую определяется количеством цемента в смеси, как вяжущего вещества. Цифры маркировки этого компонента определяют предел прочности на сжатие. Популярной цементной смесью является портландцемент М400.

Примерный состав с использованием выше обозначенных компонентов в пропорции цемент : песок : щебень для бетонной смеси М300 должен быть таким: 1 : 1,9 : 3,7. Более высокая 500-я марка цемента предполагает иное соотношение этих компонентов: 1 : 2,4 : 4,3. Для бетона М350 потребуется 1 : 2 : 4 соотношение на цементе М500.

Таким образом, более прочный состав будет получен, если использовать большое количество цемента и прочную фракцию щебня. При этом отношение воды к цементу должно быть менее коэффициента 0,7. Для расчета соотношений всех ингредиентов цементной смеси учитывают такие факторы, как:

  • величина зерна щебня, песка;
  • качество наполнителя;
  • содержание воды для замеса.

Количества меняются в зависимости от необходимой величины упругости, морозостойкости, устойчивости к деформациям. Оптимальный размер гранулометрического размера щебня — 0,5—2 см. Песок должен быть кварцевым и очищенным от примесей. Для смешения ингредиентов понадобится бетономешалка. Для приготовления небольшого количество бетона своими руками достаточно смеси, шуфельной лопаты, тачки, емкости для смешивания.

Вернуться к оглавлению

Выбор сорта бетона для раствора

Таблица соотношения классов и марок бетона.

В зависимости от конечного назначения будущей конструкции можно определить, какой сорт бетона для раствора требуется. Ниже приведены пропорции различных сортов бетонов (цемент к песку и щебню) и сферы применения готовых продуктов:

  1. М100 с классом прочности В7,5, пропорцией 1 : 5,8 : 8,1 рекомендуется на подготовительном этапе при сооружении монолитного фундамента, укладке дорожного полотна.
  2. Материал 150-й марки с прочностью В12,5 и отношением 1 : 4,5 : 6,6 используется при заливке монолитного фундамента и стяжки пола небольших домов, укладке дорог и садовых троп.
  3. Бетоном М200 с прочностью В15 заливают стяжки, отмостки, тропинки. С помощью раствора соотношением 1 : 3,5 : 5,6 готовятся плитное перекрытие, ленточные, свайные опоры, лестницы, подпорные стеновые конструкции, дороги.
  4. Пропорция 1:2,6:4,5 для получения 250-го сорта с классом прочности В20 используется в монолитном строительстве, перекрытиях малоэтажек, отмостках, тропинках, площадках, кладке заборов, лестниц, подпорных стен.
  5. Бетон М300 В22,5 с пропорцией компонентов 1 : 2,4 : 4,3, помимо перечисленного для М250, берется для сооружения любого типа перекрытия, подпорных и сплошных стен в многоэтажках, всех типов фундамента.
  6. М350 В25 с пропорциями компонентов 1 : 2 : 4 является основным материалом при строительстве всех типов основ под здания, колонн, дорог и конструкций, эксплуатируемых в тяжелых условиях с высокими нагрузками.
  7. Марки М400 с прочностью В30, имеющие пропорцию 1 : 1,6 : 3,2, предназначены для сооружения мостов, гидротехнических конструкций, изделий и зданий с повышенной прочностью. В индивидуальном строительстве не используется.
  8. Бетонная смесь М450 В35 в пропорциях компонентов 1 : 1,4 : 2,9 практически не отличается по применению от предыдущего сорта. Более высокая водонепроницаемость позволяет использовать этот сорт для строительства метро, плотин и дамб.
Вернуться к оглавлению

Расчет пропорций бетонной смеси на примере

Для определения пропорций бетонной смеси нужен точный расчет. Высокое качество достигается за счет соблюдения технологии, установленных требований к сортности используемых материалов на основе их способности выдерживать нужные нагрузки. Оптимальной маркой цемента является М350. Более высокие классы дорогостоящие, поэтому их применение не всегда целесообразно, а для более низких классов в ряде случаев требуются специальные добавки, улучшающие конечные характеристики готового бетона. Часто применяют противоморозные химические вещества.

Для расчета соотношения ингредиентов смеси при изготовлении плит перекрытия потребуются такие параметры, как:

  • размер зерен щебня и песка;
  • плотность;
  • стойкость к нагрузкам;
  • текучесть;
  • влагонепроницаемость.

Расчет сводится к массе цемента, который является основой соотношения. Например, чтобы получить раствор для перекрытий на 25 кг цемента потребуется 75 кг песка, 125 кг щебня. Это соответствует отношению: 25 : 75 : 125 или 1 : 3 : 5. То есть для приготовления смеси на 1 объем цемента потребуется 3 части песка, 5 частей щебня.

Пример расчета соотношения по классу прочности смеси:

  • из 10 литров цемента можно получить 41 л бетона М300 при соотношении 1 : 1,9 : 3,7;
  • из этого же объема цемента готовится 31 л бетонного раствора М400 при соотношении 1 : 1,2 : 2,7.

Содержание воды определяется по заданной величине пластичности смеси при замешивании.

Плиты перекрытия чаще изготавливаются на базе раствора с отношением компонентов 1 : 3 : 6 (Ц : П : Щ) на 0,5-1 объем воды в зависимости от требуемой подвижности.

Вернуться к оглавлению

Таблица пропорций компонентов бетона

Вернуться к оглавлению

Вывод

Помимо перечисленных выше требований к проведению подбора и расчета компонентов смеси, важно придерживаться правил процесса ее приготовления. Лучше для этого использовать бетономешалку. На времени перемешивания не стоит экономить.

Важно правильно подобрать количество воды. При изготовлении плит перекрытия густота раствора должна быть, как у домашней сметаны, а вот для стяжек пола раствор делать лучше достаточно жидким, чтобы он ровно ложился, заполнял щели и пустоты. Важно помнить — избыток воды не дает быстро застыть бетону.

Расчет бетона, таблица-калькулятор – как составить правильные пропорции? + видео

Цементные смеси используются в строительстве повсеместно, даже возведение деревянного дома не обходится без заливки фундамента, и очень важно уметь правильно выполнять расчет бетона.

Насколько важны точные пропорции бетона?

В прошлом для постройки домов широко использовался тесаный известняк, а также, позднее, кирпич из высушенной на солнце либо жженой на огне глины. Но уже в древнем Риме был известен цемент, который применяли для скрепления строительных материалов при возведении храмов и дворцов, а также городских стен. Со временем строительные растворы стали использоваться все шире, в том числе и для заливок, которые для прочности изготавливали из цемента и песка с добавлением гравия или щебня. Именно такой состав и называется бетоном, который не что иное, как искусственный камень.

Классифицируется данный строительный материал по маркам, которые отражают по большей части степени прочности. Сегодня, впрочем, терминология меняется, и среди специалистов все чаще упоминается именно слово «класс» вместо «марка», но оба понятия идентичны и зависят от пропорций смешивания компонентов бетона. К примеру, класс В10 получают, смешав цемент, песок, щебень и воду в долях 1:4:5,5:0,5 на 1 куб. А более высокий класс B15 замешивают следующим образом – 1:3:5:0,5, в приведенной выше последовательности составляющих.

Для индивидуальных строительных работ подходят все растворы бетона, входящие в промежуток между классами B10 и B15, с ними включительно, это соответствует маркам M150-M200.

Определение водоцементного соотношения

Существует не один калькулятор, на основе которого определяется, сколько нужно воды для той или иной марки цемента, однако при решении формул вам неизбежно придется столкнуться с всевозможными графиками. Потому проще обратиться к проверенным сведениям, а также достаточно точным таблицам, из которых можно узнать, каким должно быть водоцементное соотношение для конкретного случая, в считанные минуты.

За основу возьмем факт, что для отвердения цемента необходимо всего ¼ воды от его массы. Остальная влага испаряется по мере набирания прочности заливки, и общее количество воды не должно превышать 60 % от объема цемента. Чем больше останется влаги, не вступившей в контакт с отвердителем раствора, тем больше пор появится при ее испарении и ниже будет прочность, и морозоустойчивость. Исходя из вышесказанного, можно легко узнать, сколько нужно жидкости в среднем для того, чтобы бетон имел достаточное сопротивление на сжатие для использования его в фундаменте частного дома.

Оптимальное количество воды – 50 %, то есть на 200 килограммов цемента заливается 100 литров жидкости, это самое простое предварительное вычисление, которое входит в калькулятор для бетона. Но поскольку среди компонентов есть и заполнители (песок и щебень), зависимость лучше просчитывать с их учетом, и в этом поможет нижеследующая таблица:

Крупность заполнителя, мм

гравий

щебень

10

20

40

70

10

20

40

70

Расход воды л/м3

Цементное тесто густотой 26-28%, модуль крупности песка Мк= 2

215

205

190

180

225

215

200

190

+ 1 % густоты

плюс 3-5 л/м3

— 1 % густоты

минус 3-5 л/м3

+ 0,5 Мк песка

минус 3-5 л/м3

+ 0,5 Мк песка

плюс 3-5 л/м3

Что и как смешать?

Обычно это первый вопрос, который возникает у новичков, перед которыми стоят мешки с цементом между холмами песка и щебня. На глаз определить, сколько нужно компонентов, чтобы получить куб качественного раствора – практически невозможно. Поэтому, перед тем, как рассчитать объем бетона, определитесь, какие пропорции вам предпочтительнее. В первую очередь примите к сведению, что основная задача твердых наполнителей – уменьшение расхода цемента, который из всех составляющих смеси наиболее дорогостоящий. Однако количество песка и щебня на куб раствора не должно превышать 80% от общего объема.

Калькулятор расхода бетона

Укажите размеры поверхностей и толщину слоя

Для расчетов можно использовать специальный калькулятор, это удобно для заблаговременного вычисления всех необходимых пропорций. Но далеко не всегда есть возможность обратиться к онлайн-сервису, в частности, если вы уже находитесь где-нибудь на складах и выбираете строительные материалы. За отсутствием случая применить калькулятор, лучше иметь при себе специальные таблицы, а также помнить основную информацию о твердых наполнителях. Что касается песка: в раствор лучше класть крупнозернистый, с модулем крупности (МК) в пределах 2,1-3,25, но при этом должны быть частицы и меньших размеров, чтобы уменьшить пустоты между фракциями.

Расход цемента кг/м3   

Гравий с крупностью:

Щебень с крупностью:

10

20

40

10

20

40

Оптимальное содержание % песка от всего зернистого заполнителя

200 (бетон М100-М250)

42

40

38

45

43

41

300 (бетон М100-М250)

40

38

36

43

41

40

400 (бетон М300 и выше)

38

36

35

40

38

37

500

36

35

34

38

36

35

До того, как рассчитать цемент, нужно выяснить, сколько нужно щебня и гравия для бетона. Данные материалы делятся на группы по размеру фракций, всего их 4: от 5 до 10 миллиметров, от 10 до 20, а далее идут 20-40 и 40-70. Следует использовать наиболее крупные зерна, но с учетом, что последняя группа применяется для тяжелых бетонов, в частном строительстве достаточно ограничиться 3-й. Учитывайте, что, используя в качестве самых крупноразмерных фракций щебень до 40 миллиметров, необходимо, чтобы до 20 % зерен были меньшего размера.

Класс (марка) бетона

Массовый состав, Цемент:Песок:Щебень (кг)

Объемный состав на 10 л цемента, Песок:Щебень (л)

Количество бетона на 10 л цемента (л)

B7,5 (М100)

1 : 4,6 : 7,0

41 : 61

78

В12,5 (М150)

1 : 3,5 : 5,7

32 : 50

64

B15 (М200)

1 : 2,8 : 4,8

25 : 42

54

B20 (М250)

1 : 2,1 : 3,9

19 : 34

43

B22,5 (М300)

1 : 1,9 : 3,7

17 : 32

41

B30 (М400)

1 : 1,2 : 2,7

11 : 24

31

B35 (М450)

1 : 1,1 : 2,5

10 : 22

29

И напоследок, перед тем, как рассчитать количество компонентов на куб бетона, давайте вспомним о самом важном компоненте – портландцементе, который способен застывать, даже будучи погруженным в воду. Следует помнить, что прочность, указанная производителем (марка), сохраняет свои показатели только в течение 2 месяцев, затем, когда пройдет ¼ года со дня изготовления, запас прочности снижается на 20 %, а по истечении полугода – на 30 %. При использовании лежалого материала увеличьте порции цемента на процент, соответствующий потере прочности. Желательно также увеличить время замешивания состава в 4 раза.

Оцените статью: Поделитесь с друзьями!

Concrete Basics: основные ингредиенты для бетонной смеси

Бетон был и остается на протяжении тысячелетий очень популярным строительным материалом.

Бетон, состоящий всего из нескольких основных ингредиентов, является наиболее широко используемым искусственным материалом на планете. Люди используют больше бетона, чем все другие строительные материалы вместе взятые.

Так что же такое бетон?

Бетон — это смесь цемента, воздуха, воды, песка и гравия — вот и все!

Не совсем так.Типичная бетонная смесь состоит примерно из 10% цемента, 20% воздуха и воды, 30% песка и 40% гравия. Это называется правилом 10-20-30-40, хотя пропорции могут варьироваться в зависимости от типа цемента и других факторов.

Теперь давайте обсудим каждый ингредиент и важную роль, которую они играют в вашем миксе.

Ингредиенты бетонной смеси и их важные роли:

Цемент

Хотя цемент составляет наименьший процент смеси, он является важным ингредиентом в бетоне.Цемент служит клеем, который скрепляет все остальное. Это также то, что позволяет готовой смеси затвердеть после нанесения. В зависимости от того, какой бетон вы хотите изготовить, существует пять различных типов цемента:

  • Тип I используется для большинства бытовых работ
  • Тип II используется в умеренных сульфатных условиях
  • Тип III используется в климате, где существует опасность замерзания
  • Тип IV используется для специальных заказов, таких как промышленное размещение.
  • Тип V используется в экстремальных условиях сульфатов

Типы I и II являются наиболее широко используемыми в жилых домах в Соединенных Штатах из-за относительно умеренного климата, который мы наблюдаем здесь.

Воздух и вода

Чтобы смесь была эффективной, в бетоне необходимо некоторое количество воздуха (крошечные пузырьки воздуха). Цемент с воздухововлекающими добавками гарантирует, что избыток воды может расшириться при прохождении цикла замораживания-оттаивания. Однако эти пузырьки воздуха должны быть микроскопически маленькими, иначе «увлеченный» воздух превратится в «захваченный» воздух, что приведет к усадке и растрескиванию.

Среди всех других важных ингредиентов, участвующих в создании смеси, вода имеет тенденцию иметь наибольшее влияние.Как правило, чем больше воды вы наливаете в смесь, тем меньше прочности будет у затвердевшей смеси. Усадка и растрескивание также возможны при использовании слишком большого количества воды. Избыточная вода со временем испарится из затвердевшего бетона, что приведет к усадке бетона и, в конечном итоге, к растрескиванию.

Идеальное количество воды можно измерить по соотношению воды к цементу, которое должно варьироваться от 0,4 до 0,6. Чем выше коэффициент, тем слабее бетон. Хороший способ проверить растворимость вашего бетона — выполнить тест на оседание.Это поможет определить, не слишком ли много воды в вашей смеси.

Гравий и песок

Как видите, щебень и песок составляют около 70% смеси. Такой высокий процент делает смесь более экономичной, поскольку гравий и песок прочнее и более рентабельны, чем цемент. Хорошая готовая смесь будет включать пропорциональное количество как крупного (гравий), так и мелкого (песок).

Причина этого в том, что гравий составляет большую часть готовой смеси, а более мелкие частицы песка хорошо заполняют любые дополнительные места, которые в противном случае могли бы быть заполнены нежелательными воздушными карманами.

Вот и все, ингредиенты, которые объединяются для создания самого широко используемого строительного материала в мире — бетона. Как видите, каждый ингредиент и его соотношение влияют на качество и вид готовой смеси. Важно, чтобы у вас была лучшая готовая смесь для вашей конкретной работы. Вот почему мы создали этот Контрольный список готовой смеси, чтобы помочь вам и вашему поставщику готовой смеси создать именно то, что вам нужно. Загрузите контрольный список готовой смеси прямо сейчас.

Конструирование бетонной смеси стало еще проще

Бетонная смесь представляет собой комбинацию пяти основных элементов в различных пропорциях: цемент, вода, крупные заполнители, мелкие заполнители (т.е. песок), и воздух. Дополнительные элементы, такие как пуццолановые материалы и химические добавки, также могут быть включены в смесь для придания ей определенных желаемых свойств. В то время как дизайн бетонной смеси — это процесс выбора ингредиентов для бетонной смеси и определения их пропорций. При разработке смеси вы всегда должны учитывать желаемую прочность, долговечность и удобоукладываемость бетона для рассматриваемого проекта.

Излишне говорить, что все производители готовых смесей стремятся найти идеальные пропорции этих ингредиентов, чтобы оптимизировать свои бетонные смеси и придать бетону прочность, долговечность, удобоукладываемость и другие желаемые свойства.Важно оптимизировать бетон, чтобы обеспечить наименьшую стоимость при сохранении максимальной прочности смеси. Это далеко не просто, так как каждое добавление или вычитание из бетонной смеси влечет за собой корректировку компонентов, что делает процесс очень сложным и неэффективным. Решением является приложение Giatec Concrete Hub.

Конструкция бетонной смеси

Расчет бетонной смеси часто ошибочно называют «конструкцией цементной смеси». Однако цемент — это просто один из ингредиентов бетона.Это связующее вещество, которое позволяет бетону затвердевать и прилипать к другим материалам. Следовательно, он не может и не должен использоваться взаимозаменяемо с конструкцией бетонной смеси.

Расчет бетонных смесей

Бесплатное приложение Concrete Hub от

Giatec теперь содержит новый инструмент для смешивания, который позволяет быстро и легко проектировать бетонную смесь. Нет необходимости иметь под рукой стандарт ACI — приложение предоставляет все рекомендации и выполняет все расчеты за вас.

Как создать бетонную смесь

В целом бетонные смеси должны соответствовать рекомендациям (Комитет ACI, 2009).Бетонную смесь можно спроектировать по таблицам и расчетам, приведенным в стандарте.

Все бетонные смеси обладают уникальными свойствами, процесс проектирования может быть трудоемким и трудоемким. Однако приложение Concrete Hub решает эти проблемы, связанные с созданием уникальной бетонной смеси.

Инструмент для проектирования бетонных смесей Concrete Hub

Приложение Concrete Hub теперь предоставляет простой, быстрый и бесплатный способ выполнить предварительное проектирование смешивания. В приложении также есть надстройка, позволяющая создавать пропорции для дизайна смеси, используя метод абсолютного объема или веса.

Приложение выполняет все вычисления в единицах СИ или имперских единицах в соответствии со стандартом ACI 211.1-91 и предоставляет рекомендации стандарта на каждом этапе с помощью значка «Справка». После завершения проектирования бетонной смеси приложение создает сводный файл, которым можно легко поделиться.

Узнайте о датчиках зрелости бетона

Простое проектирование бетонной смеси

Легко контролируйте прочность бетона с помощью SmartRock! Узнайте больше здесь!

Шаг 1: Падение потока

Первый шаг приложения требует от вас определения максимальной и минимальной осадки для свойств свежей смеси.

  • Если размеры потока неизвестны, вы можете использовать значок «Справка», чтобы определить тип элемента, который выводит соответствующие требования к осадке.
  • Осадка бетона отражает текучесть / удобоукладываемость бетонной смеси. Например, более высокая просадка позволяет лучше размещать в перегруженных армированных элементах.

* Справочное руководство основано на Таблице 6.3.1 (Таблица A1.5.3.1) стандарта ACI.

Источник: Стандартная практика выбора пропорций для обычного, тяжелого и массивного бетона (ACI 211.1-91)

Шаг 2: Размер агрегата

Вам также необходимо определить размер заполнителя, необходимый для расчета смеси.

  • Как правило, максимальный размер крупного заполнителя определяется ограничениями поперечного сечения конструкции и конструкции арматуры.
  • Увеличение размера заполнителя обычно более экономично, так как снижает количество цемента на единицу объема; однако это может повлиять на удобоукладываемость смеси. Напротив, уменьшение максимального размера крупного заполнителя позволяет вашей бетонной смеси достичь более высокой прочности при эквивалентном водоцементном соотношении.

* Значок справки, доступный на этой странице, предлагает различные размеры агрегатов в зависимости от ограничений Таблиц 6.3.3 (A1.5.3.3)

Источник: Стандартная практика выбора пропорций для нормального, тяжелого и массивного бетона (ACI 211.1-91)

Шаг 3: Смешивание содержания воды и воздуха

Теперь вы получаете первую оценку количества воды, необходимого для получения подходящей удобоукладываемости для вашей смеси, на основе оседания потока и размера заполнителя.

  • Приложение Concrete Hub также предлагает количество захваченного воздуха, необходимое для бетона без воздухововлекающих или воздухововлекающих добавок.
  • Захваченный воздух является важным параметром, когда бетонная конструкция подвергается воздействию замерзающих или противообледенительных солей. В таких условиях повышенное содержание воздуха увеличит прочность бетона, поскольку оно позволяет воде расширяться в захваченном воздухе при замерзании. Это снижает внутреннее давление, вызванное образованием льда.
  • В меню «Справка» на этом этапе автоматически вычисляется вес воды и необходимое количество захваченного воздуха на основе рекомендованных значений в таблицах 6 комитета ACI.3.3 / A1.5.3.3.
Бетон с воздухововлекающими добавками, Фото предоставлено Portland Cement Association (PCA)

Шаг 4: Прочность бетона и соотношение вода / цемент

Соотношение вода / цемент является наиболее важным параметром при проектировании бетонной смеси; он определяет прочность, долговечность и удобоукладываемость бетонной смеси. Здесь вам нужно будет ввести требуемую прочность на сжатие и соответствующее водоцементное соотношение.

  • Например, уменьшение водоцементного отношения повысит прочность бетона и обеспечит лучшую долговечность.Однако уменьшение водоцементного отношения также может значительно снизить удобоукладываемость бетона. В этих случаях одним из возможных решений является добавление в смесь восстановителя воды (см. Шаг 7).
  • Используя опцию Help, вы можете выбрать желаемую прочность на сжатие и получить соответствующее водоцементное соотношение, рассчитанное на основе Таблицы 6.3.4 (a) A1.5.3.4 (a)). Кроме того, вы получите рекомендации по максимально допустимому водоцементному соотношению в зависимости от экспозиции конструкции (Таблица 6.3.4 (b) / A1.5.3.4 (b)).
  • Используя введенные данные, приложение рассчитает необходимое количество цемента. Обратите внимание, что количество цемента можно уменьшить, добавив в смесь пуццолановые материалы.
Источник: Стандартная практика выбора пропорций для нормального, тяжелого и массивного бетона (ACI 211.1-91) Источник: Стандартная практика выбора пропорций для обычного, тяжелого и массивного бетона (ACI 211.1-91)
Шаг 4.1: Пуццолановые материалы
Летающий пепел. Фото: IndiaMart
  • Этот шаг также дает вам возможность включить в смесь пуццолановые материалы, такие как летучая зола, пары кремнезема или шлак.
  • Использование пуццоланового материала для замены части цемента более экологично и экономично. Как правило, он замедляет механизм отверждения и придает бетону улучшенные свойства.
  • Вы можете выбрать предпочтительный метод расчета. На основе удельного веса пуццоланового материала будет рассчитано новое скорректированное соотношение вода / вяжущий материал, количество пуццоланового материала и скорректированный вес цемента.

Шаг 5: грубый заполнитель

Теперь вам необходимо определить удельный вес крупного заполнителя, модуль тонкости и объем крупного заполнителя на объем бетона.

  • После этого приложение выведет необходимое количество грубого заполнителя.
  • Параметр «Справка» позволяет выбрать размер крупного заполнителя и модуль тонкости мелкого заполнителя; Затем он выводит объем грубого заполнителя, полученного сушкой в ​​печи.
  • Расчет основан на значениях из таблицы 6.3.6 / A1.5.3.6. Эта таблица основана на удобоукладываемости бетона.
Источник: Стандартная практика выбора пропорций для нормального, тяжелого и массивного бетона (ACI 211.1-91)

Шаг 6: Мелкий заполнитель

Количество мелкого заполнителя рассчитывается по-разному в зависимости от выбранного вами метода расчета (на вес или на объем).

  • Объемный метод рассчитывает количество мелкого заполнителя на основе 1 ярда3 (1 м3) бетона, тогда как весовой метод выполняет расчет на основе оценки веса бетона.
  • В зависимости от типа бетона (без воздухововлекающих материалов или с воздухововлекающими добавками) первая оценка веса бетона может быть рассчитана с использованием таблицы 6 ACI.3.7.1 / A1.5.3.7.1, который представлен в разделе «Справка» на шаге 6.

Теперь вы получили; расчетное количество мелкого заполнителя, необходимого для предлагаемой бетонной смеси, необходимое для окончательных расчетов.

Источник: Стандартная практика выбора пропорций для нормального, тяжелого и массивного бетона (ACI 211.1-91)

Шаг 7: Поправка на влажность в заполнителях

На последнем этапе расчетов регулируется количество воды в смеси в зависимости от введенного содержания влаги и степени поглощения влаги крупными и мелкими заполнителями.

  • Важно учитывать количество воды, которое заполнители придают смеси и извлекают из смеси, потому что это вызывает колебания в соотношении вода / цемент.
  • Приложение Concrete Hub вычисляет новое количество воды, крупного и мелкого заполнителей на основе входных значений.
  • Количество воды можно дополнительно уменьшить с помощью химических добавок, таких как водоредуктор.
Шаг 7.1: Химические добавки

Этот шаг дает вам возможность добавить в состав смеси водоредуктор, воздухововлекающие добавки или другие химические добавки.

  • Добавление водоредуктора позволяет поддерживать постоянное водоцементное соотношение для меньшего цементного отношения с ухудшением прочности и повышением удобоукладываемости.
  • Добавки с воздухововлекающими добавками могут быть очень полезны при попытке увеличить прочность и удобоукладываемость бетонной смеси.

Шаг 8: Краткое проектирование

Наконец, последняя часть процесса — это получение итогового отчета о ваших результатах.

  • Вам будет предложено ввести требуемый объем вашей бетонной партии.
  • После этого приложение отобразит подробную информацию о вашей бетонной смеси и количество каждого материала, необходимого для указанного объема бетона.
  • Затем вы можете отправить сводный отчет о расчете смеси своей команде по электронной почте.

Приложение «Концентратор для бетона» предоставляет бесплатный, быстрый и простой процесс создания конструкции бетонной смеси. Простое и эффективное приложение выполняет все расчеты, а затем готовит сводный отчет по вашей смеси

.

Готовы начать? Загрузите приложение Concrete Hub на:

Источники:
https: // www.Concrete.org/
* Примечание редактора: этот пост был первоначально опубликован в мае 2018 года и был обновлен для обеспечения точности и полноты.

Каковы правильные пропорции бетонной смеси?

Бетон — самый важный материал в современном строительстве, а пропорции бетонной смеси — самые важные аспекты работы с бетоном. Без бетона падают жилые дома и коммерческие небоскребы, у мостов нет анкеров, опор или опор, туннелей, тротуаров, бордюров, канализационных систем… бетон — буквально — основа развития.

В бетоне всего четыре основных ингредиента: цемент, заполнитель, песок и вода, но каждый служит определенной цели. Понимание назначения каждого ингредиента является ключом к определению того, какие пропорции бетонной смеси лучше всего подходят в данной ситуации.

Состав

Цемент

Клей, основной ингредиент цемента — оксид кальция. Оксид кальция — продукт перегретого известняка. Цемент также содержит кремний, алюминий, железо и множество других вторичных ингредиентов.Цемент — это связующее, которое скрепляет заполнитель и песок бетона после его застывания.

Несмотря на то, что цемент очень твердый, прочность затвердевшего цемента не сравнима с прочностью камня и песка. Таким образом, цемент является причиной того, что бетон имеет слабую прочность на разрыв и требует арматуры. Крутящий момент может легко сломать бетон. Это потому, что бетон зависит от прочности цемента, чтобы противостоять крутящему моменту.

Важно помнить, что больше цемента не означает большую прочность на сжатие, это означает лучшую адгезию.Эти два понятия не являются синонимами.

Агрегат

Вымытый щебень — часто ошибочно называемый гравием — заполнитель — это компонент, придающий бетону его структурную целостность при сжатии. Бетон обладает огромной прочностью на сжатие. Камни и песок поддерживают бетон, когда он сжимается.

Песок

Не только наполнитель, который устраняет воздушные карманы и промежутки между отдельными раздробленными камнями, песок также обладает очень высокой прочностью на сжатие.

Вода

Вода вызывает химические изменения в негашеной извести цемента, которые заставляют ее прилипать к камням и песку, вода также делает бетон работоспособным. Без воды невозможно смешивание, формование и отделка бетона.

Пропорции бетонной смеси

Соотношение четыре-два-один и семь частей

Самая безопасная ставка для любой бетонной смеси — четыре-два-один: четыре части щебня; две части песка; и одна часть цемента.Микс четыре-два-один, очевидно, состоит из семи частей. Удобно, что при смешивании бетона соотношение может быть смешано в любом диапазоне масштабов. Это может означать, что четыре лопаты заполнены каменной кладкой, двумя — песком и одной — цементом; четыре ведра по 5 галлонов с камнем, два с песком и одно с цементом; или четыре ковша фронтального погрузчика с каменной кладкой, двумя песком и одним цементом.

Но смесь четыре-два-один не идеальна для каждой ситуации. Для тех проектов, которые требуют даже экстремальной прочности на сжатие — например, пол в мастерской по ремонту дизельных двигателей — требуется большее количество породы: возможно, смесь пять-два-полтора.Для проектов, в которых не требуется бетон с высокой прочностью на сжатие, но с высокой степенью обрабатываемости — например, садовый фонтан — лучше всего использовать больше песка и меньше камней: возможно, смесь два-четыре-один.

Пропорции воды

Самый большой x-фактор в бетоне, вода — непредсказуемая величина. Необходимое количество воды зависит от температуры наружного воздуха, влажности, количества прямых солнечных лучей и пропорции бетонной смеси. Самое важное, что нужно помнить о воде, — это то, что чем больше пропорций бетонной смеси, тем слабее прочность на разрыв затвердевшего цемента и прочность сцепления.В идеале, наименьшее возможное количество воды является лучшим, если сильная адгезия является высоким приоритетом.

Но, опять же, иногда бывают ситуации, когда удобоукладываемость является более высоким приоритетом, чем структурная целостность, а вода является секретом удобоукладываемости.

Пропорции бетонной смеси, которые следует запомнить

1) Чем больше породы, тем выше прочность бетона на сжатие. Чем больше песка, тем выше удобоукладываемость.

2) Адгезия (цемент) и прочность на сжатие (порода) — два разных фактора качества бетона.Больше цемента не означает большей прочности на сжатие; это означает большую прочность на разрыв.

3) Чем меньше воды, тем сильнее адгезия цемента, но тем труднее работать с бетоном.

Когда пропорции бетонной смеси уменьшатся до Т, не забудьте вооружиться соответствующими инструментами для полного успеха проекта. Свяжитесь с нашей командой в BN Products, чтобы получить список конкретных инструментов или получить помощь в вашем следующем проекте.

Расчет водопотребности раствора и бетона

  • [1]

    Комитет ACI 211.- Рекомендуемая практика для выбора пропорций для бетона с нормальным весом и «Рекомендуемая практика для выбора пропорций для бетона без просадки».

  • [2]

    Portland Cement Association.— Desian и контроль бетонных смесей . Одиннадцатое издание, Портлендская цементная ассоциация, Скоки, Иллинойс, 1968 год.

    Google Scholar

  • [3]

    Голдбек, А. Т., Грей, Дж. У. — Метод дозирования бетона по прочности, удобоукладываемости и долговечности , Бюллетень №11, Национальная ассоциация щебня, Вашингтон, округ Колумбия, 1942 г. (пересмотрено в 1949, 1953 и 1965 гг.)

    Google Scholar

  • [4]

    Уокер, С., Блем Д. Л. — Расчетные пропорции для бетона Публикация NRMCA, № 69, 3-е издание, Вашингтон, округ Колумбия, июнь 1962 г.

  • [5]

    Уокер С., Блем Д. Л. — Вариации портландцемента . ASTM Proceedings, Vol. 58, 1958, стр.1009–1032.

    Google Scholar

  • [6]

    Клифтон Дж. Р., Мэти Р. Г. — Обобщение данных лабораторных исследований. Взаимосвязь между свойствами цемента и бетона , Часть 6, NBS Building Science Series 36, Section 14, Вашингтон, округ Колумбия, август 1971 г.

  • [7]

    Блейн Р. Л., Арни Х. Т., Клевенджер Р. А. — Требования к воде портландцемента.Взаимосвязь между цементом и свойствами бетона , Часть I. Национальное бюро стандартов, Building Science Series 2, Вашингтон, округ Колумбия, август, 1965, стр. 13–32.

    Google Scholar

  • [8]

    Цена W.H.— Практические качества цемента . ACI Journal, Proc., Vol. 71. Сентябрь 1974 г., стр. 436–444.

    Google Scholar

  • [9]

    Бланки Р.Ф., Кеннеди Х. Л.— Технология цемента и бетона , Вып. I, John Wiley & Sons, Inc, Нью-Йорк, Chapman Hall, Limited, Лондон, 1955.

    Google Scholar

  • [10]

    Lyse I.— Испытания на консистенцию и прочность бетона с постоянной влажностью . ASTM Proceedings, Vol. 32, Часть II, 1932, стр. 629–636.

    Google Scholar

  • [11]

    U.С. Бюро мелиорации, Руководство по бетону , Восьмое издание, Типография правительства США, Вашингтон, округ Колумбия, 1975.

    Google Scholar

  • [12]

    Попович С.— Материалы для бетонных работ . McGraw-Hill Book Company, Нью-Йорк, и т. Д. И Hemisphere Publishing Corporation, Вашингтон, округ Колумбия, и т. Д., 1979.

    Google Scholar

  • [13]

    Геде К.- Der Wasserbedarf des Betons und der Abrams ‘sche Feinheitsmodu (Требования к воде для бетона и модуль дисперсности Abrams). Die Bautechnik, Beton-und Stahlbetonbau: Der Stahlbau, Vol. 25, № 9, сентябрь 1948 г., стр. 198–201.

    Google Scholar

  • [14]

    Блем Д. Л., Гейнор Р. Д. — Влияние свойств заполнителя на прочность бетона . ACI Journal, Proc. Vol. 60, No. 10, октябрь 1963 г., стр.1429–1455.

    Google Scholar

  • [15]

    Озол М. А. — Форма, текстура поверхности, площадь поверхности и покрытия, Значение испытаний и свойства бетона и материалов для изготовления бетона ASTM STP 169 B, Глава 35, Филадельфия. 1978, стр. 584–629.

  • [16]

    Абрамс Д. А. — Конструирование бетонных смесей . Бюллетень 1, Лаборатория исследования конструкционных материалов, Чикаго, декабрь 1918 г.

    Google Scholar

  • [17]

    Талбот А. Н., Ричарт Ф. Э. — Прочность бетона. Отношение к цементу, заполнителям и воде . Бюллетень № 137, Университет Иллинойса, Техническая экспериментальная станция, октябрь 1923 г.

  • [18]

    Янг Р. Б.— Некоторые теоретические исследования по дозированию бетона методом площади поверхности заполнителей . Труды ASTM, Vol.19, Часть II, 1919, стр. 444–457.

    Google Scholar

  • [19]

    Попович С.— Проблемы расчета бетонных смесей , Acta Technica Academiae Scientiarum Hungaricea, T. XI. Fasc 1–2, Будапешт, 1955, стр. 65–98.

    Google Scholar

  • [20]

    Попович С.— Связь между изменением содержания воды и консистенцией свежего бетона .Журнал конкретных исследований, Vol. 14, No. 41, Лондон, июль 1962 г., стр. 99–108.

    Google Scholar

  • [21]

    Попович С.— Анализ влияния содержания воды на консистенцию , Отчет об исследованиях автомобильных дорог, № 218, Совет по исследованиям автомобильных дорог, Вашингтон, округ Колумбия, 1968, стр. 23–33.

    Google Scholar

  • [22]

    Попович С.- Uber den Einfluss des Wassergehalts auf die Konsistenz (Влияние содержания воды на консистенцию). Betonstein-Zeitung, Vol. 32, № 12, Висбаден, декабрь 1966 г., стр. 684–692.

    Google Scholar

  • [23]

    Солвей О. Р. — Neue rationelle, Betonerzeugung (Новое рациональное производство бетона), Wier, Springer-Verlag, 1949.

    Google Scholar

  • [24]

    Пауэрс Т.С.— Свойства свежего бетона . John Wiley and Sons, Inc., Нью-Йорк-Лондон-Сидней-Торонто, 1968.

    Google Scholar

  • [25]

    Гриб В., Вернер Г., Вульф Д. О. — Испытания замедляющих добавок для бетона . Бюллетень Совета по исследованиям шоссе, 310, Вашингтон, округ Колумбия, 1962, стр. 1–32.

    Google Scholar

  • [26]

    Клигер П.- Влияние увлеченного воздуха на прочность и долговечность бетона с разным размером заполнителей . Бюллетень Совета по исследованиям шоссе, 128, Вашингтон, округ Колумбия, 1956, стр. 1–19.

    Google Scholar

  • [27]

    NRMCA.— Контроль качества товарного бетона . Пятое издание, публикация, № 44, Вашингтон, округ Колумбия, 1962 г.

  • [28]

    Клигер П.— Влияние температуры смешения и выдержки на прочность бетона .ACI Journal, Proc. Vol. 54, июнь 1958 г., стр. 1063–1081.

    Google Scholar

  • [29]

    Шнайдер Х. В., Вульф Д. О. — Дополнительное исследование двухбарабанных асфальтоукладчиков 34-E . Бюллетень Совета по исследованиям шоссе, 340, Вашингтон, округ Колумбия, сентябрь 1962 г., стр. 30–39.

    Google Scholar

  • [30]

    Wischers G.— Einfluss langen Mischens oder Lagerns auf die Betoneigenschaften (Влияние длительного перемешивания или хранения на свойства бетона) Betontechnische Berichte, 1963, Beton-Verlag GmbH, Дюссельдорф, 1964, стр.21–52.

    Google Scholar

  • [31]

    Ферет Р.— Sur la compacite des mortiers hydrauliques (О плотности цементных растворов). Annales des Ponts et Chaussées, Париж, 1892, стр. 1–184.

  • [32]

    Riessauw F. G.— Les granulométries прекращает выпуск (Gap Gradings). Annales des Travaux Publics de Belgique, Брюссель, февраль 1954 г.

  • [33]

    Слива Н.М.— Определение водопотребности и оптимальная классификация бетона . Исследования в области строительства, № 3, Датский национальный институт строительных исследований, Копенгаген, 1950.

    Google Scholar

  • [34]

    Popovics S.— Szamszeruen jellemzett konzisztencia eleresehez szukseges betonosszetetel szamitasarol (Расчет состава бетона для заданной консистенции). Диссертация на соискание ученой степени в области инженерии, Будапешт, 1956, 54 стр.

  • [35]

    Попович С.— Последовательность и ее предсказание . Бюллетень РИЛЕМ, № 31, Париж, июнь 1966 г., стр. 235–252.

    Google Scholar

  • [36]

    Палотас Л. — Minosegi Beton (качественный бетон). Kozlekedesi Kiado, Будапешт, 1952 г.

    Google Scholar

  • [37]

    Джойзел А.- Composition des bétons hydrauliques (Состав бетона). Annales de l’Institut Technique du Bâtiment et des Travaux Publics, Париж, октябрь 1952 г., стр. 991–1065.

  • [38]

    Уокер С., Бартель Ф. — Обсуждение статьи М. А. Суэйзи и Э. Грюнвальда: Расчет бетонной смеси. А. модификация метода определения модуля дисперсности . ACI Journal, Proc. Vol. 43, часть 2, декабрь 1947 г., стр. 844-1–844-10.

    Google Scholar

  • [39]

    Сингх Б.G.— Удельная поверхность заполнителей, наносимых на дозирование смеси . ACI Journal, Proc .. Vol. 55, февраль 1959 г., стр. 893–901.

    Google Scholar

  • [40]

    Мердок Л. Дж. — Технологичность бетона , Журнал исследований бетона, Vol. 12, No. 36, Лондон, ноябрь 1960 г., стр. 135–144.

    Google Scholar

  • [41]

    Клюге Ф.- Vorausbestimmung der Wassermenge bei Betonmischungen für bestimmte Betonguten und Frischbeton-konsistenzen (Прогнозирование состава воды для смешивания бетона определенной прочности и консистенции), Der Bauingenieur, Vol 24, No. 6, January, 1949, pp. 172–175.

    Google Scholar

  • [42]

    Leviant I. — Cadre systématique pour l’étude des bétons frais (Система изучения свежего бетона), Revue des Matériaux de Construction, No.522, Париж, март 1959 г.

  • [43]

    Suenson E.— Betondruckfestigkeit als Funktion des Mischungsverhaltnisses (Прочность бетона на сжатие как функция пропорции смеси). Beton und Eisen, 1925.

  • [44]

    Зецман Ч. Ф. — Цементный фактор, связанный с формой и классом качества заполнителей . ACI Journal, Proc. Vol. 55, июль 1959 г.

  • [45]

    Боломей Дж. — Модуль тонкости, д’Абрамс и расчет воды для бетонов (Модуль дисперсности Абрамса и расчет воды для смешивания бетона).Festschrift 1880–1930 der Eidgenossischen Materialprufungsanstalt, Цюрих, 1930, стр. 3–14.

  • [46]

    Дютрон Р.— Комментарий композитора les bétons. Granulométrie продолжить или прекратить. Bétons à haute résistance . (Как правильно дозировать бетон. Сплошные и щелевые профили. Высокопрочные бетоны). Методика бюллетеней GPF, № 46, Брюссель, 195.

  • [47]

    Попович С.— A betonadalek szemszerkezetenek szamszeru jellemzeserol (О числовых характеристиках градации агрегатов).Muszaki Tud. Osztaly Kozlemenyei, Magyar Tudomanyos Academia, Vol. VIII, No. 1-3, Budapest, 1952, pp. 45–75.

    Google Scholar

  • [48]

    Попович С.— Формулы для модуля крупности и удельной поверхности . Бюллетень РИЛЕМ, № 16, Париж, сентябрь 1962 г., стр. 19–28.

    Google Scholar

  • цемент | Определение, состав, производство, история и факты

    Цемент , в общем, клейкие вещества всех видов, но в более узком смысле связующие материалы, используемые в строительстве и гражданском строительстве.Цементы этого типа представляют собой мелкоизмельченные порошки, которые при смешивании с водой затвердевают до твердой массы. Отверждение и затвердевание являются результатом гидратации, которая представляет собой химическую комбинацию цементных смесей с водой, которая дает субмикроскопические кристаллы или гелеобразный материал с большой площадью поверхности. Из-за их гидратирующих свойств строительные цементы, которые схватываются и затвердевают даже под водой, часто называют гидравлическими цементами. Самый важный из них — портландцемент.

    процесс производства цемента

    Процесс производства цемента, от дробления и измельчения сырья до обжига измельченных и смешанных ингредиентов, до окончательного охлаждения и хранения готового продукта.

    Encyclopædia Britannica, Inc.

    В этой статье рассматривается историческое развитие цемента, его производство из сырья, его состав и свойства, а также проверка этих свойств. Основное внимание уделяется портландцементу, но также уделяется внимание другим типам, таким как шлакосодержащий цемент и высокоглиноземистый цемент. Строительный цемент имеет общие химические составляющие и технологии обработки с керамическими изделиями, такими как кирпич и плитка, абразивные материалы и огнеупоры.Подробное описание одного из основных применений цемента см. В статье «Строительство зданий».

    Применение цемента

    Цемент может использоваться отдельно (то есть «в чистом виде» в качестве материала для затирки), но обычно используется в растворе и бетоне, в которых цемент смешан с инертным материалом, известным как заполнитель. Строительный раствор представляет собой цемент, смешанный с песком или щебнем, размер которого должен быть менее примерно 5 мм (0,2 дюйма). Бетон представляет собой смесь цемента, песка или другого мелкого заполнителя и крупного заполнителя, который для большинства целей составляет от 19 до 25 мм (0.От 75 до 1 дюйма), но крупный заполнитель также может достигать 150 мм (6 дюймов), когда бетон помещается в большие массы, такие как дамбы. Растворы используются для связывания кирпичей, блоков и камня в стенах или для визуализации поверхностей. Бетон используется для самых разных строительных целей. Смеси грунта и портландцемента используются в качестве основы для дорог. Портландцемент также используется при производстве кирпича, черепицы, черепицы, труб, балок, шпал и различных экструдированных изделий.Продукция собирается на заводах и поставляется готовой к установке.

    бетон

    Заливка бетона в фундамент дома.

    Karlien du Plessis / Shutterstock.com

    Производство цемента чрезвычайно широко распространено, поскольку бетон сегодня является наиболее широко используемым строительным материалом в мире.

    Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

    Определение водоцементного отношения затвердевшего бетона | Исследовательские группы

    Массовое соотношение воды и цемента (в / ц) важно, поскольку оно контролирует механические свойства и долговечность затвердевшего бетона.Когда возникают проблемы и / или подозревается несоответствие спецификации, часто бывает желательно иметь возможность определить соотношение в / ц. Существует два существующих метода оценки соотношения в / ц: физико-химический метод, описанный в BS1881: 124: 1988, и метод флуоресцентной микроскопии, описанный в Nordisk NT361-1999.

    Известно, что физико-химический метод имеет низкую точность, оцениваемую в пределах 0,1 (соотношение в / ц) или больше1, 2, и поэтому имеет небольшую практическую ценность. Флуоресцентный метод основан на использовании эталонов для сравнения и калибровки, которые должны быть сделаны с тем же типом цемента и заполнителя, содержанием воздуха и степенью гидратации, в дополнение к соотношению вода / цемент, что и исследуемый бетон1, 2.Целью данного исследования является разработка нового метода на основе микроскопии для оценки исходного соотношения вода / цезия, который преодолевает недостатки существующих методов.

    Метод Рис. 1: Схематическое изображение объемных пропорций основных фаз в бетоне.

    Учитывая, что объемные доли агрегатов и воздушных пустот неизменны во времени, а общая усадка мала и пренебрежимо мала, мы можем записать следующее уравнение из рис.1:

    V C + V W = V AH + V HP + V CP

    V AH , V HP и V CP можно измерить с помощью электронной микроскопии с обратным рассеянием (рис. 2), а затем результаты используются для расчета содержания цемента и воды, водного соотношения и степени гидратации:

    Где ρ C — удельный вес цемента, а δ V — увеличение объема твердых частиц во время гидратации, которое приблизительно равно двум.Значение dV также можно рассчитать по цементному составу 3 .

    Рис. 2. Изображение BSE и сегментированное изображение для измерения объемной доли непрореагировавшего цемента, капиллярных пор и продуктов гидратации.

    Результаты

    Мы опробовали метод на широком спектре бетонов, строительных растворов и паст 4, 5, 6 . Переменные смеси включают соотношение в / ц (0,25-0,70), содержание цемента (300-1750 кг / м 3 ), содержание заполнителя (40-70% об.) и срок лечения (3-90 дней).

    На рис. 3а показано изменение расчетного отношения в / ц для каждого изображения для смесей с соотношением в / ц 0,4. Видно, что разброс местного соотношения вода / цемент выше у бетонов по сравнению с пастами. Это связано с эффектом просачивания и наличием заполнителей, которые увеличивают неоднородность микроструктуры бетона. Однако результаты имеют тенденцию сходиться, когда репрезентативное количество изображений анализируется и усредняется (рис. 3b).

    Рис. 3: a) Гистограмма частот, показывающая изменение в локальном соотношении воды и воды, и b) совокупный средний результат.

    На рис. 4 оценочные значения сравниваются с фактическими значениями для всех образцов. Планки погрешностей указывают 95% доверительный интервал. Результаты показывают хорошее соответствие измеренных и фактических значений. Ошибки в процентной оценке содержания цемента, содержания воды, водоцементного отношения и степени гидратации варьировались от -3,2 до 10,2%, от -2,3 до 5,8%, от -8,6 до 8,4% и от -11,3 до + 7,2% соответственно. На погрешности не влияет ни пропорция смеси, ни срок выдержки.

    Рис. 4: Сравнение расчетных и фактических значений.

    Выводы

    Представлен новый метод определения содержания цемента, содержания воды, водоцементного отношения и степени гидратации затвердевшего портландцементного бетона с неизвестной пропорцией смеси. Метод основан на измерении объемной доли непрореагировавшего цемента, продуктов гидратации и капиллярных пор в бетоне с помощью электронной микроскопии с обратным рассеянием.

    Преимущество метода состоит в том, что он объективен, воспроизводим и не требует сравнения с эталонными стандартами или калибровочными кривыми.Метод был протестирован на пастах, строительных растворах и бетонах, имеющих широкий диапазон пропорций смеси и возраста, с обнадеживающими результатами. Ошибка в оценке отношения свободной воды к цементу оказалась менее 0,025 для паст и менее 0,05 для строительных растворов и бетонов.

    Артикул:

    1. A.M. Невилл (2003), Насколько точно мы можем определить водоцементное соотношение затвердевшего бетона, Матем. Struct., 36, 311-318.
    2. Д.А. Сент-Джон, A.W. Пул, И. Симс (1998), Конкретная петрография, John Wiley & Sons, 474pp.
    3. T.C. Пауэрс, Т. Brownyard (1946-47), Исследования физических свойств затвердевшего портландцементного теста, J. ​​Am. Concr. Ин-т, 43 (9 частей), 101-132, 249-336, 469-504, 549-602, 669-712, 845-880, 933-992.
    4. H.S. Вонг, Н. Buenfeld (2009), Определение водоцементного отношения, содержания цемента, содержания воды и степени гидратации затвердевшего цементного теста: разработка и проверка метода на образцах пасты, Cem. Concr. Res., 39, 957-965.
    5. H.S. Вонг, К. Материя, Н.Р. Буэнфельд (2009), Оценка соотношения вода / цемент (в / ц) затвердевшего раствора и бетона с помощью электронной микроскопии с обратным рассеянием, 12-й Евросеминар по микроскопии, применяемой к строительным материалам, Дортмунд, 96-97.
    6. H.S. Вонг, К. Мэттер, Н. Buenfeld (2013), Оценка исходного содержания цемента и водоцементного отношения (w / c) портландцементного бетона и раствора с использованием электронной микроскопии с обратным рассеянием, Mag. Concr. Res., 65 (11) 693-706.
    7. M.H.N. Ио, Дж.К. Фелан, Х.С. Вонг, Н.Р. Буэнфельд (2014), Определение доли шлака, соотношения вода / вяжущее и степени гидратации в затвердевших цементных пастах, Cem. Concr. Res., 56, 171-181
    8. H.S. Вонг, Н. Buenfeld (2007), Оценка соотношения вода / цемент (w / c) по фазовому составу затвердевшего цементного теста, 11-й Евросеминар по микроскопии, применяемой к строительным материалам, 5-9 июня, Universidade do Porto, Portugal, 113-114

    Экспериментальное исследование и количественный расчет степени гидратации и продуктов в смесях летучей золы и цемента

    Для изучения процесса гидратации смесей зольной пыли и цемента, степени реакции летучей золы и цемента, а также содержания Неиспаренная вода определялась при различных соотношениях воды и связующего, возрасте отверждения и количествах включенной летучей золы.Уравнение, описывающее взаимосвязь между степенью гидратации и эффективным отношением воды к связующему, было установлено на основе экспериментальных результатов. Кроме того, предлагается упрощенная схема, описывающая модель степени реакции в зольно-цементных смесях. Наконец, с использованием стехиометрии реакций предложены количественные уравнения для продуктов гидратации паст с добавлением золы-уноса и цемента с учетом реакций гидратации золы-уноса и цемента, а также их взаимодействия.Прогнозируемые результаты повышенной степени гидратации цемента, содержания гидроксида кальция (CH) и пористости согласуются с экспериментальными данными.

    1. Введение

    Вместе с масштабами промышленного производства возрастают требования к содержанию бетона, используемого в строительстве; В то же время из-за нехватки энергоресурсов и минеральных ресурсов спрос на высококачественный цемент значительно вырос. Одним из важных способов удовлетворения этого спроса является производство высококачественного цемента, регулируемых дополнительных вяжущих материалов и клинкерных композитов с высоким содержанием цемента [1–3].В последнее время дополнительные вяжущие материалы широко используются в бетоне либо в смешанных цементах, либо добавляются отдельно в материалы на основе цемента [4]. Эти дополнительные вяжущие материалы, которые представляют собой порошкообразные побочные продукты производства, такие как летучая зола от сжигания угля; микрокремнезем при производстве ферросилициевых сплавов; и доменный шлак, побочный продукт производства чугуна, обладают скрытой гидравлической активностью или вулканическими свойствами. Летучая зола известна как пуццолана, которая обладает незначительной вяжущей ценностью или не имеет вообще никакого [5], и она ускоряет скорость гидратации цемента за счет эффекта поверхностного поглощения [6] и эффекта гетерогенного зародышеобразования [7].Таким образом, летучая зола может значительно улучшить отвержденные механические свойства [8] и долговечность [9, 10] материалов на основе цемента. Кроме того, благодаря своей сферической геометрии частицы летучей золы могут улучшить удобоукладываемость свежих паст [11]. Соответственно, зола-унос, смешанная с композитными материалами на основе цемента, значительно улучшает характеристики бетона и усложняет микроструктуру композитного материала.

    Чтобы точно исследовать объемную долю каждой фазы в смесях цемент-летучая зола, сначала необходимо определить степень гидратации цемента и летучей золы.Экспериментальные методы измерения степени гидратации чистого цемента в основном включают метод теплоты гидратации [12–14], метод измерения CH [15, 16], метод неиспаренной воды [5, 17], метод микроскопии обратного рассеяния электронов [ 18, 19] и метод количественного анализа XRD [20–22]. Для композитной цементирующей системы летучая зола-цемент из-за одновременного присутствия реакции гидратации цемента и реакции летучей золы количество неиспарившейся воды и продуктов гидратации воды CH не может использоваться для определения степени гидратации отдельных компонентов.Чтобы точно изучить степень гидратации цемента и степень реакции летучей золы в смесях летучей золы и цемента, Супренант и Пападопулос [23] протестировали степень реакции смесей летучей золы и цемента с использованием избирательного растворения соляной кислотой. Лам и др. [5] изучали процесс гидратации композитов зольной пыли и цемента и измеряли степень гидратации цемента и степень реакции летучей золы в композитных материалах, определяя химически объединенную воду и используя селективное растворение соляной кислотой.Bentz et al. [24] изучали реакцию летучей золы в двух различных смешанных системах цемент-летучая зола, используя метод избирательного растворения на основе этилендиаминтетрауксусной кислоты (ЭДТА) в сочетании с NaOH, разбавленным раствором NaOH и содержанием портландита. Для моделей гидратации цемента с добавлением золы-уноса были использованы модель кинетической гидратации [25] и синтетическая модель [26] для моделирования гидратации смесей цемент-летучая зола на основе многокомпонентной концепции, соответственно.

    Однако микроструктура цементно-уносовой смеси сложна и количественно не охарактеризована.Негидратированные частицы, основной продукт гидратации и гидрат силиката кальция (C-S-H) являются сложными и меняются со временем, температурой, соотношением воды и цемента и включением летучей золы. В данной статье предлагается модель гидратации паст с добавлением летучей золы и цемента, основанная на степени реакции и продуктах гидратации. Эта модель связана не только с реакциями гидратации летучей золы и цемента, но также зависит от их взаимодействия.

    2. Экспериментальные процедуры
    2.1. Материалы

    Массовое соотношение портландцементного клинкера и гипса было установлено 95: 5. Эти компоненты были смешаны и размолоты до удельной поверхности 310 м 2 / кг. Летучая зола, аналогичная летучей золе ASTM класса F, поставлялась Нанкинской тепловой электростанцией. Цемент и летучая зола сушили при 105 ° C, а затем просеивали для удаления крупных частиц размером более 0,08 мм. Их химический состав показан в Таблице 1.

    9099 0,12 9099 0,12

    Материал SiO 2 TiO 2 Al 2 O 3 O 3 MnO MgO CaO Na 2 O K 2 O SO 3 L.OI

    Цемент 21,68 0,28 5,64 4,22 0,12 0,81 0,81 99,14
    Зола уноса 47,86 1,25 32,5 4,52 0,06 1,05 4,09 0,55 1.62 0,00 6,34 100,04

    2.2. Методы
    2.2.1. Приготовление образца

    Пропорции смешанных материалов приведены в таблице 2. Свежую цементную пасту помещали в герметичные мешки и выдерживали до заданного возраста в стандартной камере для отверждения (20 ° C и влажность 95%). Чтобы предотвратить просачивание и расслоение паст, запечатанные пакеты переворачивали каждые 15 минут перед начальным схватыванием смесей зольной пыли и цемента.

    907 0,50

    Номер образца Цемент Летучая зола W / B

    PC 100
    FA 10 90 10 0,5
    FA 30 70 30 0,5
    FA 40 60 40.5
    FA 50 50 50 0,3, 0,35, 0,4, 0,45, 0,5

    Примечание: W / B — соотношение воды и связующего.
    2.2.2. Определение количества неиспаренной воды

    Затвердевшие пасты измельчали ​​и смешивали с этанолом, а затем после сушки взвешивали приблизительно 1 г образца (с точностью до 0,1 мг). Начальное содержание влаги в образцах было записано как, а затем образцы нагревали до 900 ° C со скоростью 10 ° C / мин в высокотемпературной печи и выдерживали при этой температуре в течение 30 минут.Затем пасты вынимали, охлаждали в сушилке и взвешивали на электронных весах. Наконец, массы образцов были записаны как. Каждую группу образцов анализировали 3 раза в параллельных тестах, и определяли среднее значение. Значения количества неиспаренной воды затвердевших паст рассчитывали по следующему уравнению: где — количество неиспаренной воды, л, — потери при возгорании, и. потери при возгорании сырья.

    2.2.3. Измерение степени реакции

    ( ) Степень реакции цемента .Основываясь на составе цемента Bogue, рассчитанном с использованием содержания оксидов, и заявленного содержания химически связанной воды в соединениях [27], степень гидратации цемента в чистом цементном тесте может быть рассчитана с использованием следующего уравнения: где — степень гидратации цемента,%.

    ( ) Степень реакции летучей золы . Образцы затвердевшей пасты измельчали ​​и вымачивали на 25 мин в изопропиловом спирте. Образцы были размолоты так, чтобы все они прошли через 0.Сито 08 мм, снабженное этанолом и вакуумным фильтром. После фильтрации образцы порошка сушили в течение 24 ч при температуре от 80 до 200 кПа и температуре 105 ° C в вакуумной печи из натронной извести. Определение степени реакции летучей золы было основано на методике избирательного растворения с использованием раствора пикриновая кислота-метанол и воды [28].

    3. Уравнения для количественных расчетов
    3.1. Модель степени реакции смесей зольной пыли и цемента

    Пауэрс [29] считает, что неиспаренная вода чистого цементного теста является важным показателем степени реакции цемента.Коэффициент гидратации неиспаренной воды при разном возрасте () и значение полной гидратации цемента () характеризовали степень реакции цемента и количество продуктов гидратации. Неиспаренная вода поступает в основном из гелей CH и C-S-H продуктов гидратации. Добавление летучей золы к цементным пастам приводит к изменению содержания в пасте не испаряющейся воды. Гидратация цемента приводит к образованию геля C-S-H и CH, в то время как реакция летучей золы также может образовывать гель C-S-H, потребляя CH, который образуется в результате реакции с цементом.Следовательно, количество неиспаренной воды не является подходящей мерой для определения степени реакции цемента и летучей золы.

    Общее количество неиспарившейся воды () для цементно-уносовой цементной системы может быть выражено как где — неиспариваемое количество воды для гидратации цемента, а — неиспариваемое количество воды для реакции летучей золы. представляет собой массовую долю цемента, а — массовую долю летучей золы. Поскольку летучая зола улучшает эффективное водоцементное соотношение и приводит к увеличению степени гидратации цемента, неиспарившаяся вода продуктов гидратации, образованная цементом, представляет собой неиспаренное количество воды для чистого цемента при тех же условиях гидратации, и представляет собой неиспариваемое количество воды в результате усиления гидратации цемента из-за присутствия летучей золы.Уравнение (3) тогда принимает вид

    Степень гидратации материалов с добавлением золы-уноса и цемента может быть выражена следующим уравнением: где — общая степень гидратации паст цементно-уносной золы, — степень реакции чистого цемента. , — степень реакции летучей золы; — увеличение степени гидратации цемента из-за присутствия летучей золы. рассчитывается с использованием неиспаренной воды и модели Пауэрса и может быть непосредственно определен путем избирательного растворения в соляной кислоте.Полученная не испаренная вода полностью гидратированной летучей золы составляет 0,168 по стехиометрическому анализу реакций летучей золы [26]. Присутствие летучей золы приводит к увеличению степени гидратации цемента (), которую можно рассчитать по общему количеству неиспарившейся воды, неиспаренной воды чистого цемента и неиспаренной воды летучей золы. получается из

    3.2. Модель расчета объемной доли каждой фазы для смесей летучей золы и цемента

    Пападакис [30] считает, что стеклянная фаза летучей золы в основном состоит из фаз активного диоксида кремния и оксида алюминия, которые участвуют в реакциях гидратации и генерируют, и.Предполагается, что 1 м 3 пасты включает C кг цемента, W кг воды и FA кг летучей золы, соответственно. и представляют собой массовую долю оксида (= C (CaO), S (SiO 2 ), A (Al 2 O 3 ), F (Fe 2 O 3 ), (SO 3 )) цемента и летучей золы соответственно. — массовая доля активного оксида (= S, A) летучей золы; — содержание непрореагировавшего цемента и летучей золы; — содержание связанной воды. Модель была предложена в соответствии со стехиометрическими реакциями для паст на основе зольной пыли и цемента [30].

    Когда содержание гипса превышает количество, необходимое для полной гидратации цемента и активированного глинозема летучей золы, или.

    Цементная реакция происходит следующим образом:

    Реакция летучей золы происходит следующим образом:

    Количество каждой фазы составляет

    Когда результат (17) положительный, пуццолановые реакции летучей золы протекают полностью; в противном случае будет недостаточно CH для реакции с A и S летучей золы. Когда CH = 0, может быть получено максимальное содержание летучей золы.

    Объемы каждой фазы равны

    () Когда количество гипса в цементе достаточно для гидратации цемента, но недостаточно для реакции со всем активированным оксидом алюминия летучей золы:

    или

    Реакция цемента происходит следующим образом: следующим образом:

    Реакция летучей золы происходит следующим образом:

    Количество каждой фазы составляет

    Объем каждой фазы составляет

    4. Результаты и обсуждение
    4.1. Результаты экспериментов со смесями летучей золы и цемента
    4.1.1. Степень реакции летучей золы

    Как видно на Рисунке 1, степень реакции летучей золы увеличивается с увеличением срока отверждения для различных соотношений водного связующего и количества летучей золы. На ранней стадии (1 ~ 7 дней) летучая зола (от 3% до 25%, массовая доля) имела более высокий уровень участия в пуццолановой реакции. Тестирование удельной поверхности и гранулометрического состава летучей золы показало, что частицы летучей золы были небольшими, а их площадь поверхности составляла до 665 м 2 / кг.Внешняя поверхность большого количества мелких частиц гидратированной золы-уноса подвергалась воздействию CH на ранней стадии, и пуццолановая реакционная способность золы-уноса проявлялась быстро. Одно исследование [31] исследовало цементно-зольную пасту с помощью SEM и обнаружило, что поверхность многих мелких частиц летучей золы, по-видимому, протравилась в возрасте 7 дней и что продукты гидратации образовались на поверхности частиц летучей золы. Настоящее исследование показало, что на этой стадии началась пуццолановая реакция с частицами летучей золы.При обследовании в более позднем возрасте степень пуццолановой реакции с летучей золой также увеличилась, но постепенно замедлилась.


    (a) Различное соотношение W / B
    (b) Различное количество включенной летучей золы
    (a) Различное соотношение W / B
    (b) Различное количество включенной летучей золы

    Эффект включения летучей золы от степени реакции летучей золы при том же соотношении воды и связующего (0,5) показано на рисунке 2.Степень реакции летучей золы снижалась с увеличением количества летучей золы. Когда содержание летучей золы увеличилось с 10% до 30%, 40% и 50% (массовая доля), степень реакции летучей золы через 28 дней снизилась с 37,1% до 29,0%, 25,4% и 20,6% соответственно. . По мере увеличения включения летучей золы доля цемента уменьшалась, и, таким образом, потребление CH увеличивалось, а его производство уменьшалось в смесях летучей золы и цемента. Количество CH в поровом растворе уменьшилось, и степень реакции летучей золы снизилась.10% -ное содержание летучей золы показало самую высокую степень реакции с 45,15% за 180 дней, тогда как степень реакции 50% -ного содержания составила всего 33,11%, что указывает на то, что почти 67% летучей золы не вступили в реакцию. Следовательно, эффект заполнения и эффект микроагрегирования являются основными эффектами, когда количество летучей золы увеличивается, а пуццолановая реакция является относительно слабой.


    Влияние соотношения W / B на степень реакции летучей золы при том же включении летучей золы (50%) показано на Рисунке 3.Когда соотношение W / B увеличивается с 0,3 до 0,5, степень реакции летучей золы демонстрирует линейную тенденцию к увеличению с увеличением отношения воды в качестве связующего. Средняя степень реакции летучей золы увеличивалась примерно на 11,0% с каждым увеличением отношения воды в качестве связующего на 0,05.


    4.1.2. Степень реакции цемента

    Содержание неиспариваемой воды в чистых цементных пастах изменялось с возрастом выдержки, как показано на Рисунке 4. Возраст выдержки оказывал большее влияние на содержание неиспаренной воды, особенно на ранних стадиях (до 28 дней).От приготовления до времени отверждения 7 дней содержание неиспариваемой воды быстро увеличивалось. После 7 дней гидратации содержание неиспариваемой воды медленно увеличивалось. Через 28 дней содержание неиспариваемой воды оставалось постоянным для образцов цементного теста с отношениями W / B 0,3 и 0,4, в то время как содержание неиспариваемой воды в пасте с отношением W / B 0,5 продолжало увеличиваться.


    На основании экспериментальных результатов для содержания неиспариваемой воды в чистых цементных пастах, степень реакции цемента () может быть рассчитана с использованием (2).В этом исследовании степень реакции цементного теста при различных соотношениях W / B и разном возрасте отверждения показана на Рисунке 5. В настоящее время не существует подходящего экспериментального метода для измерения степени цементной реакции для цементных паст с зольной пылью. время, главным образом потому, что цементно-зольная паста содержит не только C 2 S 2 H, Ca (OH) 2 , C 3 AH 6 и AFt от гидратации цемента, но также включает C 2 S 2 H, C 3 AH 6 и AFt из пуццолановых реакций летучей золы и Ca (OH) 2 .Нет существенных отличий в составе и структуре C 2 S 2 H, C 3 AH 6 и AFt, которые образуются в реакциях летучей золы, от образовавшихся при гидратации цемента. Экспериментально разделить их сложно. Следовательно, традиционные методы определения степени гидратации чистого цементного теста не дали результатов, измеряя содержание неиспариваемой воды и Ca (OH) 2 в смешанных пастах. Тем не менее, количественная оценка степени цементной реакции является предпосылкой для понимания процессов гидратации цементно-зольных паст.Как показано на рисунке 2, степень гидратации цемента чистого цементного теста зависит от водоцементного отношения. Уравнение, описывающее взаимосвязь между степенью гидратации и водоцементным соотношением, выражается следующим образом [5]: где и — возрастные функции, а — водоцементное отношение.


    Для расчета степени гидратации цемента системы зольная пыль-цемент соотношение вода / цемент () заменяется эффективным соотношением воды вяжущего в (40). Кроме того, будут происходить пуццолановые реакции летучей золы и образовывать новый продукт, поэтому эффективное соотношение воды вяжущего заменяется на:

    Степень гидратации цемента в системе летучая зола-цемент может быть рассчитана при различных условиях в соответствии с (41 ), как показано на рисунке 6.Путем сравнения времени отверждения на Рисунке 6 было обнаружено, что степень гидратации цемента была выше, чем у чистого цементного теста при тех же условиях, когда летучая зола добавлялась в цементное тесто. Когда содержание летучей золы увеличивалось, степень гидратации цемента увеличивалась. Это происходит главным образом потому, что введение летучей золы увеличивает эффективное водоцементное соотношение цемента, улучшая гидратационную среду и, таким образом, повышая степень гидратации. Летучая зола способствует потреблению продукта гидратации цемента (Ca (OH) 2 ), и поэтому она полезна для реакции гидратации цемента.


    (a) Различное соотношение W / B
    (b) Различное количество летучей золы
    (a) Различное соотношение W / B
    (b) Различное количество летучей золы
    4.1.3. Содержание не испаряющейся воды

    Результаты измерений не испаряющейся воды в пастах с добавлением золы-уноса и цемента при различных условиях показаны на рис. 7. На рис. 7 можно увидеть, что содержание неиспарившейся воды в пастах из золы-уноса с цементом с 10% 30% и 40% летучей золы выше, чем у чистого цементного теста в дополнение к 50% -ному содержанию.Через 7 дней различия не были значительными. Это может быть связано с тем, что зародышеобразование и кристаллизация Ca (OH) 2 были вызваны мелкими частицами летучей золы, что способствовало гидратации цемента. В пределах определенного диапазона включения стимулирующие эффекты летучей золы превышали негативные эффекты из-за медленного развития активности летучей золы и небольшого количества гидратов. Содержание неиспариваемой воды в цементных пастах-уносах будет выше, чем у чистых цементных паст.Судя по тенденции использования не испаряющейся воды, смешанные пасты с включением летучей золы 10 ~ 30% показали самый высокий уровень не испаряющейся воды. Zhang et al. [32] также обнаружили, что летучая зола может улучшить скорость ранней гидратации цемента.


    (a) Различные соотношения W / B
    (b) Различные степени включения летучей золы
    (a) Различные соотношения W / B
    (b) Различные степени включения летучей золы

    Пауэрс [29] предположил, что неиспариваемая вода в чистом цементном тесте является одним из показателей степени гидратации цемента.Неиспаряющаяся вода затвердевших паст поступает в основном из продуктов гидратации, Ca (OH) 2 и геля C-S-H. В пастах с добавлением золы-уноса и цемента как гидратация цемента, так и реакция золы-уноса производят C-S-H, а летучая зола также может потреблять Ca (OH) 2 , который образуется при гидратации цемента. Следовательно, нецелесообразно напрямую использовать не испаряющуюся воду для измерения степени реакции смешанных паст.

    4.2. Проверка модели паст на основе смеси зольной пыли и цемента
    4.2.1. Уравнения для повышенных значений степени гидратации цемента

    По результатам экспериментов для общего количества неиспариваемой воды, степень реакции летучей золы и степень увеличения гидратации цемента были рассчитаны в композитных системах летучая зола-цемент при различные условия (7) и (8), как показано на рисунках 8 и 9.



    Рисунок 8 показывает изменение степени гидратации цемента в смешанной системе с добавлением летучей золы 50% в качестве Соотношение W / B изменено с 0.От 3 до 0,5. Степень реакции на каждом этапе отверждения линейно увеличивалась с увеличением отношения W / B. На рисунке 9 показана степень гидратации цемента с трендом содержания в нем летучей золы при соотношении W / B 0,5. Можно заметить, что добавленная степень гидратации цемента увеличивается с увеличением содержания летучей золы. Когда содержание летучей золы было менее 0,3, возраст выдержки мало влиял на повышенную степень гидратации цемента. Когда содержание летучей золы было больше 0.3, степень гидратации цемента значительно улучшилась с увеличением срока выдержки. Например, когда срок выдержки системы зола-унос цемента увеличился с 1 дня до 180 дней, значение степени гидратации цемента увеличилось с 0,07 до 0,11, когда содержание золы уноса составляло 0,1. Повышенное значение степени гидратации цемента улучшилось с 0,34 до 0,72 при содержании летучей золы 0,5. Очевидно, что соотношение W / B, содержание летучей золы и возраст выдержки могут способствовать степени гидратации цемента.С одной стороны, это происходит главным образом из-за включенной летучей золы, увеличивающей эффективное соотношение W / B цемента и улучшающей среду гидратации цемента. С другой стороны, это происходит из-за поствторичных реакций летучей золы, которые быстро расходуют Ca (OH) 2 , который образуется при гидратации цемента, что благоприятно для реакций гидратации цемента.

    Одной из целей этого исследования было прогнозирование повышенной степени гидратации цемента и степени реакции летучей золы в смешанной системе летучая зола-цемент с различным содержанием летучей золы, соотношением W / B и периодами выдержки.На основании результатов рисунков 8 и 9 можно сделать вывод, что повышенные значения степени гидратации цемента, содержащего добавленную летучую золу, и количественные отношения между степенью реакции летучей золы, соотношением W / B и летучей золы содержание может быть выражено следующим образом, как определено с помощью множественного регрессионного анализа:

    4.2.2. Проверка модели

    На рисунке 10 показано сравнение экспериментальных результатов и прогнозируемых значений для. Подбираемый коэффициент уравнения регрессионного анализа () равен 0.98849. На рисунке 11 показаны экспериментальные и прогнозируемые значения, а подобранный коэффициент уравнения регрессионного анализа () равен 0,99131. Максимальные относительные ошибки на рисунках 10 и 11 составляют 30,96% и 48,31% соответственно. Модель соответствовала экспериментальным значениям. Поэтому разумно предложить модель степени реакции летучей золы и модель ускоренной гидратации цемента для смешанных систем.



    Содержание CH и пористость, как ключевые параметры микроструктуры, были выбраны для проверки продуктов гидратации цементно-уносовых смесей.Результаты экспериментальных значений взяты из литературы [5]. В этом эксперименте содержание CH в гидратированных цементных пастах определялось термогравиметрическим анализом на основе воспламененной массы образца. Пористость паст цементно-зольной пыли определялась методом ртутной интрузии. Значения CH и пористости представлены в разделе 3.2. На рисунке 12 представлено сравнение прогнозируемых и экспериментальных значений содержания CH. Для различных соотношений W / B и содержания летучей золы прогнозируемые результаты приближались к экспериментальным значениям с увеличением срока выдержки.Максимальные относительные ошибки составили 13,5%, 11,3% и 6,6% через 7 дней, 28 дней и 90 дней соответственно. На рисунке 13 показано сравнение прогнозируемых и экспериментальных значений пористости в системах летучая зола-цемент. Для всех образцов предсказанные значения были выше, чем измеренные значения. Максимальные относительные ошибки составили 11,7%, 11,2% и 13,9% через 7 дней, 28 дней и 180 дней соответственно. Основная причина заключается в том, что пористость смешанной системы, рассчитанная с помощью модели, является капиллярной пористостью (пористостью, содержащейся в капиллярных порах, и пористостью геля), которая была получена путем проникновения ртути.Таким образом, с более длительным сроком отверждения за счет второй гидратации летучей золы образовывалось больше гелевой фазы C-S-H, и различия между расчетными и измеренными значениями увеличивались.



    5. Выводы

    (1) Степень гидратации цемента в чистых цементных пастах определялась путем измерения содержания неиспариваемой воды. Степень реакции летучей золы в пастах с добавлением летучей золы и цемента определялась с использованием метода избирательного растворения. (2) На основании степени гидратации цемента и эффективного соотношения W / B, степень гидратации цемента в летучей золе. -цементные купажные пасты.(3) Модель гидратации паст на основе смеси зольной и цементной смеси основана на степени реакции и продуктах гидратации. Эта модель учитывает реакции летучей золы и гидратации цемента, но также зависит от их взаимодействия.

    Конкурирующие интересы

    Авторы заявляют об отсутствии конкурирующих интересов относительно публикации этой статьи.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *