Как посчитать в квадрате – Как считать квадраты ? как посчитать число квадрате ? Математика

Быстрое возведение чисел в квадрат без калькулятора

Сегодня мы научимся быстро без калькулятора возводить большие выражения в квадрат. Под большими я подразумеваю числа в пределах от десяти до ста. Большие выражения крайне редко встречаются в настоящих задачах, а значения меньше десяти вы и так умеете считать, потому что это обычная таблица умножения. Материал сегодняшнего урока будет полезен достаточно опытным ученикам, потому что начинающие ученики просто не оценят скорость и эффективность этого приема.

Для начала давайте разберемся вообще, о чем идет речь. Предлагаю для примера сделать возведение произвольного числового выражения, как мы обычно это делаем. Скажем, 34. Возводим его, умножив само на себя столбиком:

\[{{34}^{2}}=\times \frac{34}{\frac{34}{+\frac{136}{\frac{102}{1156}}}}\]

1156 — это и есть квадрат 34.

Проблему данного способа можно описать двумя пунктами:

1) он требует письменного оформления;

2) в процессе вычисления очень легко допустить ошибку.

Сегодня мы научимся быстрому умножению без калькулятора, устно и практически без ошибок.

Итак, приступим. Для работы нам потребуется формула квадрата суммы и разности. Давайте запишем их:

\[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]

\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]

Что нам это дает? Дело в том, что любое значение в пределах от 10 до 100 представимо в виде числа $a$, которое делится на 10, и числа $b$, которое является остатком от деления на 10.

Например, 28 можно представить в следующем виде:

\[\begin{align}& {{28}^{2}} \\& 20+8 \\& 30-2 \\\end{align}\]

Аналогично представляем оставшиеся примеры:

\[\begin{align}& {{51}^{2}} \\& 50+1 \\& 60-9 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 70+7 \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\& 30-9 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 20+6 \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 30+9 \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\& 90-9 \\\end{align}\]

Что дает нам такое представление? Дело в том, что при сумме или разности, мы можем применить вышеописанные выкладки. Разумеется, чтобы сократить вычисления, для каждого из элементов следует выбрать выражение с наименьшим вторым слагаемым. Например, из вариантов $20+8$ и $30-2$ следует выбрать вариант $30-2$.

Аналогично выбираем варианты и для остальных примеров:

\[\begin{align}& {{28}^{2}} \\& 30-2 \\\end{align}\]

\[\begin{align}& {{51}^{2}} \\& 50+1 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\\end{align}\]

Почему следует стремиться к уменьшению второго слагаемого при быстром умножении? Все дело в исходных выкладках квадрата суммы и разности. Дело в том, что слагаемое $2ab$ с плюсом или с минусом труднее всего считается при решении настоящих задач. И если множитель $a$, кратный 10, всегда перемножается легко, то вот с множителем $b$, который является числом в пределах от одного до десяти, у многих учеников регулярно возникают затруднения.

Можете самостоятельно попробовать рассчитать оба разложения, и вы убедитесь, что разложение с наименьшим вторым слагаемым считается проще. А мы перейдем к примерам, которые посчитаем без калькулятора:

\[{{28}^{2}}={{(30-2)}^{2}}=200-120+4=784\]

\[{{51}^{2}}={{(50+1)}^{2}}=2500+100+1=2601\]

\[{{42}^{2}}={{(40+2)}^{2}}=1600+160+4=1764\]

\[{{77}^{2}}={{(80-3)}^{2}}=6400-480+9=5929\]

\[{{21}^{2}}={{(20+1)}^{2}}=400+40+1=441\]

\[{{26}^{2}}={{(30-4)}^{2}}=900-240+16=676\]

\[{{39}^{2}}={{(40-1)}^{2}}=1600-80+1=1521\]

\[{{81}^{2}}={{(80+1)}^{2}}=6400+160+1=6561\]

Вот так за три минуты мы сделали умножение восьми примеров. Это меньше 25 секунд на каждое выражение. В реальности после небольшой тренировки вы будете считать еще быстрее. На подсчет любого двухзначного выражения у вас будет уходить не более пяти-шести секунд.

Но и это еще не все. Для тех, кому показанный прием кажется недостаточно быстрым и недостаточно крутым, предлагаю еще более быстрый способ умножения, который однако работает не для всех заданий, а лишь для тех, которые на единицу отличаются от кратных 10. В нашем уроке таких значений четыре: 51, 21, 81 и 39.

Казалось бы, куда уж быстрее, мы и так считаем их буквально в пару строчек. Но, на самом деле, ускориться можно, и делается это следующим образом. Записываем значение, кратное десяти, которое наиболее близкое нужному. Например, возьмем 51. Поэтому для начала возведем пятьдесят:

\[{{50}^{2}}=2500\]

Значения, кратные десяти, поддаются возведению в квадрат намного проще. А теперь к исходному выражению просто добавляем пятьдесят и 51. Ответ получится тот же самый:

\[{{51}^{2}}=2500+50+51=2601\]

И так со всеми числами, отличающимися на единицу.

Если значение, которое мы ищем, больше, чем то, которое мы считаем, то к полученному квадрату мы прибавляем числа. Если же искомое число меньше, как в случае с 39, то при выполнении действия, из квадрата нужно вычесть значение. Давайте потренируемся без использования калькулятора:

\[{{21}^{2}}=400+20+21=441\]

\[{{39}^{2}}=1600-40-39=1521\]

\[{{81}^{2}}=6400+80+81=6561\]

Как видите, во всех случаях ответы получаются одинаковыми. Более того, данный прием применим к любым смежным значениям. Например:

\[\begin{align}& {{26}^{2}}=625+25+26=676 \\& 26=25+1 \\\end{align}\]

При этом нам совсем не нужно вспоминать выкладки квадратов суммы и разности и использовать калькулятор. Скорость работы выше всяких похвал. Поэтому запоминайте, тренируйтесь и используйте на практике.

Ключевые моменты

С помощью этого приема вы сможете легко делать умножение любых натуральных чисел в пределах от 10 до 100. Причем все расчеты выполняются устно, без калькулятора и даже без бумаги!

Для начала запомните квадраты значений, кратных 10:

\[\begin{align}& {{10}^{2}}=100,{{20}^{2}}=400,{{30}^{2}}=900,…, \\& {{80}^{2}}=6400,{{90}^{2}}=8100. \\\end{align}\]

Далее — выкладки квадрата суммы или разности, в зависимости от того, к какому опорному значению ближе наше искомое выражение. Например:

\[\begin{align}& {{34}^{2}}={{(30+4)}^{2}}={{30}^{2}}+2\cdot 30\cdot 4+{{4}^{2}}= \\& =900+240+16=1156; \\\end{align}\]

\[\begin{align}& {{27}^{2}}={{(30-3)}^{2}}={{30}^{2}}-2\cdot 30\cdot 3+{{3}^{2}}= \\& =900-180+9=729. \\\end{align}\]

Как считать еще быстрее

Но это еще не все! С помощью данных выражений моментально можно сделать возведение в квадрат чисел, «смежных» с опорными. Например, мы знаем 152 (опорное значение), а надо найти 142 (смежное число, которое на единицу меньше опорного). Давайте запишем:

\[\begin{align}& {{14}^{2}}={{15}^{2}}-14-15= \\& =225-29=196. \\\end{align}\]

Обратите внимание: никакой мистики! Квадраты чисел, отличающиеся на 1, действительно получаются из умножения самих на себя опорных чисел, если вычесть или добавить два значения:

\[\begin{align}& {{31}^{2}}={{30}^{2}}+30+31= \\& =900+61=961. \\\end{align}\]

Почему так происходит? Давайте запишем формулу квадрата суммы (и разности). Пусть $n$ — наше опорное значение. Тогда они считаются так:

\[\begin{align}& {{(n-1)}^{2}}=(n-1)(n-1)= \\& =(n-1)\cdot n-(n-1)= \\& =={{n}^{2}}-n-(n-1) \\\end{align}\]

— это и есть формула.

\[\begin{align}& {{(n+1)}^{2}}=(n+1)(n+1)= \\& =(n+1)\cdot n+(n+1)= \\& ={{n}^{2}}+n+(n+1) \\\end{align}\]

— аналогичная формула для чисел, больших на 1.

Надеюсь, данный прием сэкономит вам время на всех ответственных контрольных и экзаменах по математике. А у меня на этом все. До встречи!

Смотрите также:

  1. Что такое числовая дробь
  2. Задача B1 — время, числа и проценты
  3. Пробный ЕГЭ 2012. Вариант 7 (без производных)
  4. Специфика работы с логарифмами в задаче B15
  5. Задача C1: тригонометрия и показательная функция — 1 вариант

www.berdov.com

Калькулятор для расчета площади


Данный онлайн-калькулятор позволяет рассчитать площадь различных геометрических фигур, таких как:


Для удобства расчетов вы можете выбрать единицу измерения (миллиметр, сантиметр, метр, километр, фут, ярд, дюйм, миля). Также полученный результат можно конвертировать в другую единицу измерения путем выбора её из выпадающего списка.


Полезные калькуляторы

Конвертер единиц площади
|
Конвертер единиц длины

Расчет площади прямоугольника

Результат:

S= 1111
кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади треугольника

Способ нахождения площади треугольника:
По трем сторонамПо одной стороне и высоте, опущенной на эту сторонуПо двум сторонам и углу между ними

Вычислить

Результат:

S= 1111
кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади круга


Рассчитать площадь круга, если известен:

Вычислить

Результат:

S= 1111
кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади параллелограмма

Способ нахождения площади параллелограмма:
По основанию и высоте параллелограммаПо двум сторонам и углу между нимиПо двум диагоналям и углу между ними

Вычислить

Результат:

S= 1111
кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади правильного многоугольника


Многоугольник с числом сторон n и длиной стороны аМногоугольник с числом сторон n, вписанный в окружность радиуса RМногоугольник с числом сторон n, описанный вокруг окружности радиуса r

Вычислить

Результат:

S= 1111
кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади эллипса

Результат:

S= 1111
кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади сектора круга



Рассчитать площадь сектора круга, если известен:




r=



ммсммкмфутярддюйммиля

θ=



ммсммкмфутярддюйммиля


град.рад.

Вычислить

Результат:

S= 1111
кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади трапеции

Способ нахождения площади трапеции:
По двум основаниям a,b и высоте hПо двум основаниям a,b и боковым сторонам c,d

Результат:

S= 1111
кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля


Площадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры.








Метрические единицы измерения площади:   
Квадратный метр, производная единица системы СИ 1 м2 = 1 са (сантиар)
Квадратный километр — 1 км2 = 1 000 000 м2
Гектар — 1 га = 10 000 м2
Ар (сотка) — 1 а = 100 м2 (сотка как правило применяется для измерения земельных участков и равна 100 м2 или 10м х 10м)
Квадратный дециметр, 100 дм2 = 1 м2;
Квадратный сантиметр, 10 000 см2 = 1 м2;
Квадратный миллиметр, 1 000 000 мм2 = 1 м2.


Данный онлайн-калькулятор удобен при расчете площадей помещений и земельных участков.

calc.by

Как правильно и быстро посчитать квадратные метры стен, пола и потолка? Объём помещения по формуле, сложные фигуры

Проверить работу строителей, определить объёмы работ и материалов легко, зная как посчитать квадратные метры пола или стен помещения с помощью простых геометрических формул, несложных вычислений и нехитрых приёмов.

В строительстве и отделочных работах почти все расценки на работы сведены к стоимости за квадратный метр. Квадратура поверхностей нужна и для подсчёта расхода материала (смотрите еще: советы для дома).

Метр квадратный это сколько?

Квадратным метром называется единица измерения площади, принятая в международной системе единиц, СИ. 1м² равен площади квадрата со стороной 1 м.

Знание простых правил и нескольких геометрических формул для подсчёта количества квадратных метров стен, полов, потолка позволит избежать ошибок в вычислениях и правильно определить нужные величины.

Инструменты для подсчёта

Для замера и расчёта понадобятся следующие предметы и инструменты:

  • измерительная рулетка, необходимая длина рулетки 3-5 м;
  • карандаш;
  • лист бумаги для записей;
  • калькулятор;
  • строительный угольник.

Угольником размечают перпендикуляры – линии, пересекающиеся под прямым углом.

Площадь комнаты

Знание метража комнаты пригодится для определения стоимости полового покрытия, отделки потолка, количества и мощности осветительных приборов.  Замеряя квадратуру помещения, проверяют соответствие площади, заявленной по проекту.

Измерения стен удобнее производить снизу, на уровне плинтуса. Сомнения в правильной форме помещения устраняют при помощи измерения диагоналей. Если диагонали комнаты равны, то углы – прямые, а помещение – прямоугольное.

Квадрат или прямоугольник

Самая распространенная форма комнаты в плане – квадратная или прямоугольная. Подсчёт квадратуры по полу при этом не составит особого труда:

  • измеряют с помощью рулетки длину и ширину комнаты;
  • перемножают цифры между собой, записывая результат на бумагу;
  • выступы, колонны обмеряют, площадь элементов считают по тем же принципам, перемножая два размера;
  • получившиеся цифры вычитают из площади комнаты.

При этом площадь потолка считают по тому же принципу, то есть умножают длину на ширину за вычетом технологических проемов, если таковые имеются.

Посчитав квадратные метры помещений и сложив их, можно узнать площадь всего дома.

Помещение неправильной формы

Эркеры, мансарды и комнаты домов со сложной архитектурой в плане часто имеют неправильную форму. Метраж нестандартной комнаты с полукругами, выступами, множеством углов подсчитать сложнее. Облегчают задачу, используя принцип деления сложных фигур на простые.

Пол, представляя как составную фигуру мысленно или отображая на бумаге, разделяют на стандартные геометрические элементы. Затем вычисляют площадь элементов по одному и складывают полученные величины.

Г-образные, Т-образные формы помещения в плане разбивают на прямоугольники и квадраты. Полукруглые поверхности принимают как часть круга.

Количество квадратных метров пола комнаты, в основе которой лежит трапеция, можно высчитать двумя способами:

  • представив трапецию, как сочетание квадрата с двумя треугольниками. Получив значение фигур, цифры складывают;
  • по формуле площади трапеции.

Для подсчёта по формуле измеряют две противоположные длинные стены, эти размеры дадут значения оснований. Значение высоты определяют путём замера перпендикуляра, проведённого от одного из углов меньшего основания к большему.

Формула площади трапеции S=1/2(А+В)*Н, где:

  • S – искомая величина, площадь трапеции;
  • А – основание трапеции;
  • В – основание трапеции;
  • Н – высота трапеции.

Площадь трапециевидной комнаты – половина суммы числовых значений оснований, умноженных на высоту.

Объем комнаты

Кубатура помещения, или объём в строительстве используется при подсчёте необходимой мощности отопления, вентиляции, кондиционирования комнаты.

Объём измеряется в кубических метрах. Единица записывается как 1 м³.

С точки зрения геометрии, помещение как фигура представляет собой шестигранник.

Измерив длину, ширину и высоту комнаты прямоугольной формы, перемножив полученные измерения, получают объём простого помещения.

Объём помещения сложной формы вычисляют следующим путём:

  • пол комнаты разбивают на простые геометрические фигуры;
  • вычисляют квадратуру каждой фигуры;
  • полученные значения складывают и умножают на высоту до потолка.

Как посчитать квадратуру стен?

Размер стены в квадратных метрах нужен для подсчёта количества отделочных материалов, размещения полок, зеркал или навесных шкафов.

Сплошная стена

Квадратура стены рассчитывается аналогично площади пола – длина, высота стены после обмера перемножаются между собой. Учитывают все впадины и выступы, если такие есть. Стены мансардных помещений под крышей часто ломаной формы, сегменты находятся в разных плоскостях.

В этом случае участки стены измеряют по отдельности, переносят на бумагу. Подсчитывают площадь каждой отдельной геометрической фигуры и суммируют числа.

С окном

Определяя количество квадратных метров стены, оконные проёмы, как правило, исключают.

Торцевые грани стен возле окна называют откосами, их размеры также не входят в метраж стены и считаются отдельно, например при подсчёте штукатурных работ или шпаклёвки.

С дверью

Квадратуру дверного проёма из площади стены при расчёте вычитают. Откосы при необходимости измеряют отдельно.

Измеряем площадь неправильной фигуры

Высчитывая метраж декоративных арочных проёмов или стрельчатых окон, поступают по тому же принципу, разбивая сложную фигуру на несколько простых элементов.

С квадратами и прямоугольниками совмещают части круга и треугольники.

Окружность

Целый круг в интерьере встречается достаточно редко. Полностью круглым может быть окно, колонны, центральная часть многоуровневого потолка. В основном дело приходится иметь с частями круга: половиной или сегментами.

Рулеткой снимают размер между двумя противоположными точками круга. Этот отрезок будет называться диаметром. Радиус круга равен половине диаметра.

Подсчёт площади круга производят по формуле S = π*R², где:

  • R – радиус;
  • S – площадь круга;
  • π – постоянная математическая величина, округлённая до значения 3,14.

Числовое значение площади полукруга получают делением полученного результата на 2.

Квадратура сектора круга равна произведению половины длины дуги сектора на радиус круга, вычисляется по формуле S = 1/2 L*R.

Треугольник

Формула площади треугольника S=1/2*Н*А, где:

  • S – площадь треугольника;
  • Н – высота;
  • А – сторона треугольника.

Высоту треугольника получают, измеряя рулеткой перпендикуляр от угла, противоположного к стороне.

Посмотрите на видео ниже полезные советы для быстрого и правильного подсчета квадратуры стен и пола:

Используя простые формулы из школьного курса геометрии, можно подсчитать любую нужную величину для строительства или ремонта.

Статья полезна? Сохраните закладку или отметьте для друзей!

domavlad.ru

Как посчитать площадь комнаты, стены, пола, потолка

Главная » Разное » Как посчитать квадратуру комнаты, стен, потолка, пола

Периодически нам требуется знать площадь и объем комнаты. Эти данные могут понадобиться при проектировании отопления и вентиляции, при закупке стройматериалов и еще во многих других ситуациях. Также периодически требуется знать площадь стен. Все эти данные вычисляются легко, но предварительно придется поработать рулеткой — измерять все требуемые габариты.  О том, как посчитать площадь комнаты и стен, объем помещения и пойдет речь дальше.  

Часто требуется посчитать кубатуру комнаты, ее объем

Площадь комнаты в квадратных метрах

Содержание статьи

Посчитать несложно, требуется только вспомнить простейшие формулы а также провести измерения. Для этого нужны будут:

  • Рулетка. Лучше — с фиксатором, но подойдет и обычная.
  • Бумага и карандаш или ручка.
  • Калькулятор (или считайте в столбик или в уме).

Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.

Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине. Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.

Прямоугольная комната

Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры. Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).

Как высчитать площадь комнаты

Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 кв. м.  В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.

Помещение неправильной формы

Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).

Перед тем как посчитать площадь комнаты, тоже проводим изменения. Только в этом случае цифр будет не две, а четыре: добавится еще длина и ширина выступа. Габариты обоих кусков считаются отдельно.

Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.

Площадь комнаты сложной формы

Покажем на этом примере как посчитать площадь комнаты с выступом (изображена на фото выше):

  1. Считаем квадратуру без выступа: 3,6 м * 8,5 м = 30,6 кв. м.
  2. Считаем габариты выступающей части: 3,25 м * 0,8 м = 2,6 кв. м.
  3. Складываем две величины: 30,6 кв. м. + 2,6 кв. м. = 33,2 кв. м.

Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров. Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту. Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный.

Как посчитать площадь комнаты неправильной формы

В этом случае порядок вычислений такой:

  1. Считаем большую прямоугольную часть: 6,4 м * 1,4 м = 8,96 кв. м. Если округлить, получим 9, 0 кв.м.
  2. Высчитываем малый прямоугольник: 2,7 м * 1,9 м = 5,13 кв. м. Округляем, получаем 5,1 кв. м.
  3. Считаем площадь треугольника. Так как он с прямым углом, то равен половине площади прямоугольника с такими же размерами. (1,3 м * 1,9 м) / 2 = 1,235 кв. м. После округления получаем 1,2 кв. м.
  4. Теперь все складываем чтобы найти общую площадь комнаты: 9,0 + 5,1 + 1,2 = 15,3 кв. м.

Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.

Формулы расчета площади и периметра простых геометрических фигур

Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины. Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка. Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.

Как рассчитать квадратуру стен

Определение площади стен часто требуется при закупке отделочных материалов — обоев, штукатурки и т.п. Для этого расчета нужны дополнительные измерения. К имеющимся уже ширине и длине комнаты нужны будут:

  • высота потолков;
  • высота и ширина дверных проемов;
  • высота и ширина оконных проемов.

Все измерения — в метрах, так как квадратуру стен тоже принято измерять в квадратных метрах.

Удобнее всего размеры наносить на план

Так как стены прямоугольные, то и площадь считается как для прямоугольника: длину умножаем на ширину. Таким же образом вычисляем размеры окон и дверных проемов, их габариты вычитаем. Для примера рассчитаем площадь стен, изображенных на схеме выше.

  1. Стена с дверью:
    • 2,5 м * 5,6 м = 14 кв. м. — общая площадь длинной стены
    • сколько занимает дверной проем: 2,1 м *0,9 м = 1,89 кв.м.
    • стена без учета дверного проема — 14 кв.м — 1,89 кв. м = 12,11 кв. м
  2. Стена с окном:
    1. квадратура маленьких стен: 2,5 м * 3,2 м = 8 кв.м.
    2. сколько занимает окно: 1,3 м * 1,42 м = 1,846 кв. м, округляем, получаем 1,75 кв.м.
    3. стена без оконного проема: 8 кв. м — 1,75 кв.м = 6,25 кв.м.

Найти общую площадь стен не составит труда. Складываем все четыре цифры: 14 кв.м + 12,11 кв.м. + 8 кв.м + 6,25 кв.м. = 40,36 кв. м.

Объем комнаты

Формула расчета объема комнаты

Для некоторых расчетов требуется объем комнаты. В этом случае перемножаются три величины: ширина, длинна и высота помещения. Измеряется данная величина в кубических метрах (кубометрах), называется еще кубатурой. Для примера используем данные из предыдущего пункта:

  • длинна — 5,6 м;
  • ширина — 3,2 м;
  • высота — 2,5 м.

Если все перемножить, получаем: 5,6 м * 3,2 м * 2,5 м = 44,8 м3. Итак, объем помещения 44,8 куба.

 

stroychik.ru

Как посчитать площадь стен комнаты (калькулятор онлайн)

Калькулятор расчёта плитки на пол

Если вы хотите посчитать только площадь комнаты, то вам сюда.

А для автоматического расчёта площади стен вы можете воспользоваться калькулятором, который расположен ниже по тексту. Для расчёта необходимо измерить в метрах длину, ширину комнаты и высоту потолка.

Дробные значения вводите с запятой!

Чуть ниже приведён практический пример расчета площади стен комнаты.

Обращаем ваше внимание, что измерения необходимо проводить в метрах. Т.е. если вы получили длину комнаты 425 сантиметров, то в поля необходимо ввести значение 4,25. Обратите внимание, что дробные числа нужно вводить с запятой, а не с точкой! Т.е. 5,2 — правильно,   5.2 — неправильно!

О том, как рассчитать обои для комнаты мы уже писали в статье Сколько надо обоев , и конечно же Расчет обоев на комнату.

А сейчас пример расчёта площади стен комнаты. Длина нашей комнаты 3,82 метра, ширина — 3,44 метра и высота потолка 2,71 метра. Подставив эти значения в соответствующие поля мы получим значение 39,349199999999996 квадратных метра, таким образом площадь наших стен будет почти 40 метров.

Значение полученное при расчёте будет не корректно, так как в рассчитанное значение будет входить площадь окна и площадь двери. Эти площади нужно вычесть из полученного значения.

Рекомендуем использовать следующие калькуляторы:

Расчет обоев на комнату

Как посчитать площадь окна

Расчёт плитки для пола

 

domolov.ru

Как рассчитать квадратные метры стен комнаты, расчет площади стен

Приведу пример расчета пола и стен комнаты (кухни) в квадратных метрах.

Формула расчета простая, S = a*b, где S — площадь, а и b — соответственно, длина и ширина комнаты.
В нашем примере (рисунка с обмерами) вместо маленьких букв длина — А и ширина — Б., и противоположенных стен — Г и В.

Чтобы рассчитать площадь комнаты по полу:

— если у нас длина комнаты 5 метра, а ширина 3 метров, тогда нам надо ( 5*3 = 15 кв.м.), в итоге получаем 15 кв.м. по полу

Чтобы рассчитать площадь комнаты по стенам:

Надо с начало сложить длины всех четырех сторон комнаты А + Б + Г + В и умножить на высоту потолка комнаты h, ( А + Б + Г + В)* h
— если у нас длина комнаты 5 метра, а ширина 3 метров, а высота потолка комнаты к примеру 2,5 метра, тогда надо ((5+3+5+3)*2,5= 40 кв.м.), в итоге получаем 40 кв.м. по стенам.

Но это еще не все, для того чтобы получить чистые квадратные метры стен комнаты для ремонта и отделки квартиры, надо из полученного вычесть двери и окно.

К примеру:

— если у нас размеры окна ширина 1,6 метров, а высота 1,5 метров.
— а двери ширина 0,8 метров, а высота 2,05 метров.

Окно: (1,6*1,5)= 2,4 кв.м., в итоге окно получаем 2,4 кв.м.,
Двери: (0,8*2,05)= 1,64 кв.м, в итоге двери получаем 1,64 кв.м.,

Осталось вычесть от (40-2,4-1,64)= 35,96 кв.м.,
ИТОГО: Получили 35,96 кв.м. по стенам комнаты.

 

 

Если вы не хотите в ручную рассчитывать площадь стен или вы, что то не поняли при описание расчетов, то вы можете воспользоваться нашим калькулятором и рассчитать площадь стен автоматически.

Для расчёта необходимо измерить в метрах длину, ширину комнаты и высоту потолка и внести данные по порядку заполнив форму и вы автоматически получите расчет площади стен в квадратных метрах.

 

Калькулятор расчёта площади стен

 

Примечание:

Обращаем ваше внимание, что измерения необходимо проводить в метрах. Т.е. если вы получили длину комнаты 964 сантиметров, то в поля формы необходимо ввести значение 9.64. Обратите внимание, что дробные числа нужно вводить с точкой, а не с запятой!

Т.е. 2,6 — неправильно2.6 — правильно

Калькулятор рассчитывает только площадь стен, но без учета и вычета площади окон и дверей, для этого надо еще раз повторить расчеты на площадь окон и дверей описанные выше.

К примеру:

— если у нас размеры окна ширина 1,6 метров, а высота 1,5 метров.
— а двери ширина 0,8 метров, а высота 2,05 метров.

Окно: (1,6*1,5)= 2,4 кв.м., в итоге окно получаем 2,4 кв.м.,
Двери: (0,8*2,05)= 1,64 кв.м, в итоге двери получаем 1,64 кв.м.,

Осталось вычесть от (от полученных расчетов автоматического калькулятора (площадь чистых стен) -2,4-1,64 (Окно и двери)= получим площадь стен с учетом вычета Окон и двери помещения (комнаты) в кв.м.,

 

 

Чтобы рассчитать площадь комнаты по полу: воспользуйтесь нашим Калькулятором, чтобы расчитать площадь пола или потолка.

Калькулятор рассчитывает не только площадь пола или потолка, а также данный калькулятор можно использовать для расчёта площади любых других прямоугольных объектов у которых есть длина и ширина. В этом случае вместо ширины и длины комнаты вам необходимо подставить значения ширины и длины этих самых объектов (окна, двери и т.д.,) к примеру таких как площадь окон и дверей.

 

Источник: remont-otdelka-m.ru

remont-otdelka-m.ru

Как вычислить квадрат?

Квадрат числа — это результат математической операции, которая возводит это число во вторую степень, то есть однократно умножает это число на само себя. Обозначать такую операцию принято так: Z2, где Z — наше число, 2 — степень «квадрат». О том, как вычислить квадрат числа, расскажет наша статья.

Вычисляем квадрат

Если число простое и маленькое, то сделать это просто или в уме, или воспользовавшись таблицей умножения, которая нам всем хорошо известна. Например:

42 = 4х4 = 16; 72 = 7х7 = 49; 92 = 9х9 = 81.

Если число большое или «громадное», то можно воспользоваться или таблицей квадратов, которую все учили в школе, или калькулятором. Например:

122 = 12х12 = 144; 172 = 17х17 = 289; 1392 = 139х139 = 19321.

Также для получения необходимого результата по двум вышеприведенным примерам, можно умножить эти числа в столбик.

Для того чтобы получить квадрат любой дроби, необходимо:

  1. Перевести дробь (если дробь имеет целую часть или же она десятичная) в неправильную дробь. Если дробь правильная, то переводить ничего не нужно.
  2. Умножить знаменатель на знаменатель, а числитель на числитель дроби.

Например:

(3/2)2 = (3/2)х(3/2) = (3х3)/(2х2) = 9/4; (5/7)2 = (5/7)х(5/7) = (5х5)/(7х7) = 25/49; (14/17)2 = (14х14)/(17х17) = 196/289.

В любом из этих вариантов проще всего воспользоваться калькулятором. Для этого нужно:

  1. Набрать число на клавиатуре
  2. Нажать на кнопку со знаком «умножение»
  3. Нажать кнопку со знаком «равно»

Также всегда можно воспользоваться поисковыми системами в Интернете, такими как, например, Google. Для этого необходимо просто ввести соответствующий запрос в поле поисковика и получить уже готовый результат.

Например: чтобы вычислить квадрата числа 9,17 необходимо набрать в поисковой системе 9,17*9,17, или 9,17^2, или «9,17 в квадрате». В любом из этих вариантов поисковая система выдаст Вам правильный результат — 84,0889.

Теперь Вы знаете, как вычислить квадрат любого интересующего Вас числа, будь то целое число или дробь, большое оно или маленькое! 

elhow.ru

Оставить комментарий

avatar
  Подписаться  
Уведомление о